
The Effects of Generative AI on High-Skilled Work:
Evidence from Three Field Experiments with

Software Developers*

Kevin Zheyuan Cui, Mert Demirer, Sonia Jaffe,
Leon Musolff, Sida Peng, and Tobias Salz

June 2025

Abstract

This study evaluates the effect of generative AI on software developer produc-
tivity via randomized controlled trials at Microsoft, Accenture, and an anonymous
Fortune 100 company. These field experiments, run by the companies as part of their
ordinary course of business, provided a random subset of developers with access to
an AI-based coding assistant suggesting intelligent code completions. Though each
experiment is noisy, when data is combined across three experiments and 4,867 de-
velopers, our analysis reveals a 26.08% increase (SE: 10.3%) in completed tasks among
developers using the AI tool. Notably, less experienced developers had higher adop-
tion rates and greater productivity gains.

*Cui: Princeton. Demirer: MIT. Jaffe: Microsoft. Musolff: The Wharton School of the University of
Pennsylvania. Peng: Microsoft. Salz: MIT. This RCT was post-registered as AEARCTR-0014530 (Peng
2024). We are grateful to Avi Goldfarb, Shane Greenstein, Anton Korinek, Ethan Mollick, and Daniel Rock,
as well as the participants of the IIOC2024 conference, ASSA2025 conference, and the AI, Cognition, and
the Economy Workshop. Thanks also for data help from employees at Microsoft, GitHub, and Accenture:
Phillip Coppney, Wen Du, Ya Gao, Lizzie Redford, Ryan J. Salva, Daniel A. Schocke, Amanda Silver, An-Jen
Tai, Dan Tetrick, Jeff Wilcox. Mert Demirer and Tobias Salz thank the MIT GenAI initiative for funding.

1

1 Introduction

Many economists expect generative AI to profoundly affect the organization of economic
activity (Agrawal, Gans, and Goldfarb 2019; Frank et al. 2019; Furman and Seamans
2019; Greenstein et al. 2024). Eloundou et al. (2024) estimate that generative AI can per-
form tasks associated with over 80% of U.S. jobs, with particularly high task coverage in
occupations requiring advanced degrees. This capability—enabling AI to assist doctors
in diagnosing diseases, lawyers in drafting legal documents, and software engineers in
writing code—has fueled predictions of substantial productivity gains from widespread
adoption (Baily, Brynjolfsson, and Korinek 2023). Others, however, are less optimistic
about such productivity gains (Acemoglu 2025).

Uncertainty regarding firms’ willingness to adopt these technologies and their capac-
ity to make necessary complementary investments (Bresnahan 2024; Brynjolfsson, Rock,
and Syverson 2021) makes it currently difficult to empirically assess whether or not op-
timism about productivity gains is justified.1 Nevertheless, some applications of gener-
ative AI have already matured and are integrated into existing workflows. An example
is software development, where coding assistants based on generative AI have gained
widespread adoption.2

This paper investigates how generative AI affects the productivity of knowledge
workers, using software developers as an example. We analyze three large-scale ran-
domized controlled trials in real-world environments. These experiments randomly as-
signed access to Copilot, a coding assistant developed by GitHub in collaboration with
OpenAI, to just under five thousand software developers at Microsoft, Accenture, and
an anonymous Fortune 100 electronics manufacturing company (henceforth Anonymous
Company). These experiments were run as part of the ordinary course of business at
these companies to decide whether or how extensively to adopt these technologies, and
the companies kindly shared the resulting data with us.3 These experiments lasted two
to eight months, after which all groups were granted access to Copilot.

Our preferred estimates from an instrumental variable regression suggest that usage
of the coding assistant causes a 26.08% (SE: 10.3%) increase in the weekly number of
completed tasks for those using the tool.4 When we look at outcomes of secondary
interest, our results support this interpretation, with a 13.55% (SE: 10.0%) increase in the
number of code updates (commits) and a 38.38% (SE: 12.55%) increase in the number of
times code was compiled.

A central question is whether AI offers greater benefits to low-productivity or high-

1In addition, it is difficult to predict further breakthroughs in the architecture of these models, which
may lead to further improvements in quality or decrease the cost of inference and training.

2Prior academic work has shown that generative AI can pass mock interviews for coding jobs at Amazon
in the top decile of human performance, can perform at human level in a database of coding challenges
that measure programming logic and proficiency, and can write entire programs for simple video games
from several lines of instructions (Bubeck et al. 2023). Copilot is used by 1.3 million subscribers and more
than 50,000 businesses (Microsoft Corporation 2025).

3The implementation of these experiments was ad-hoc as they were driven by business considerations
at these companies rather than research goals.

4Because of imperfect compliance, our preferred estimates use treatment status as an instrument for
usage, so this is an estimate of the local average treatment effect for adopters.

2

productivity workers. Prior research finds that when workers perform similar tasks,
generative AI tends to benefit lower-ability or less-experienced workers more (e.g., Bryn-
jolfsson, Li, and Raymond 2025; Noy and Zhang 2023), though some studies suggest
that the most productive workers benefit the most (Otis et al. 2024). Consistent with
the former, we find that generative AI yields greater productivity gains for lower-ability
workers, even when workers are performing tasks according to their tenure or seniority.

Our preferred estimates combine estimates across all three experiments and place
more weight on periods with larger differences in treatment status. We make these
choices because our analysis must confront challenges related to statistical power despite
the large number of developers in the experiments. These challenges arise from large
weekly variation in measured outcomes and factors that reduce the takeup and duration
of the three experiments.5 The experiment at Microsoft started before Copilot was widely
known (and before the release of ChatGPT), and initial takeup was low. Shortly after a
larger fraction of developers in the treatment group started using it, the control group
was also allowed access. At Accenture, only a few hundred developers participated in
the experiment. Finally, at Anonymous Company, the treatment consisted of a staggered
rollout with differences in treatment status lasting only a short time.

Most studies of the impact of generative AI on worker productivity have been con-
ducted in controlled lab-like experiments (Campero et al. 2022; Noy and Zhang 2023;
Peng et al. 2023; Vaithilingam, Zhang, and Glassman 2022). In a lab-in-the-field ex-
periment on consultants employed by Boston Consulting Group, Dell’Acqua et al. (2023)
finds that productivity on 18 tasks designed to mimic the day-to-day work at a consulting
company increased by 12%–25%. Evidence from these experiments generally suggests
significant productivity gains from generative AI. The exception is Vaithilingam, Zhang,
and Glassman (2022), who find no statistically significant difference in completion time.

While lab experiments offer a valuable opportunity to examine the short-term impli-
cations of generative AI, challenges and complex interactions arise when these tools are
deployed in real-world environments (Jaffe et al. 2024). There are some observational
studies of the effects of generative AI in an actual workplace setting (Hoffmann et al.
2024; Yeverechyahu, Mayya, and Oestreicher-Singer 2024). For instance, Brynjolfsson, Li,
and Raymond (2025) finds that an AI-based conversational assistant increases the pro-
ductivity of customer chat support agents by 14%. The drawback of these studies is the
absence of random experimental assignment of these technologies.

Our work complements both the literature on lab experiments and these observa-
tional studies by studying the impact of generative AI using a field experiment in an
actual workplace setting. To date, there are still few experimental studies examining the
effect of generative AI in a field setting. We fill this gap in the literature by examining a
field experiment with high-skilled and highly paid knowledge workers, a group that is
particularly relevant given the prediction that high-skilled jobs will be most affected by
this technology. Although we examine a different part of the skill distribution and use ex-
perimental variation rather than a staggered introduction, we find productivity increases
similar to those reported by Brynjolfsson, Li, and Raymond (2025). Furthermore, like

5We observe large variation in the output of software developers due to significant heterogeneity in
their seniority, with more senior managers being less likely to engage in coding activities.

3

them, we also find suggestive evidence that these gains are primarily driven by improved
output from recent hires and employees in more junior roles. More generally, we con-
tribute to the literature studying the productivity and on-the-job performance of software
developers (Cowgill et al. 2020; Emanuel, Harrington, and Pallais 2023; Murciano-Goroff
2022).

Lastly, we contribute to an emerging literature in marketing and other fields on the
broader use of large language models. These include studies that discuss whether data
from large language models can be used to estimate demand (Brand, Israeli, and Ngwe
2023; Goli and Singh 2024; Gui and Toubia 2023), studies that show how to augment
large language models with experimental data (Angelopoulos, Lee, and Misra 2024), and
studies that demonstrate the use of large language models to select digital advertising
content (Ye, Yoganarasimhan, and Zheng 2025).

2 Setting and Experiments

2.1 What Is AI-Assisted Software Development?
AI assistants for software development offer intelligent code suggestions and autocom-
pletion within integrated development environments. As of 2024, prominent examples
include GitHub Copilot, Cursor, and Replit Ghostwriter. In our study, we examine the
effects of one of these tools, GitHub Copilot. GitHub Copilot was developed by GitHub
in partnership with OpenAI. It was available for “technical preview” in June 2021 and
publicly available in June 2022, just a few months before the first of the experiments we
analyze.6 Copilot was trained on a large corpus of code from public GitHub repositories.
This allows the AI model to learn from real-world coding practices, patterns, and styles
across various programming languages. See Nagle et al. (2023) for an in-depth overview
of the origins and evolution of GitHub Copilot.

The landscape of coding assistants is rapidly changing even as we are writing this
article. We investigate the effects of adopting the version of GitHub Copilot that existed
during our experiment period, i.e., 2022-2023. This version of Copilot integrates with
the software developers use for coding and acts as an intelligent autocompletion tool. As
developers write code or plain text comments, Copilot analyzes the context and generates
relevant code snippets, comments, and documentation. It can autocomplete code that
developers might manually type or suggest snippets they would otherwise need to search
for online. This capability can save developers time and potentially improve code quality
by offering suggestions that the developer might not be aware of. However, like all tools
based on Large Language Models (LLMs), Copilot can make mistakes. If developers rely
on it without review, it could introduce errors or decrease code quality. While general-
purpose LLMs like ChatGPT can also help with software development, they are less
specialized and do not integrate with standard coding tools.

6ChatGPT, the first general-purpose public tool of this class of AI models, was released on November
30, 2022.

4

Microsoft Accenture Anonymous Co.

Experiment Period Sept 2022–Apr 2023 Jul 2023–Dec 2023 Sept 2023–Oct 2023

Sample Period Jan 2022–Apr 2024 Jul 2022–Mar 2024 Jun 2023–Feb 2024

Sample Size 1,746 developers 320 developers 3,054 developers

Encouragement Yes, (Email) Yes (Email, training, and nudges) No

Assignment Level Individual & team-level Individual-level Team-level

Design Treatment-control
randomization

Treatment-control
randomization

Randomized
staggered rollout

Table 1: Comparison of Key Experiment Design Features

Notes: This table contrasts the three field experiments on timing, scale, encouragement methods,
assignment structure, and overall experimental design. Sample periods are longer than experi-
ment periods as we continue to observe outcomes after everyone gains access to Copilot.

