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Abstract

This study evaluates the impact of generative AI on software developer produc-
tivity by analyzing data from three randomized controlled trials conducted at Mi-
crosoft, Accenture, and an anonymous Fortune 100 electronics manufacturing com-
pany. These field experiments, which were run by the companies as part of their
ordinary course of business, provided a randomly selected subset of developers with
access to GitHub Copilot, an AI-based coding assistant that suggests intelligent code
completions. Though each separate experiment is noisy, combined across all three
experiments and 4,867 software developers, our analysis reveals a 26.08% increase
(SE: 10.3%) in the number of completed tasks among developers using the AI tool.
Notably, less experienced developers showed higher adoption rates and greater pro-
ductivity gains.
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1 Introduction

Many economists expect generative AI to profoundly affect the organization of economic
activity (Agrawal, Gans, and Goldfarb 2019; Frank et al. 2019; Furman and Seamans
2019). Eloundou et al. 2023 estimate that generative AI can perform tasks associated with
over 80% of U.S. jobs and that AI task coverage is notably higher for occupations that
require advanced degrees. The ability of generative AI to perform tasks required in such
high-skilled occupations — allowing it to assist doctors in diagnosing diseases, lawyers
in drafting legal documents, and software engineers with code development — has led
to predictions of substantial productivity gains from the adoption of such technologies
(Baily, Brynjolfsson, and Korinek 2023). Others, however, are less optimistic about such
productivity gains (Acemoglu 2024).

Uncertainty around firms’ willingness to adopt these technologies and their capacity
to make necessary complementary investments (Bresnahan 2024; Brynjolfsson, Rock, and
Syverson 2021) make it currently difficult to empirically assess whether or not optimism
about productivity gains is justified.1 Nevertheless, some applications of generative AI
have already matured and are integrated into existing workflows. An example is software
development, where commercial coding assistants based on generative AI have gained
widespread adoption.2

In this project, we ask how generative AI affects the productivity of knowledge work-
ers, using software developers as an example. We analyze three large-scale randomized
controlled trials in a real-world environment. These experiments randomly assigned
access to Copilot, a coding assistant developed by GitHub in collaboration with Ope-
nAI, to just under five thousand software developers at Microsoft, Accenture, and an
anonymous Fortune 100 electronics manufacturing company (henceforth Anonymous
Company). These experiments were run as part of the ordinary course of business at
these companies to decide whether or how extensively to adopt these technologies, and
the companies kindly shared the resulting data with us.3

Our preferred estimates suggest that usage of the coding assistant causes a 26.08%
(SE: 10.3%) increase in the weekly number of completed tasks. When we look at outcomes
of secondary interest, our results support this interpretation, with a 13.55% (SE: 10.0%)
increase in the number of code updates (commits) and a 38.38% (SE: 12.55%) increase in
the number of times code was compiled. For Microsoft we observe both the developers’
tenure and their seniority as measured by job title. We find that Copilot significantly
raises task completion for more recent hires and those in more junior positions but not for
developers with longer tenure and in more senior positions. Prior work has shown that

1In addition, it hard to predict further breakthroughs in the architecture of these models, which may
lead to further improvements in quality or decrease the cost of inference and training.

2Prior academic work has shown that generative AI can pass mock interviews for coding jobs at Amazon
in the top decile of human performance, performs at human level in a database of coding challenges that
measure programming logic and proficiency, and can write entire programs for simple video games from
several lines of instructions (Bubeck et al. 2023) Copilot is used by 1.3 million subscribers and more than
50,000 businesses.

3The exact implementation of these experiments was rather ad-