2.2 Description of Experiments
We analyze three randomized experiments conducted with software developers at Mi-
crosoft, Accenture, and Anonymous Company. In the Microsoft and Accenture experi-
ments, one group of developers (the treated group) was randomly assigned to be able
to access GitHub Copilot, whereas the other group (the control group) did not have
access for eight (Microsoft) or five (Accenture) months. In the Anonymous Company
experiment, all users gained access to the tool over two months, but access dates were
randomized, with some teams gaining access six weeks before others. We summarize the
main features of each experiment in Table 1 and discuss the details below.

Microsoft The experiment at Microsoft started in the first week of September 2022,
involving 1,746 developers primarily located in the United States. Of these developers,
50.4% were randomly selected to receive access to GitHub Copilot.7 Randomization was
implemented at both the individual and the team levels.8 In particular, 616 developers
were randomized individually, and 1,130 developers were randomized at the team level,
with an average team size of 6.2. The developers work on building a wide range of
software within Microsoft, with tasks that include engineering, designing, and testing
software products and services. They occupy various positions in the company, ranging
from entry-level developers to managers. They may work in a team or individually,
depending on their task and team structure.

Participants in the treated group were informed by email about the opportunity to
sign up for GitHub Copilot. The email also introduced GitHub Copilot as a productivity-
enhancing tool and outlined its potential impact on their coding tasks (see Figure 9 in
Appendix). Beyond this email, treated participants received no specific instructions re-
garding their workload or workflow to ensure they used GitHub Copilot in their natural
work environment. Control group participants did not receive any communication as

7A small number of developers in the control group nevertheless were granted access to Copilot because
they were working on related tools.

8We account for this randomization structure in calculating our standard errors below.

5

part of the study, even when they were eventually allowed access.The experiment ended
earlier than planned in April 2023, as growing awareness of AI-assisted coding tools led
control-group participants to seek access to Copilot.

Accenture The Accenture experiment started in the last week of July 2023 and included
a number of Accenture offices located in Southeast Asia. Randomization occurred at
the developer level, with 61.3% of the 320 developers assigned to the treatment group.
Treatment group participants were informed over email that they were eligible to sign up
for GitHub Copilot. They also participated in a training session, which explained what
GitHub Copilot is, how to use it, and its potential benefits.9 Finally, the participating
managers were asked to encourage the adoption of GitHub Copilot within their teams.
The experiment ended in December 2023 when the control group was granted access to
Copilot.

Anonymous Company The Anonymous Company experiment started in October 2023.
It involved 3,054 developers who were all eventually invited to use Copilot. The invita-
tion dates were randomized, with new invites being sent out weekly between September
2023 and October 2023.

2.3 Variables and Outcome Measures
Measuring the productivity of modern knowledge work is notoriously difficult. Our set-
ting has the advantage that almost all professional software development follows a highly
structured workflow, where specific tasks are defined and tracked through version con-
trol software. This makes internally defined goals quantifiable. All three participating
organizations use the version control software GitHub. By observing the developers’
GitHub activity, we can analyze many of the output metrics that are part of their work-
flow.

A main outcome of interest is the number of “pull requests”. A pull request can be
thought of as a unit of work for software developers. Within an organization, the scope
of a pull request is likely to remain relatively stable over time, shaped by organizational
norms and conventions, even though different organizations may define this scope differ-
ently. For instance, a pull request may ask for a feature to be added to a larger software
project. A pull request will lead to a code review, often by a more senior software devel-
oper. If this review is passed, the code will be merged and thereby become part of the
larger software project. We provide further details about pull requests in Appendix D.3.

We use three additional outcome variables related to the developers’ workflow. Before
submitting a pull request, a developer will work separately on her code, tracking smaller
changes through “commits.” Periodically, the developer will “build” the code they are
working on, and we can observe whether it compiled successfully. Although commits
and builds are not themselves final outputs, we expect them to be measures that are
monotonic in the amount of work completed.

9This was an online training session with voluntary participation. The participants attended an online
call and received instructions about what Copilot is, how to install it, how to use it, and the advantages
and disadvantages of using the tool.

6

Control Treatment

Mean SD Mean SD Difference p-value

Panel A: Microsoft
Pull Requests 0.86 1.49 0.87 1.50 0.01 0.88
Commits 9.43 14.86 9.36 14.80 -0.07 0.94
Builds 7.76 12.99 7.67 12.73 -0.09 0.91
Build Success Rate 0.72 0.30 0.75 0.29 0.02 0.33
Short Tenure 0.48 0.50 0.52 0.50 0.04 0.23
Junior Level 0.55 0.50 0.61 0.49 0.06 0.03**

Panel B: Accenture
Pull Requests 0.13 0.47 0.14 0.47 0.00 0.85
Commits 2.56 6.00 3.64 7.25 1.08 0.01**
Builds 0.96 2.54 1.10 2.68 0.14 0.38
Build Success Rate 0.51 0.37 0.54 0.38 0.03 0.40

Panel C: Anonymous
Pull Requests 0.73 1.23 0.73 1.19 -0.00 0.99

Table 2: Balance Table
Notes: This table presents a comparison of pre-experimental outcomes in control and treatment
groups across experiments. For each measure, we present its mean and standard deviation in the
control group and in the treatment group. We also show the mean difference across these groups
and the p-value associated with an underlying test of a difference in means. We do not present
other outcome measures in Panel C because we do not have access to these data. The p-values
for the differences are calculated using standard errors clustered at the level of treatment assign-
ment, which varies across experiments (Microsoft: mixed team-level and individual assignment;
Accenture: individual assignment; Anonymous Company: team-level assignment.) *10%, **5%,
***1%

0

10

20

30

40

Pe
rc

en
t(%

)

0 2 4 6

(a) Microsoft (37.09% > 0)

0

10

20

30

40

50

Pe
rc

en
t(%

)

0 1 2 3

(b) Accenture (12.90% > 0)

0

10

20

30

40

Pe
rc

en
t(%

)

0 1 2 3 4

(c) Anonymous (34.01% > 0)

Figure 1: Distribution of Pull Requests (Conditional on Above Zero)
Notes: This figure provides, for each experiment, a bar chart depicting the distribution of our
primary outcome variable, the number of completed pull requests. The unit of observation is a
developer-week. We plot this number after winsorizing at the 95-th percentile; its unwinsorized
maximum is 892 for Microsoft, 70 for Accenture, and 876 for Anonymous. Furthermore, we con-
dition on observations with non-zero collected pull requests.

7

For the Microsoft experiment only, we also see some measures of code quality (such
as whether a pull request was approved), which we discuss in more detail in Section 4.3
when analyzing the effect Copilot has on them. Furthermore, again for Microsoft only,
we also observe the hire date of developers and their level at the company, allowing us
to separate the analysis by tenure and seniority.

In addition to these output and quality measures, we observe how developers use
Copilot. For each developer who uses Copilot, we observe both the number of sugges-
tions by Copilot and the number of accepted suggestions.

Table 2 shows summary statistics for the treatment and control groups across all three
experiments, as well as balance tests for the key outcome variables. With the exception of
commits in the Accenture experiment, randomization successfully balanced the average
pre-treatment outcomes across the control and treatment groups. However, the table also
shows that for all outcomes (with the exception of the Build Success Rate), the standard
deviation exceeds the pre-treatment mean, and sometimes by a lot. This high standard
deviation is driven by a large fraction of developer-weeks where the outcome variables
are zero. Figure 1 shows the distribution of pull requests for weeks with at least one
pull request. The high fraction of zeros, however, limits our power to detect effects in the
experimental regressions below (and will be reflected in large standard errors).

3 Adoption of Copilot

This section reports the adoption of Copilot in the experiments. Understanding adoption
patterns is important for assessing the effectiveness of the experiments in generating
random variation in Copilot usage. Furthermore, these patterns offer insights into the
adoption of AI tools in the workplace. We define the adoption period as the first time
a developer uses GitHub Copilot and consider the developer as having adopted the tool
even if they later stop using it. This approach captures the initial willingness to try and
use the technology.

Figure 2 presents the cumulative adoption rates for the three experiments. In Panel
(a), we observe that during the first two weeks of the Microsoft experiment, only 8.5 %
of the treated group signed up for GitHub Copilot. This low adoption rate might have
been due to inattentiveness to the initial email notification. Consequently, Microsoft sent
two additional email reminders on Feb 15th, 2023, and Feb 28th, 2023. These additional
emails increased the take-up rate to 42.5% within two weeks. As discussed before, the
initial compliance in the control group was not perfect because a few control group de-
velopers (0.5%) required access to Copilot to work on related products. At the conclusion
of the experiment in April 2023, the control group was fully given access to Copilot, and
we observed rapid adoption in the control group. However, even in January 2024, adop-
tion in the control group (64.0%) still remained below that in the treated group (75.6%),
thus providing (limited) long-run variation in adoption generated by the experiment.10

Panel (b) reports the adoption rate of Copilot in the Accenture experiment. Unlike the
Microsoft experiment, the Accenture experiment provided training in addition to encour-

10This difference is also driven by the gap in Copilot access duration between the treated and control
groups.

8

0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1

C
um

ul
at

iv
e

R
at

e

Oct 22 Apr 23 Oct 23 Apr 24
Date

Treated
Control

(a) Microsoft Experiment

0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1

C
um

ul
at

iv
e

R
at

e

Jul 23 Sep 23 Nov 23 Jan 24 Mar 24
Date

Treated
Control

(b) Accenture Experiment

0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1

C
um

ul
at

iv
e

R
at

e

Oct 23 Nov 23 Dec 23 Jan 24 Feb 24 Mar 24
Date

Invite
Adopt

(c) Anonymous Company Experiment

Figure 2: Cumulative Adoption Rates
Notes: The first two graphs show the cumulative rate of adoption over time for software devel-
opers in both the treatment and control groups across various experiments. In the Anonymous
Company experiment (Panel c), unlike the other experiments, all developers were granted ac-
cess to Copilot in a staggered fashion, with the order of access randomized among participants.
Hence, we show the cumulative fraction of users invited to participate and who adopted Copilot.

agement emails, resulting in a faster initial uptake among treated developers. However,
within one to two months, adoption slowed down and plateaued at over 60%. Con-
trol group participants started adopting Copilot once they gained access in December
2023, but at a slower pace than the treatment group. By April 2024, the treated group’s
adoption rate was 69.4%, while the control group’s adoption rate was 24.4%.

Panel (c) shows the staggered invitation to access Copilot (represented by the solid
line) and the cumulative adoption rate among all participants (dashed line) at the Anony-
mous Company. As the plot shows, all developers gained access to Copilot after six
weeks. During the invitation rollout in September and October, we observed a steady in-
crease in adoption as developers gained access to Copilot. Following this initial increase
in adoption, the adoption rate plateaued, exhibiting only small, steady increases for the
remainder of the sample period.

It is worth noting that the adoption cost of Copilot is low relative to most AI tools
in the workplace, as it integrates directly into the existing development environment

9

and does not require any other complementary investments. Despite this, the adoption
rate is significantly below 100% in all three experiments, with around 30-40% of the
developers not even trying the product. Furthermore, adoption rates are notably similar
across the experiments. This suggests that factors other than access, such as individual
preferences and perceived quality, play important roles in developers’ decisions to use
this tool (Dietvorst, Simmons, and Massey 2015, 2018).11

4 Empirical Strategy & Main Results

4.1 Empirical Strategy
We exploit the experimental variation and address imperfect compliance by using assign-
ment to treatment as an instrument for GitHub Copilot adoption. Hence, we estimate
a local average treatment effect (LATE) that captures the impact of Copilot adoption on
treatment group developers encouraged to try it.12

For each experiment, we observe data at the developer-week level. To gain precision,
we control for both developer and week fixed effects (to account for, e.g., differences in
developer skills and holidays). This leaves us with the following regression as our main
specification:

yit = βDit + µi + γt + ϵit. (1)

Here, β is the coefficient of interest, Dit is an adoption dummy that turns on after a
developer first uses GitHub Copilot, µi is a developer fixed effect, and γt is a week fixed
effect.13 We estimate Equation (1) via two-stage least squares (2SLS), using an instrument
Zit, a dummy variable equal to one for developers randomized into treatment following
the experiment’s start.

Before presenting the results, we must address a key complication: the control group
in our experiments was eventually granted access to GitHub Copilot. This poses no
challenge for identification, but it reduces the instrument’s power if we use the naive
strategy detailed above. In particular, consider a hypothetical experiment that lasts just
one month: at t = 0, developers are randomized into treatment and control groups,
where control is not allowed access to Copilot until t = 4. Suppose further that, starting
at t = 4, the differences in uptake between the two groups decline over time, asymptot-
ing to zero. If we naively estimate (1) by 2SLS in this setting, the instrument’s power will
strictly decline with the number of observed periods. In the limit, with infinite periods,
our instrument violates the relevance condition because the initial treatment assignment

11 The significantly lower than full adoption rate observed across experiments highlights potential barri-
ers to adoption. Although understanding the adoption of generative AI is an important question, both in
itself and in the context of its productivity effects, our understanding of the reasons for adoption is limited
to anecdotal evidence. Therefore, we are not able to provide a comprehensive analysis of the adoption of
generative AI.

12If treatment effects vary and correlate with compliance, this LATE may differ from the average effect
if the entire population adopted Copilot.

13For the initial phase of the Microsoft experiment, we do not observe intensive usage data. Hence, we
say a developer at Microsoft has adopted Copilot after they either register to use it (relevant in the initial
phase) or we see any usage of Copilot (relevant in the later phase).

10

eventually fails to predict uptake. One potential solution involves focusing only on peri-
ods where the instrument has maximal relevance (t ∈ {1, . . . , 4}) to estimate the model.
However, to the extent that there is still an adoption difference between treatment and
control groups at t = 5, this strategy is wasteful in that it does not exploit all possible
identifying variation.

To avoid arbitrary decisions about which post-experiment periods to include in the
analysis, we weight the 2SLS estimates by the (period-by-period) difference in adoption
across treatment and control groups. The resulting weighted IV regression gracefully
handles the issue of declining instrument relevance, and it has been previously pro-
posed and analyzed in the context of uptake differences across individuals (Coussens
and Spiess 2021; Huntington-Klein 2020); in the context of uptake differences over time,
a similar strategy was employed by Bloom et al. (2012) to improve precision. In practice,
we use the Frisch-Waugh-Lovell (FWL) theorem to first clean out developer and time
fixed effects from yit and Dit in an unweighted regression, and then run a weighted IV
regression of residualized ỹit on residualized D̃it, instrumenting D̃it with Zit.14

The impact of our weighting on the interpretation of our results is straightforward:
the weighted regression weights periods based on the difference in Copilot adoption
between control and treatment groups. The weighted IV estimates place greater emphasis
on treatment effects during periods like March 2023 in the Microsoft experiment, where
a significant difference in adoption was observed between the treatment and control
groups (see Appendix Figure 11 for additional details).15

4.2 Results on Productivity Effects
We present our results in Table 3, split by experiment. To aid interpretation, we ex-
press coefficients as percentage effects by dividing each by the pre-treatment mean in
the control group and multiplying by 100.16 To enable easy comparison to observational
studies such as Brynjolfsson, Li, and Raymond (2025), we present both difference-in-
differences (DiD) estimates that do not exclusively exploit experimental variation and
our main weighted IV results (W-IV), which do.17

At Microsoft, Copilot has a positive effect on the number of completed pull requests,
commits, and code builds. Focusing on the more credible experimental estimates, how-
ever, only the effect on the number of pull requests is statistically significant at conven-
tional significance levels. We find no negative effect on the build success rate, which
would decline if Copilot produced uncompilable code and developers failed to catch

14Without this two-step approach, we cannot identify developer fixed effects as fixed effect identification
requires within-developer variation in the instrument. However, the instrument is one in the post period
for all developers, and our procedure assigns zero weights to all periods before the first adoption, hence
eliminating the necessary variation for identification. Omitting developer fixed effects, in turn, would
lower our power for the treatment effect. See Giles 1984 for a proof that the FWL theorem works in the
context of 2SLS.

15If treatment effects are homogeneous, such weighting will just improve the precision of the estimates.
However, if treatment effects are heterogeneous over calendar time (e.g., because Copilot improved over
time), the weighting will also affect which estimand our estimator targets.

16We do not take logs because a large number of person-weeks are zero for each variable. However, we
report results from a Poisson difference-in-differences regression in Appendix F.

17We relegate the less precise unweighted results to Appendix F.

11

Outcome Microsoft Accenture Anon. Comp. Pooled

DiD W-IV DiD W-IV DiD W-IV DiD W-IV

Pull Requests 7.63*** 27.38** 52.65*** 17.94 1.70 54.03 6.24*** 26.08**
(2.49) (12.88) (9.46) (18.72) (2.47) (42.63) (1.72) (10.3)

Commits 7.03*** 18.32 12.85 -4.48 - - 7.25*** 13.55
(2.32) (11.25) (11.62) (21.88) - - (2.28) (10.0)

Builds 7.11*** 23.19 39.66*** 92.40*** - - 8.23*** 38.38***
(2.65) (14.20) (14.03) (26.78) - - (2.6) (12.55)

Build Success -0.65 -1.34 -20.72*** -17.40** - - -1.13 -5.53
Rate (0.79) (4.23) (5.06) (7.12) - - (0.78) (3.64)

Table 3: Experiment-by-Experiment Results
Notes: This table provides difference-in-difference estimates (DiD) and weighted IV (W-IV) es-
timates of the effect of GitHub Copilot adoption on various productivity measures. Each entry
corresponds to an estimate of β in Equation (1) expressed as a percentage of the control mean. DiD
estimates instrument adoption Dit with itself. W-IV estimates instrument Dit with experimental
assignment Zit and weight by differences in adoption status across treatment and control (see
main text). Standard errors are clustered at the level of treatment assignment, which varies across
experiments (Microsoft: mixed team-level and individual assignment; Accenture: individual as-
signment; Anonymous Company: team-level assignment.) “Pooled” is the precision-weighted
average of the other three estimates. We combine the estimates in this way instead of running a
pooled regression because of the different experiment designs – the staggered rollout at Anony-
mous Company cannot be easily combined with the treatment/control split at the other two.
*10%, **5%, ***1%

these errors. Although not always statistically significant, we observe directionally simi-
lar effect sizes at Accenture and Anonymous Company, except for the build success rate,
which is negative at Accenture. Interestingly, the DiD estimates are sometimes larger
and sometimes smaller than the experimental estimates, indicating that the reasons for
the divergence between experimental and observational estimates may differ across com-
panies.

To obtain a more precise estimate, we combine estimates across experiments in the
final column, taking the precision-weighted average across the three separate estimates.18

While standard errors are consistently large and the effect sizes differ across the three
different companies, we find evidence of productivity-enhancing effects of GitHub Copi-
lot: on average, the number of weekly pull requests made by developers increases by
26.08% (SE: 10.3%), the number of weekly commits increases by 13.55% (SE: 10.0%), and
the number of weekly builds increases by 38.38% (SE: 12.55%).

A less optimistic interpretation of the increase in builds is that developers may engage

18Thus, β̂Pooled =
(
∑e∈E 1/σ̂2

e
)−1

∑e∈E β̂e/σ̂2
e where E = {Microsoft, Accenture, Anonymous Company},

β̂e refers to the estimate in experiment e, and σ̂e refers to the standard error. We combine the estimates
in this way instead of running a pooled regression because of the different experimental designs across
the three companies – the staggered rollout at Anonymous Company cannot be easily combined with the
treatment/control split at the other two.

12

in more trial-and-error coding, accepting Copilot’s suggestions and then compiling the
project to check for errors. Such a change in coding style might lead to lower-quality code
in the long run and undermine efficiency gains in code quantity. However, our results
on build success rate only (weakly) support such an interpretation for the Accenture
experiment. To investigate the quality effects further, we study various additional code
quality measures we observe at Microsoft in Section 4.3 below.

We also discuss an additional experiment run at Accenture that was abandoned due
to a large layoff affecting 42% of participants, resulting in a lack of data on Copilot
usage and hence adoption status. Because of these data quality issues, results from
this experiment are not presented in the above table and instead relegated to Appendix
E. However, if we conservatively impute Copilot adoption status, we find a negative
and statistically insignificant point estimate of -39.18% (SE: 36.78%) on the number of
completed pull requests. The estimates on the number of commits 43.04% (SE: 38.80%)
and builds 12.33% (SE: 53.60%) are both positive, though also not statistically significant.
The preferred combined estimate does not change much when we include this second
Accenture experiment: the number of pull requests made by developers increases by
21.34% (SE: 9.92%), the number of commits increases by 15.39% (SE: 9.69%), and the
number of builds increases by 37.03% (SE: 12.22%).

4.3 Results on Code Quality
Given the evidence that Copilot access increases the number of completed tasks, it is
natural to ask whether code quality may have changed as well. However, code quality is
difficult to measure precisely, especially without having access to the underlying propri-
etary code. Instead, we investigate potential effects on code quality using several proxy
outcomes available for the Microsoft experiment.

Specifically, as part of the code review process, pull requests (PRs) are evaluated by
peers or supervisors. For each PR, we observe the number of reviewers and the number
of reviewers who approved it. From this, we construct an approval rate—the fraction of
reviewers who approved a given PR—as well as a binary indicator of whether the PR
received at least one approval. We also observe the total number of comments a PR re-
ceives, which may reflect the level of controversy or the extent of revisions needed before
merging. In addition, we track the number of merge conflicts, either per PR or per file, as
a proxy for code modularity. Tightly coupled code that requires simultaneous changes
across multiple modules is more likely to generate merge conflicts. Finally, we measure
the time elapsed between a PR’s initial submission and its eventual incorporation into
the codebase. Individually, each of these metrics is an imperfect proxy for code quality.
However, taken together, they offer suggestive evidence about how quality may have
evolved.

We present our results in Table 4. We find that the approval rate of pull requests goes
up by about 10%, suggesting that the code produced after adoption of Copilot is more
likely to be merged into the main codebase, a positive signal of quality. All other effects
are not statistically significant, but they are mostly directionally consistent: code is more
likely to be approved by at least one person and creates fewer merge conflicts. However,
the effect on the number of comments is positive, indicating further necessary changes

13

Outcome Mean Dep ITT IV Weighted IV

Approval Rate 0.60 3.78*** 24.02** 9.88***
(0.17) (1.16) (11.54) (3.28)

Any Approver? 0.37 4.01** 17.83 6.87*
(0.48) (1.92) (13.70) (4.08)

Comments Received 0.92 11.98 120.34 22.65
(2.13) (9.93) (73.55) (28.07)

Conflicts 0.02 -3.05 -126.81 7.52
(0.07) (15.66) (110.03) (50.16)

Conflicts Per File 0.01 1.65 -31.40 -9.50
(0.04) (6.80) (44.92) (23.92)

Hours To PR Completion 21.84 8.74 58.77 -7.02
(48.55) (8.05) (55.03) (25.27)

Table 4: Impact on Quality Measures at Microsoft.
Notes: This table investigates the effects of GitHub Copilot adoption on various measures of code
quality. All quality measures are first computed PR-by-PR, and then averaged across all PRs in
a developer-week; if there are no PRs in a given week, the outcome is set to missing. Approval
Rate refers to the total number of approvers divided by the total number of reviewers for a pull
request. Any Approver? is a dummy that is one if and only if there was at least one approver
for a pull request. The # Comments Received refers to the total number of comments that a PR
received. The # Conflicts refers to the number of merge conflicts, and # Conflicts Per File divides
by the number of files touched to correct for a potential change in the scope of PRs. Hours to PR
Completion measures how long it takes between a PR being posted and it being merged to the
code base. All effects come from linear regressions, but are expressed as % of the pre-treatment
mean. *10%, **5%, ***1%

to such code.
Overall, we do not find any evidence that the quality of code at Microsoft decreases

after the adoption of GitHub Copilot. This contrasts with our earlier finding that, at
Accenture, the Build Success Rate declined after the adoption of GitHub Copilot. Hence,
we tentatively conclude that there may be heterogeneous effects on quality, though we
caution that our estimates remain noisy. We believe that a more extensive study of the
quality dimension is a fruitful avenue for future research.

4.4 Discussion
Before proceeding, we provide a discussion of the interpretation of our results and po-
tential limitations.

First, due to imperfect compliance, we rely on instrumental variables (IV) estima-
tion, which identifies a LATE. The LATE represents an average treatment effect (ATE)
for a potentially selected subset of individuals—namely, those whom the encouragement
designs successfully convince to adopt Copilot. The LATE may exceed the ATE if indi-
viduals with the greatest potential benefit are more responsive to encouragement (e.g.,

14

junior developers who still read all incoming emails). Conversely, it may fall below the
ATE if less active developers—those who write less code and thus benefit less—are more
likely to engage with such outreach. Our only empirical indication of the direction of this
selection comes from our DiD estimates, which identify an average treatment effect on
the treated (ATT) under the additional assumption of parallel trends. Under this assump-
tion, the ATT is lower than the LATE at Microsoft but higher at Accenture, suggesting
that the direction of selection may differ across firms.

Second, while still subject to the same selection, managers may also be interested in
the intent-to-treat (ITT) effect. This differs from the LATE as it reflects a weighted average
of the LATE for adopters and a zero effect for non-adopters. Such ITT effects may hence
reflect the effect a manager could expect from offering access to the technology without
mandating adoption.19 We investigate ITT effects in Appendix B. As not all developers
adopt Copilot, the ITT results are significantly lower than the LATE estimates. However,
given the significant increase in adoption observed over the course of our experiments,
we caution that managers may not want to use the adoption rates from early in our
experiment to forecast future adoption. Indeed, given the rapid adoption of coding
assistants in the industry (Bick, Blandin, and Deming 2024), the LATE estimates may
serve as better benchmarks for managerially relevant productivity gains.

Third, in Appendix C we investigate whether treatment effects vary by the length
of exposure to GitHub Copilot—e.g., because developers have to learn how to best use
the coding assistant. While DiD estimates suggest that the effect may grow over time
(consistent with learning), estimates exclusively leveraging experimental variation are
underpowered to confirm this.

Finally, we note that estimates from different experiments vary significantly. This
variation is itself interesting and could stem from various sources, such as differences
in experimental design and inherent differences among companies. Although our small
sample of three firms limits our ability to systematically analyze these factors, in Ap-
pendix D we provide a detailed explanation of the experiments and discuss potential
sources of variation in effect sizes across companies.

5 Heterogeneity Analysis

Previous literature has noted that productivity enhancements driven by large language
models are heterogeneous across skill level and education. In particular, in the context of
customer service and professional writing tasks, large language models have been found
to help the least educated, least skilled workers the most (Brynjolfsson, Li, and Raymond
2025; Noy and Zhang 2023). In an entrepreneurial context, however, the most productive
workers have been found to benefit more (Otis et al. 2024). Because we have access to
developer characteristics for the Microsoft experiment, we can contribute to this open
question in the literature.

In particular, we now break out results by (i) the tenure, (ii) the level, and (iii) the pre-

19If managers only pay for usage of these tools (usage- vs seat-based pricing), the undiluted LATE effects
might be more relevant.

15

0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1

C
um

ul
at

iv
e

R
at

e

Oct 22 Apr 23 Oct 23 Apr 24
Date

95% CI for Short Tenure
95% CI for Long Tenure
Short Tenure
Long Tenure

(a) Adoption by Tenure

0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1

C
um

ul
at

iv
e

R
at

e

Oct 22 Apr 23 Oct 23 Apr 24
Date

95% CI for Junior Level
95% CI for Senior Level
Junior Level
Senior Level

(b) Adoption by Level

0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1

C
um

ul
at

iv
e

R
at

e

Oct 22 Apr 23 Oct 23 Apr 24
Date

95% CI for Low Pre-Productivity
95% CI for High Pre-Productivity
Low Pre-Productivity
High Pre-Productivity

(c) Adoption by Pre-Productivity

Figure 3: Heterogeneity of Adoption of Copilot
Notes: This figure explores heterogeneous adoption patterns of Copilot across developer tenure,
level, and pre-period productivity. Panel (a) provides the adoption of Copilot over time, broken
out by whether a developer’s tenure with Microsoft at the beginning of the experiment was below
or above the median; panel (b) does the same for each level. Panel (c) splits out developers with
an above- vs. below-median number of pull requests before the start of the experiment.

experiment productivity of employees at Microsoft.20 We split developers into short and
long tenure based on the median observed tenure in our data.21 Any developers who
have been with Microsoft for less than the median time at the start of the experiment
are considered “short tenure,” and all other developers “long tenure.” Similarly, we split
developers into “junior” and “senior” based on the level at which they are employed
at the company. Finally, we split developers into “low pre-productivity” and “high pre-
productivity” based on the number of pre-experiment pull requests we observe from
them (using the median as the cutoff).

We begin our analysis by considering the heterogeneity in adoption patterns in Figure
3. We see that short-tenure developers are 9.4 percentage points (pp) (SE: 2.2pp) more
likely to adopt Copilot by the end of our sample period (81.6% vs 72.1%), consistent

20We measure level as of March 1, 2023, which is the earliest date available in our data.
21As it is considered sensitive information, we cannot reveal the exact median tenure, but it is between

2 and 4 years.

16

0.00

0.20

0.40

0.60

0.80
Fr

ac
tio

n
of

 In
di

vi
du

al
s u

si
ng

 C
op

ilo
t

-10 -5 0 5 10
Months After Adpotion

Short Tenure Long Tenure 95% CI

(a) Usage (Since Adoption) by Tenure

0.00

0.20

0.40

0.60

0.80

Fr
ac

tio
n

of
 In

di
vi

du
al

s u
si

ng
 C

op
ilo

t

-10 -5 0 5 10
Months After Adpotion

Junior Level Senior Level 95% CI

(b) Usage (Since Adoption) by Level

0.00

0.20

0.40

0.60

0.80

Fr
ac

tio
n

of
 In

di
vi

du
al

s u
si

ng
 C

op
ilo

t

-10 -5 0 5 10
Months After Adpotion

Low Pre-Productivity High Pre-Productivity 95% CI

(c) Usage (Since Adoption) by Pre-Productivity

Figure 4: Heterogeneity of Usage of Copilot
Notes: This figure explores heterogeneous usage patterns of Copilot across developer tenure, level,
and pre-period productivity. We show event studies that detail the extensive margin, i.e., how
likely a developer is to have used Copilot at all a given number of months after adopting Copilot;
short-tenure developers are more likely to stick with Copilot.

25.4

24.3

25.2
24.7

25.9

24.2

p=0.14︷ p=0.51︷ p=0.01︷

24.0

25.0

26.0

27.0

28.0

%
 o

f C
op

ilo
t S

ug
ge

st
io

ns
 A

cc
ep

te
d

Tenure Level Pre-Productivity

Below Median Above Median

Figure 5: Heterogeneity of Fraction of Suggestions Accepted
Notes: This figure shows the fraction of Copilot suggestions that developers accept; short-tenure
developers are slightly and less productive developers are much more likely to accept suggestions.

17

39

13
27

8

35

9
-0 -3

p=0.21︷ ︷p=0.28 p=0.26︷ p=0.69︷

-50

0

50

100

%
 In

cr
ea

se
 in

 O
ut

co
m

e

Pull Requests Commits Builds Build Success Rate

Short Tenure Long Tenure

(a) Treatment Effects by Tenure

40

7
21 16

29
13

-0 -3

p=0.13︷ ︷p=0.77 p=0.47︷ p=0.63︷

-50

0

50

100

%
 In

cr
ea

se
 in

 O
ut

co
m

e

Pull Requests Commits Builds Build Success Rate

Junior Level Senior Level

(b) Treatment Effects by Level

33
24 28

14
30

18
0 -3

p=0.65︷ ︷p=0.38 p=0.55︷ p=0.64︷

-50

0

50

100

%
 In

cr
ea

se
 in

 O
ut

co
m

e

Pull Requests Commits Builds Build Success Rate

Low Pre-Productivity High Pre-Productivity

(c) Treatment Effects by Pre-Productivity

Figure 6: Heterogeneity of Copilot Effect (Weighted IV)
Notes: This figure provides weighted IV estimates of the effect of adopting Copilot on the total
number of pull requests, commits, builds, and build success rate broken out by (a) whether a
developer’s tenure with Microsoft at the beginning of the experiment was below median (short
tenure) or above median (long tenure), (b) which level a developer was employed at and (c) the
productivity of the developer before the start of the experiment. The dots in each panel are es-
timates derived from a single regression for each outcome where the treatment effect is allowed
to differ by (a) tenure, (b) level, or (c) the developer’s productivity in the pre-period as mea-
sured by his total number of completed pull requests. The bars provide 95% confidence intervals
based on standard errors clustered at the level of treatment assignment. For all three outcome
measures, the effects on productivity are stronger for short-tenure/junior/less productive devel-
opers, though the difference is typically not statistically significant.

18

with prior research suggesting that younger workers (who naturally have lower tenure
on average) are more likely to adopt new technologies (Meyer 2011). The same effect is
at play for junior developers, who are 4.7pp (SE: 2.2pp) more likely to adopt (79.2% vs.
74.4%), though the adoption difference is slightly smaller in this dimension. Intriguingly,
low pre-productivity developers are initially more likely to adopt, but this changes soon
after the Control group is allowed to adopt, and by the end of our sample, high pre-
productivity developers are slightly more likely to adopt.

Next, Figure 4 reveals that employees of shorter tenure are more likely to continue
using Copilot more than one month after initial adoption, suggesting that they perhaps
expect larger benefits from the technology than their more experienced counterparts.
Judging by Figure 4(b), this effect does not seem present when comparing junior to senior
developers. Figure 4(c) shows that low-productivity developers are, if anything, less
likely to continue using Copilot, though the difference is (just) not statistically significant
(p=.085). Finally, Figure 5 reveals that higher-tenure developers are approximately 4.3%
(or 1.0pp) less likely to accept Copilot’s code suggestions. When comparing junior to
senior developers, this difference in acceptance rates is much smaller at 1.8% (or 0.5pp),
though it goes in the same direction as senior developers being less likely to accept AI
suggestions. Intriguingly, there is a much larger difference across pre-productivity levels:
developers who were less productive before the experiment are significantly more likely
to accept any given suggestion.

Moving on to output measures, Figure 6 reports the results from weighted IV re-
gressions.22 The results indicate that the productivity-enhancing effects of Copilot are
stronger for developers with lower tenure and those in more junior roles. While our
estimates are noisy and not statistically significant at conventional levels, the pattern
persists across all three main outcome measures: short-tenure developers increase their
output by 27% to 39% while long-tenure developers experience smaller gains of 8% to
13%. However, we note that because of our emphasis on the average effect of initially
adopting Copilot and the patterns in Figure 4(a), the estimates for longer-tenure devel-
opers may be attenuated by a larger number of developers abandoning the technology
after an initial trial phase. Still, there is no difference in usage conditional on adoption
between junior and senior developers in Figure 4(b), and we see in Figure 6(b) that ju-
nior developers increase their output by 21% to 40% while senior developers have more
marginal gains of 7% to 16%. The estimates for above- and below-median productivity
developers are even noisier but directionally consistent.23

6 Conclusion

To summarize, we find that usage of a generative AI code suggestion tool increases
software developer productivity by 26.08% (SE: 10.3%). We note that this estimate is sub-

22Results from unweighted IV regressions and ITT estimates can be found in the Appendix in Figures
10 and 7 respectively.

23 We report the heterogeneous effects based on tenure and pre-experiment productivity using a quartile
instead of a median split in Figure 12 in the Appendix. The results are qualitatively robust to the choice of
split, though the estimates are less precise.

19

stantially smaller than the 58% decrease Peng et al. (2023) find for the time to complete
a software engineering task in the lab. It is perhaps unsurprising that the effect of AI
assistance is smaller in real-world settings than in the lab, as some coding tasks may
be less amenable to Copilot’s assistance. Moreover, since coding is only one part of a
developer’s responsibilities, the time saved on coding may not fully translate into addi-
tional coding output. Our estimate is based on observing, partly over multiple years, the
output of almost five thousand software developers at three different companies as part
of their regular job, which strongly supports its external validity.

20

References

Acemoglu, Daron (2025). “The Simple Macroeconomics of AI”. In: Economic Policy 40.121,
pp. 13–58.

Agrawal, Ajay, Joshua Gans, and Avi Goldfarb (2019). “Economic Policy for Artificial
Intelligence”. In: Innovation Policy and the Economy 19.1, pp. 139–159.

Angelopoulos, Panagiotis, Kevin Lee, and Sanjog Misra (2024). “Causal Alignment: Aug-
menting Language Models With A/B Tests”. In: SSRN Working Paper, 4781850.

Baily, Martin Neil, Erik Brynjolfsson, and Anton Korinek (2023). “Machines of Mind: The
Case for an AI-Powered Productivity Boom”. In: Brookings Institute.

Bick, Alexander, Adam Blandin, and David J Deming (2024). “The Rapid Adoption of
Generative AI”. In: NBER Working Paper, w32966.

Bloom, Nicholas, Benn Eifert, Aprajit Mahajan, David McKenzie, and John Roberts (2012).
“Does Management Matter? Evidence From India”. In: The Quarterly Journal of Eco-
nomics 128.1, pp. 1–51.

Brand, James, Ayelet Israeli, and Donald Ngwe (2023). “Using GPT for Market Research”.
In: Harvard Business School Marketing Unit Working Paper 23-062.

Bresnahan, Timothy (2024). “What Innovation Paths for AI to Become a GPT?” In: Journal
of Economics & Management Strategy 33.2, pp. 305–316.

Brynjolfsson, Erik, Danielle Li, and Lindsey Raymond (2025). “Generative AI at Work”.
In: The Quarterly Journal of Economics 140.2, pp. 889–942.

Brynjolfsson, Erik, Daniel Rock, and Chad Syverson (2021). “The Productivity J-Curve:
How Intangibles Complement General Purpose Technologies”. In: American Economic
Journal: Macroeconomics 13.1, pp. 333–372.

Bubeck, Sébastien, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz,
Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. (2023). “Sparks
of Artificial General Intelligence: Early Experiments With GPT-4”. In: arXiv Preprint
arXiv:2303.12712.

Campero, Andres, Michelle Vaccaro, Jaeyoon Song, Haoran Wen, Abdullah Almaatouq,
and Thomas W. Malone (2022). A Test for Evaluating Performance in Human-Computer
Systems. arXiv: 2206.12390.

Coussens, Stephen and Jann Spiess (2021). Improving Inference From Simple Instruments
Through Compliance Estimation. arXiv: 2108.03726.

Cowgill, Bo, Fabrizio Dell’Acqua, Samuel Deng, Daniel Hsu, Nakul Verma, and Augustin
Chaintreau (2020). “Biased Programmers? Or Biased Data? A Field Experiment in
Operationalizing AI Ethics”. In: Proceedings of the 21st ACM Conference on Economics
and Computation, pp. 679–681.

21

https://arxiv.org/abs/2206.12390
https://arxiv.org/abs/2108.03726

Dell’Acqua, Fabrizio, Edward McFowland, Ethan R. Mollick, Hila Lifshitz-Assaf, Kather-
ine Kellogg, Saran Rajendran, Lisa Krayer, François Candelon, and Karim R. Lakhani
(2023). “Navigating the Jagged Technological Frontier: Field Experimental Evidence
of the Effects of AI on Knowledge Worker Productivity and Quality”. In: Harvard
Business School Technology & Operations Mgt. Unit Working Paper 24-013.

Dietvorst, Berkeley J, Joseph P Simmons, and Cade Massey (2015). “Algorithm Aversion:
People Erroneously Avoid Algorithms After Seeing Them Err.” In: Journal of Experi-
mental Psychology: General 144.1, p. 114.

— (2018). “Overcoming Algorithm Aversion: People Will Use Imperfect Algorithms if
They Can (Even Slightly) Modify Them”. In: Management Science 64.3, pp. 1155–1170.

Eloundou, Tyna, Sam Manning, Pamela Mishkin, and Daniel Rock (2024). “GPTs Are
GPTs: Labor Market Impact Potential of LLMs”. In: Science 384.6702, pp. 1306–1308.

Emanuel, Natalia, Emma Harrington, and Amanda Pallais (2023). “The Power of Proxim-
ity to Coworkers: Training for Tomorrow or Productivity Today?” In: NBER Working
Paper, w31880.

Frank, Morgan R, David Autor, James E Bessen, Erik Brynjolfsson, Manuel Cebrian,
David J Deming, Maryann Feldman, Matthew Groh, José Lobo, Esteban Moro, et
al. (2019). “Toward Understanding the Impact of Artificial Intelligence on Labor”. In:
Proceedings of the National Academy of Sciences 116.14, pp. 6531–6539.

Furman, Jason and Robert Seamans (2019). “AI and the Economy”. In: Innovation Policy
and the Economy 19.1, pp. 161–191.

Giles, David E.A. (1984). “Instrumental Variables Regressions Involving Seasonal Data”.
In: Economics Letters 14.4, pp. 339–343.

Goli, Ali and Amandeep Singh (2024). “Frontiers: Can Large Language Models Capture
Human Preferences?” In: Marketing Science 43.4, pp. 709–722.

Greenstein, Shane, Nathaniel Lovin, Scott Wallsten, Kerry Herman, and Susan Pinckney
(2024). “A Guide to the Vocabulary, Evolution, and Impact of Artificial Intelligence
(AI)”. In: Harvard Business School Working Paper 625-039.

Gui, George and Olivier Toubia (2023). “The Challenge of Using LLMs to Simulate Hu-
man Behavior: A Causal Inference Perspective”. In: arXiv Preprint arXiv:2312.15524.

Hoffmann, Manuel, Sam Boysel, Frank Nagle, Sida Peng, and Kevin Xu (2024). “Genera-
tive AI and the Nature of Work”. In: CESifo Working Paper.

Huntington-Klein, Nick (2020). “Instruments With Heterogeneous Effects: Bias, Mono-
tonicity, and Localness”. In: Journal of Causal Inference 8.1, pp. 182–208.

Jaffe, Sonia, Neha Parikh Shah, Jenna Butler, Alex Farach, Alexia Cambon, Brent Hecht,
Michael Schwarz, and Jaime Teevan (2024). “Generative AI in Real-World Work-
places”. In: Microsoft.

22

MacLeod, Laura, Michaela Greiler, Margaret-Anne Storey, Christian Bird, and Jacek Cz-
erwonka (2018). “Code Reviewing in the Trenches: Challenges and Best Practices”. In:
IEEE Software 35.4, pp. 34–42.

Meyer, Jeremy (2011). “Workforce Age and Technology Adoption in Small and Medium-
Sized Service Firms”. In: Small Business Economics 37.3, pp. 305–324.

Microsoft Corporation (2025). Microsoft Fiscal Year 2024 Q2 Earnings Call. https://www.
microsoft.com/en-us/investor/events/fy-2024/earnings-fy-2024-q2. Confer-
ence Call Transcript and Webcast.

Murciano-Goroff, Raviv (2022). “Missing Women in Tech: The Labor Market for Highly
Skilled Software Engineers”. In: Management Science 68.5, pp. 3262–3281.

Nagle, F, S Greenstein, M Roche, NL Wright, and S Mehta (2023). “CoPilots(s): Generative
AI at Microsoft and GitHub”. In: Harvard Business School Case 9, pp. 624–010.

Noy, Shakked and Whitney Zhang (2023). “Experimental Evidence on the Productivity
Effects of Generative Artificial Intelligence”. In: Science 381.6654, pp. 187–192.

Otis, Nicholas, Rowan Clarke, Solène Delecourt, David Holtz, and Rembrand Koning
(2024). “The Uneven Impact of Generative AI on Entrepreneurial Performance”. In:
Harvard Business School Working Paper, 24-042.

Peng, Sida (2024). The Effects of Generative AI on High Skilled Work: Evidence From Three
Field Experiments With Software Developers. AEA RCT Registry.

Peng, Sida, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer (2023). “The Impact
of AI on Developer Productivity: Evidence From GitHub Copilot”. In: arXiv Preprint
arXiv:2302.06590.

Vaithilingam, Priyan, Tianyi Zhang, and Elena L Glassman (2022). “Expectation vs. Ex-
perience: Evaluating the Usability of Code Generation Tools Powered by Large Lan-
guage Models”. In: CHI Conference on Human Factors in Computing Systems Extended
Abstracts, pp. 1–7.

Ye, Zikun, Hema Yoganarasimhan, and Yufeng Zheng (2025). “LOLA: LLM-Assisted On-
line Learning Algorithm for Content Experiments”. In: Marketing Science 0.0.

Yeverechyahu, Doron, Raveesh Mayya, and Gal Oestreicher-Singer (2024). “The Impact
of Large Language Models on Open-Source Innovation: Evidence From GitHub Copi-
lot”. In: arXiv Preprint arXiv:2409.08379.

23

https://www.microsoft.com/en-us/investor/events/fy-2024/earnings-fy-2024-q2
https://www.microsoft.com/en-us/investor/events/fy-2024/earnings-fy-2024-q2

Supplemental Appendix

A Data Cleaning

We provide details on which individuals we had to exclude from each raw dataset and
the reasons for their exclusion.

A.1 Microsoft
In the original sample of the dataset, we have 1,746 individuals. We kept only software
developers, which leaves us with 1,538, and we dropped people who switched organiza-
tions, leaving us 1,522. Finally, we dropped one individual who adopted Copilot before
the experiment started, with a final sample of 1,521.

We also drop the data for the last week of the dataset since the dataset does not record
the full week of activity for the last week.

Finally, note that while the restriction for the control group was lifted in April 2023,
ten individuals in the control group adopted before that date. We include these individ-
uals in our regressions, which naturally weakens the instrument’s strength.

A.2 Accenture
We drop individuals who have no record of data and people who have left the company.
We start with the original dataset containing 369 individuals. After dropping individuals
with no outcome measures, we are left with 320. After further dropping individuals who
left the company, we are left with a final sample of 316.

Finally, we note that while individuals in the control group were allowed to adopt
starting December 2023, there was one individual in the control group who adopted in
October 2023. We include this individual in our regressions.

A.3 Anonymous Company
The original sample has 3,054 individuals. We drop individuals who have shown/adopted
before they were given access, and are left with a final sample of 3,030 individuals.

24

B Intention-To-Treat Results

In this appendix, we investigate the ITT effects for the Microsoft and Accenture experi-
ments. We first estimate the ITT effect and then conduct a heterogeneity analysis based
on ITT estimates.

B.1 ITT Estimates of Productivity Effect
As both experiments feature imperfect compliance because the Control group is even-
tually granted access to GitHub Copilot—see Figure 2—we drop observations starting
just before significant control group adoption. In particular, we restrict attention to the
first 29 weeks for the Microsoft experiment and the first 21 weeks for the Accenture ex-
periment. We report the effects of simply being assigned to the treated group (without
necessarily adopting Copilot) during those weeks in Table 5. We also report the IV re-
sults corresponding to these ITT estimates, noting that they will generally differ from the
results reported in Table 9 due to differences in the sample period and weighting.

With the notable exception of the number of builds in the Accenture experiment,
we find no statistically significant impact of being assigned to treatment on outcomes.
However, we note that adoption rates during these early stages of the experiment were
quite small: at Microsoft, only 44.2% of developers adopted Copilot in the first 29 weeks
(and this is with adoption significantly accelerating towards the end of this period). At
Accenture, adoption was only slightly higher at 61.7% by the end of the initial phase.

Outcome Microsoft Accenture Pooled

ITT IV ITT IV ITT IV

Pull Requests 3.91 22.19 9.41 18.65 4.66 20.16
(3.83) (22.02) (9.65) (18.96) (3.56) (14.37)

Commits 3.20 18.19 1.65 3.28 3.08 11.93
(3.40) (19.45) (11.54) (22.86) (3.26) (14.81)

Builds 5.09 28.89 56.45*** 111.90*** 9.49** 64.84***
(4.22) (24.27) (13.79) (27.77) (4.04) (18.27)

Build Success Rate 0.33 1.81 -9.73* -17.24* -0.22 -5.14
(1.38) (7.65) (5.73) (10.09) (1.34) (6.1)

Table 5: ITT Estimates of Effect of Copilot.
Notes: We investigate the ITT effects of assigning a developer to the treatment group in the
Microsoft and Accenture experiments, cutting the sample just before the Control group adopts
Copilot. With the exception of builds at Accenture, we find no statistically significant effect of be-
ing assigned to the treatment group on outcomes. All effects were estimated in linear regressions
but are expressed as a % of the pre-treatment mean. *10%, **5%, ***1%

25

B.2 Heterogeneity in ITT Estimates
In Figure 7, we explore heterogeneity in the ITT effects, finding that these effects are
significantly higher for developers with short tenure, at a junior level, or with low pre-
productivity. However, we emphasize that this heterogeneity could be driven by both (i)
differences in adoption or utilization and (ii) differences in the effect of Copilot condi-
tional on utilization.

15

-5

14

-5

15
-3 1 -0

p=0.00︷ ︷p=0.00 p=0.00︷ p=0.21︷

-50

0

50

100

%
 In

cr
ea

se
 in

 O
ut

co
m

e

Pull Requests Commits Builds Build Success Rate

Short Tenure Long Tenure

(a) ITT Effects by Tenure

13

-8
9

-4
11

-2 1 -1

p=0.00︷ ︷p=0.00 p=0.02︷ p=0.23︷

-50

0

50

100

%
 In

cr
ea

se
 in

 O
ut

co
m

e

Pull Requests Commits Builds Build Success Rate

Junior Level Senior Level

(b) ITT Effects by Level

11
-3

10
-3

9
1 2 -0

p=0.01︷ ︷p=0.01 p=0.16︷ p=0.28︷

-50

0

50

100

%
 In

cr
ea

se
 in

 O
ut

co
m

e

Pull Requests Commits Builds Build Success Rate

Low Pre-Productivity High Pre-Productivity

(c) ITT Effects by Pre-Productivity

Figure 7: Heterogeneity of Copilot Effect (ITT)
Notes: This figure provides ITT estimates of the effect of adopting Copilot on the total number of
pull requests, commits, builds, and build success rate broken out by (a) whether a developer’s
tenure with Microsoft at the beginning of the experiment was below median (short tenure) or
above median (long tenure), (b) the level at which a developer was employed and (c) the produc-
tivity of the developer before the start of the experiment. The dots in each panel are estimates
derived from a single regression for each outcome where the ITT effect is allowed to differ by
(a) tenure, (b) level, or (c) the developer’s productivity in the pre-period as measured by their
total number of completed pull requests. The bars provide 95% confidence intervals based on
standard errors clustered at the level of treatment assignment. For all three outcome measures,
the ITT effects on productivity are stronger for short-tenure/junior/less productive developers.
Note that the ITT effects combine heterogeneity in the amount of uptake with potentially hetero-
geneous treatment effects on adopters.

26

C Dynamic Treatment Effects

To explore whether there is any evidence that users have to learn how to use GitHub
Copilot, we split our sample into (i) the first three months after adoption, and (ii) more
than three months since adoption. We then estimate the DiD model and the weighted IV
models, allowing for different effect sizes across these periods (but estimate jointly across
periods) in Table 6. The DiD estimates suggest that the treatment effect increases over
time, but the experimental IV estimates are underpowered to detect any heterogeneity in
effects.

Outcome DiD WIV

Short
Term

Long
Term

Short
Term

Long
Term

Pull Requests 2.16 10.55*** 32.39* 31.51
(2.45) (3.35) (18.39) (22.17)

Commits 4.24* 7.13** 29.33 14.83
(2.37) (3.24) (18.41) (19.41)

Builds 4.43* 7.46** 36.21 19.55
(2.57) (3.62) (22.21) (23.58)

Build Success Rate -1.17 -1.52 -5.47 1.39
(0.81) (0.97) (7.73) (6.57)

Table 6: Dynamic Treatment Effects
Notes: We separate out treatment effects by whether a developer has adopted GitHub Copilot
within the last three months (“Short Term”) or has used GitHub Copilot for at least three months
already (“Long Term”). While DiD estimates suggest the treatment effect may be growing over
time, our experimental (weighted IV) estimates are underpowered to confirm this using experi-
mental variation. All effects were estimated in linear regressions but are expressed as a % of the
pre-treatment mean. *10%, **5%, ***1%

27

D Comparison between Experiments

In this Appendix, we provide additional details on the experiments, emphasizing dif-
ferences in implementation across companies, the distinct roles of software developers
within each firm, and how outcome variables—such as pull requests—should be inter-
preted across these different contexts. To preserve confidentiality, we cannot describe
specific internal details from each organization. However, we offer a qualitative depic-
tion of the differences in developers’ day-to-day tasks across the three companies based
on publicly available information. We also discuss how differences in the experimental
designs may have contributed to heterogeneity in the estimates.

D.1 Design Differences
Although all three field experiments share the same objective, their designs necessarily
vary to accommodate each firm’s workflows and operational constraints. The Microsoft
experiment was launched first, leveraging the company’s early access to Copilot as its
owner. The experiment ended earlier than planned when control-group developers be-
gan to request access mid-experiment. Accenture’s experiment, by comparison, started
later but lasted for a full five months as planned. The experiment at Accenture also in-
corporated a training component. The anonymous company took a different approach,
implementing a randomized cohort rollout instead of random assignment to a treatment
and control group.

Because these experiments were run by the companies in collaboration with Microsoft
and we only analyzed the data, they were not pre-registered. Nevertheless, the goal of
each experiment is the same across companies: to learn the productivity effects of GitHub
Copilot and use that information in their business decisions. Even though the objective
is the same, implementation was driven by idiosyncratic constraints, such as the number
of software developers who could participate, the duration for which the control group’s
Copilot access could be restricted, how quickly the firm needed the experiment results,
and the cost of the experiment.

There are several ways these constraints vary across companies. For instance, the
ability of the experiment coordinator to persuade managers to postpone the rollout of
Copilot varies depending on the managers involved and the perceived importance of
Copilot. This, in turn, affected the duration of each experiment. For example, in the
anonymous company, this constraint led to a randomized staggered rollout rather than
a full RCT with treated and control groups. Similarly, at Microsoft, the control group
gained access to GitHub Copilot earlier than planned because some teams requested ac-
cess to it since they were working on AI-related products at the time. Another example is
the encouragement design: Microsoft used a simple email, while Accenture implemented
comprehensive training sessions. These differences reflect variation in both intervention
costs and how firms and their employees perceive them.

D.2 Differences in Software Development
While all three companies in our study employ software developers, these developers dif-
fer in their day-to-day tasks and workflows—factors that influence how GitHub Copilot

28

is integrated into their daily work and affect productivity.
At Microsoft, most developers are responsible for maintaining and evolving long-

lived first-party products and cloud services. Their code ships directly to users and is
updated continuously; therefore, the teams own design, implementation, automated test-
ing, and post-release telemetry in a single, tight feedback loop. Microsoft also employs
internal systems that help developers work quickly while maintaining high quality. For
example, before any code changes can be added to the main product, they must pass
through automated checks and reviews by other team members (gated pull-request poli-
cies). The company also uses automated systems that test code and deploy updates
(CI/CD pipelines), plus real-time monitoring tools (dashboards) that show how the soft-
ware is performing.24

Accenture is a service-based company that specializes in resolving client issues and
providing support for pre-existing applications, primarily to external clients, rather than
developing proprietary products. The majority of software development work focuses
on client projects across various industries. Developers are assigned to specific client
engagements spanning various industries, including banking, insurance, telecommuni-
cations, and public services. While Accenture does have some enterprise software prod-
ucts and platforms, these represent a smaller portion of its business. The diverse client
base exposes Accenture’s software developers to a wide variety of client projects. They
might build entirely new software systems, improve existing ones, or fix problems when
things break. This means they need to understand the client’s business needs, design
solutions, write code, and test that everything works properly. Because they work with
many different clients, these developers learn multiple programming languages and gain
skills across various types of software and computer systems.25

Since the manufacturing firm that hosted the third experiment is anonymous, we
describe its environment in terms of typical large, hardware-centered manufacturers,
rather than providing firm-specific details. In such companies, software developers usu-
ally work on three overlapping roles—(i) firmware developers who write code that runs
on the computer chips that control hardware components, (ii) factory-automation engi-
neers who build supervisory control software for assembly lines, and (iii) integration
engineers who link production equipment with plant-wide IT and quality systems. Each
of these categories follows development schedules that combine software updates into
planned releases, prioritizing reliability over rapid changes.

We account for these differences between companies in several ways in our empiri-
cal analysis. First, throughout the paper, we report percentage changes in the outcome
variables rather than levels, since baseline levels are likely to vary across companies. Sec-
ond, we report estimates for each company separately and only pool them in our mean
specification after estimating individual effects. Finally, all of our estimates are based on
within-company—and even within-developer—variation, so cross-company differences
do not confound the estimates.

24Source: Microsoft—How Microsoft Develops DevOps.
25Sources: Accenture—Job Details1, Accenture—Job Details2, Accenture—Newsroom Fact Sheet.

29

https://learn.microsoft.com/en-us/devops/develop/how-microsoft-develops-devops
https://www.accenture.com/in-en/careers/jobdetails?id=ATCI-4652566-S1826398_en&utm_source=chatgpt.com
https://www.accenture.com/my-en/careers/jobdetails?id=R00181087_en&utm_source=chatgpt.com
https://newsroom.accenture.com/fact-sheet?utm_source=chatgpt.com

D.3 Differences in Outcome Variables
In our baseline results, we used pull requests as the primary outcome variable. Although
the primary structure of pull requests remains the same across companies, approaches
to pull requests can vary depending on the main product and the company structure.
While startups might allow developers to self-merge small changes with minimal re-
view to maintain a rapid pace, established enterprises in regulated industries typically
require multiple approvers, comprehensive automated testing, and sometimes security
team sign-offs before any code reaches production. The tooling and automation integra-
tion also spans a wide spectrum, from companies that run extensive CI/CD pipelines26

with security scans and performance benchmarks on every PR (code review), to those
relying more heavily on manual testing and simpler approval workflows. These differ-
ences in merge strategies, branch protection rules, and review culture generally evolve
as companies mature, typically moving toward more structured and rigorous processes
as team sizes grow and the business impact of code changes increases.

Based on publicly available sources, we provide an overview of Microsoft’s internal
pull request (PR) practices.27 Microsoft’s PR practices center on Azure DevOps, utilizing
a trunk-based workflow. In this approach, developers create short-lived branches off
the main branch, and each pull request triggers automated builds and tests to enforce
branch policies. Only after these checks pass do team peers review the code; Microsoft
requires at least one approval to ensure code quality and architecture standards are met
before merging it into the main branch. At Microsoft, pull requests and code reviews
are frequent: according to MacLeod et al. 2018, 36% of Microsoft developers review
code multiple times per day. Such reviews are important in maintaining quality and
coordinating tens of thousands of developers on shared codebases.

At Accenture, the most important difference from Microsoft is that pull requests mod-
ify a client’s live codebase rather than an internal one. This substantially increases the
consequences of coding errors. As a result, every PR at Accenture must pass through
multiple review and validation stages before approval, making them far less frequent.
This is also evident in Table 2, which shows a significantly lower average number of
weekly pull requests at Accenture compared to Microsoft (0.13 vs. 0.86).

D.4 The Effects of Company-Level Differences on Results
Because the experiment design choice (timing, training, cohorting) was tailored to spe-
cific firm-level constraints, measured treatment effects are inevitably affected by experi-
mental design and company context. Therefore, it is not possible for us to pinpoint the
exact sources of heterogeneous effects across these companies. However, we can describe
some possible sources of this heterogeneity.

One potential source arises from the nature of the tasks developers perform in these
companies. As described above, coding tasks vary significantly across these companies,

26CI/CD stands for Continuous Integration/Continuous Deployment, which refers to automated sys-
tems that regularly test, integrate, and deploy code changes to ensure software quality and enable rapid
releases.

27Sources: Microsoft—How Microsoft Develops DevOps, Microsoft—Transforming Modern Engineering
at Microsoft, Greiler—Code Reviews at Microsoft.

30

https://learn.microsoft.com/en-us/devops/develop/how-microsoft-develops-devops
https://www.microsoft.com/insidetrack/blog/transforming-modern-engineering-at-microsoft/?utm_source=chatgpt.com
https://www.microsoft.com/insidetrack/blog/transforming-modern-engineering-at-microsoft/?utm_source=chatgpt.com
https://www.michaelagreiler.com/code-reviews-at-microsoft-how-to-code-review-at-a-large-software-company/#:~:text=In%20this%20study%2C%2036,review%20in%20the%20past%20week

inherently generating heterogeneity in the effectiveness of coding assistant tools. For ex-
ample, coding tools typically perform better on programming languages and tasks that
are well-represented in the training data, and some companies may use languages or
work on tasks that were more extensively covered in the AI model’s training. Although
we have limited visibility into the languages used by developers (in some experiments,
only for Copilot users), it is plausible that Accenture uses a greater variety of languages
and more niche languages than other companies, given their work across multiple indus-
tries as described above. This diversity could make Copilot less effective on these less
common programming languages, potentially explaining the lower impact observed at
Accenture relative to Microsoft.

Another example is selection into treatment. As described in Section 4.4, our analysis
identifies the LATE, capturing heterogeneous effects driven by selection into treatment.
Selection into treatment can vary across companies due to factors such as company cul-
ture and policies. Therefore, even if the underlying productivity effects of coding assis-
tants are identical across companies, differences in how participants select into treatment
could lead to heterogeneous results.

Finally, the experimental design can indirectly influence the selection into treatment.
For instance, in the Accenture experiment, managers encouraged their direct reports
to use the tool to enhance compliance, whereas at Microsoft, a simple email was sent.
This difference can affect developers’ motivations for adoption: at Accenture, developers
might use the tool primarily to satisfy managerial expectations, driving the relatively
fast and widespread adoption observed in Figure 2b. At Microsoft, by contrast, adoption
is initially slower and less extensive, leaving more scope for developers to select into
treatment based on anticipated productivity benefits. This can be a source of a higher
LATE estimate at Microsoft than at Accenture. Similarly, the timing of the experiment
can affect results. GitHub Copilot likely received updates during the experimental pe-
riod, potentially leading experiments conducted earlier, such as Microsoft’s, to observe a
smaller impact.

While we think that the sources of heterogeneity across companies are extremely
important, we ultimately have a sample size of three, which prevents us from obtaining
systematic evidence on the differences across companies.

31

E The First Accenture Experiment

We do not discuss in detail in the main text another experiment conducted by Accenture
in April 2023, which included a number of Accenture offices located in Southeast Asia.
This experiment was abandoned by the company after Accenture laid off 19,000 employ-
ees that same month (cnn.com), including 42% of the developers participating in this
experiment. Still, this attrition was balanced across treatment and control, and we can
thus subset to the 204 developers who were not let go for our analysis; indeed, Table 7
confirms that after this subsetting, treatment and control are still balanced. The problem
emerges because Microsoft did not log all Copilot usage data for this experiment, as the
company considered it abandoned. In particular, we lack adoption data for the control
group until October ’23. Without this adoption data, any analysis is potentially biased.

Still, because our initial analysis revealed that this experiment was the only exper-
iment across the three in which we have a negative (though statistically insignificant)
point estimate for Copilot’s effect on productivity, we proceed to analyze this experiment
in this appendix by imputing that nobody in the Control group adopts Copilot until Oc-
tober ’23, yielding the adoption path in Figure 8. Thus, in the worst-case scenario, it
could be that all the adoptions that we attribute to October 2023 already happened right
at the beginning of the experiment. This data quality concern means our treatment effect
estimates will be conservative (as we may mistakenly count up to 10% of the control
group as non-adopters during half of the sampling period).

Keeping in mind this caveat that our treatment effect estimates are potentially conser-
vative, we report the results from this first Accenture experiment in Table 8. We find a
negative point estimate of -39.18% (SE: 36.78%) on the number of tasks completed. Still,
this estimate has a high degree of statistical uncertainty, and we note that the estimates
for the number of commits 43.04% (SE: 43.04%) and builds 12.33% (SE: 53.60%) are both
positive, although not statistically significant.

Control Treatment
Mean Std. Dev Mean Std. Dev Difference p-value

Pull Requests 0.08 0.26 0.09 0.29 0.02 0.38
Commits 6.28 11.24 5.28 10.09 -1.00 0.30
Builds 5.32 10.32 5.23 10.52 -0.09 0.93
Build Success Rate 0.49 0.33 0.50 0.33 0.01 0.60

Table 7: Balance Table for First Accenture Experiment
Notes: This table presents a comparison of pre-experimental outcomes in control and treatment
groups in the first Accenture experiment. For each measure, we present its mean and standard
deviation in the control group and in the treatment group. We also show the mean difference
across these groups and the p-value associated with an underlying test of differences in means.
The p-values for the differences are calculated using standard errors clustered at the level of
treatment assignment.

32

0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1

C
um

ul
at

iv
e

R
at

e

Apr 23 Jul 23 Oct 23 Jan 24 Apr 24
Date

Treated
Control

Figure 8: Cumulative Adoption Rates for First Accenture Experiment
Notes: This graph shows the cumulative rate of adoption over time for software developers in both
the treatment and control groups in the first Accenture experiment. Note that we are assuming
that nobody in the Control group adopts Copilot until October 2023.

Outcome Accenture #1
Pull Requests -39.18

(36.78)
Commits 43.04

(38.80)
Builds 12.33

(53.60)
Build Success Rate -0.99

(16.51)

N Developers 204
N Clusters 204

Table 8: Weighted IV Results for First Accenture Experiment
Notes: This table provides estimates of the effect of GitHub Copilot adoption on the number
of Pull Requests, Commits, Builds, and Build Success Rates in the first Accenture experiment.
Standard errors are clustered at the developer level. The estimates presented in this table are
potentially conservative because they require imputing that nobody in the Control group adopts
Copilot until October 2023.)

33

F Additional Exhibits & Robustness Checks

Figure 9: E-mail Sent to Participants in the Microsoft Experiment
Notes: This figure exhibits the copy that was sent to participants in the Microsoft experiment.
Only the subset of users in the Control group who explicitly requested access to GitHub Copilot
received the second email.

34

Outcome Microsoft Accenture Anon. Comp. Pooled

DiD DiD-P IV W-IV DiD DiD-P IV W-IV DiD DiD-P IV WIV DiD DiD-P IV W-IV

Pull Requests 7.63*** 6.81*** 10.53 27.38** 52.65*** 22.54** 15.97 17.94 1.70 2.77 54.03 54.03 6.24*** 5.23*** 18.73 26.08**
(2.49) (2.52) (24.82) (12.88) (9.46) (9.35) (21.26) (18.72) (2.47) (2.35) (42.63) (42.63) (1.72) (1.69) (15.1) (10.3)

Commits 7.03*** 6.42*** 5.54 18.32 12.85 -8.67 -3.60 -4.48 - - - - 7.25*** 5.82** 0.97 13.55
(2.32) (2.46) (22.20) (11.25) (11.62) (12.08) (22.19) (21.88) - - - - (2.28) (2.41) (15.69) (10.0)

Builds 7.11*** 7.25*** 5.87 23.19 39.66*** 13.70 96.05*** 92.40*** - - - - 8.23*** 7.56*** 49.66** 38.38***
(2.65) (2.74) (27.25) (14.20) (14.03) (12.10) (28.05) (26.78) - - - - (2.6) (2.67) (19.55) (12.55)

Build Success -0.65 -0.66 3.92 -1.34 -20.72*** -19.59*** -18.10* -17.40** - - - - -1.13 -1.05 -5.39 -5.53
Rate (0.79) (0.78) (8.17) (4.23) (5.06) (5.36) (9.55) (7.12) - - - - (0.78) (0.77) (6.21) (3.64)

Table 9: Alternative Specifications for Experimental Results
Notes: This table builds on Table 3 by reporting the results of additional specifications. Each entry can be interpreted as an estimate
of the percentage effect of adoption of GitHub Copilot. DiD is like in Table 3, DiD-P is like DiD but runs a Poisson model and then
reports 100 ∗ (exp(β)− 1)), IV is like W-IV in Table 3 but without weighting the regression by adoption differences, W-IV is like in
Table 3.

35

31

-18

21

-15

24

-19

5 3

p=0.00︷ ︷p=0.00 p=0.00︷ p=0.69︷

-50

0

50

100

%
 In

cr
ea

se
 in

 O
ut

co
m

e

Pull Requests Commits Builds Build Success Rate

Short Tenure Long Tenure

(a) Treatment Effects by Tenure

26

-20

14

-7
10

-12
4 3

p=0.00︷ ︷p=0.03 p=0.08︷ p=0.70︷

-50

0

50

100

%
 In

cr
ea

se
 in

 O
ut

co
m

e

Pull Requests Commits Builds Build Success Rate

Junior Level Senior Level

(b) Treatment Effects by Level

29

-14

24

-19

20

-13
6 3

p=0.00︷ ︷p=0.00 p=0.01︷ p=0.39︷

-50

0

50

100

%
 In

cr
ea

se
 in

 O
ut

co
m

e

Pull Requests Commits Builds Build Success Rate

Low Pre-Productivity High Pre-Productivity

(c) Treatment Effects by Pre-Productivity

Figure 10: Heterogeneity of Effect of Copilot (Unweighted IV)
Notes: This figure provides unweighted IV estimates of the effect of adopting Copilot on the total
number of pull requests, commits, builds, and build success rate broken out by (a) whether a
developer’s tenure with Microsoft at the beginning of the experiment was below median (short
tenure) or above median (long tenure), (b) which level a developer was employed at, and (c) the
developer’s pre-experiment productivity. The dots in each panel are estimates derived from a
single regression for each outcome where the treatment effect is allowed to differ by (a) tenure,
(b) level, or (c) the developer’s productivity in the pre-period as measured by his total number
of completed pull requests. The bars provide 95% confidence intervals based on standard errors
clustered at the level of treatment assignment. For the first three outcome measures, the effects on
productivity are stronger for short-tenure/more junior/less productive developers. The p-values
for differences between individual coefficient estimates are often very small despite substantial
overlap in the confidence intervals due to high correlations (exceeding 0.9) between the estimates.

36

0

.1

.2

.3

.4

W
ei

gh
t

Jan 22 Jul 22 Jan 23 Jul 23 Jan 24 Jul 24
Date

(a) Microsoft Experiment

0

.1

.2

.3

.4

.5

W
ei

gh
t

Jan 23 Apr 23 Jul 23 Oct 23 Jan 24 Apr 24
Date

(b) Accenture Experiment #1

0

.2

.4

.6

W
ei

gh
t

Jul 22 Oct 22 Jan 23 Apr 23 Jul 23 Oct 23 Jan 24 Apr 24
Date

(c) Accenture Experiment #2

Figure 11: Regression Weights
Notes: This figure provides the weights used in the W-IV estimates underlying Tables 3 and 8.
Recall that we are weighting the IV estimates to exploit information from periods where the
instruments predict uptake. Hence, we use the difference in adoption across the control and
treatment groups by a given date as our weight. This matters most for the Microsoft experiment,
in which the control group adopted at an elevated rate when its access was granted in March
2023. For this experiment, we put extra weight on the period just before the control group was
allowed to adopt Copilot.

37

59

24 28

-5

39

19 19

-6

57

18
9 8

2 -2 -5 -0

-50

0

50

100

150

%
 In

cr
ea

se
 in

 O
ut

co
m

e

Pull Requests Commits Builds Build Success Rate

Tenure Q1 Tenure Q2 Tenure Q3 Tenure Q4

(a) Treatment Effects by Tenure

15

53

31

18 21

35

7
19 22

39
31

7

-12

13

0 -4

-50

0

50

100

150

%
 In

cr
ea

se
 in

 O
ut

co
m

e

Pull Requests Commits Builds Build Success Rate

Pre-Prod Q1 Pre-Prod Q2 Pre-Prod Q3 Pre-Prod Q4

(b) Treatment Effects by Pre-Productivity

Figure 12: Heterogeneity of Copilot Effect based on Quantiles
Notes: This figure provides weighted IV estimates of the effect of adopting Copilot on the total
number of pull requests, commits, builds, and build success rate, broken out by (a) the devel-
oper’s tenure with Microsoft at the beginning of the experiment, and (b) the developer’s pro-
ductivity prior to the start of the experiment. In both cases, developers were grouped into four
categories based on quartiles of the corresponding variable. The dots in each panel are estimates
derived from a single regression for each outcome where the treatment effect is allowed to dif-
fer by (a) tenure, and (b) the developer’s productivity in the pre-period as measured by his total
number of completed pull requests. The bars provide 95% confidence intervals based on standard
errors clustered at the level of treatment assignment. For the first three outcome measures, the
effects on productivity are stronger for short-tenure/junior/less productive developers, though
the difference is typically not statistically significant.

38

	Introduction
	Setting and Experiments
	What Is AI-Assisted Software Development?
	Description of Experiments
	Variables and Outcome Measures

	Adoption of Copilot
	Empirical Strategy & Main Results
	Empirical Strategy
	Results on Productivity Effects
	Results on Code Quality
	Discussion

	Heterogeneity Analysis
	Conclusion
	Data Cleaning
	Microsoft
	Accenture
	Anonymous Company

	Intention-To-Treat Results
	ITT Estimates of Productivity Effect
	Heterogeneity in ITT Estimates

	Dynamic Treatment Effects
	Comparison between Experiments
	Design Differences
	Differences in Software Development
	Differences in Outcome Variables
	The Effects of Company-Level Differences on Results

	The First Accenture Experiment
	Additional Exhibits & Robustness Checks

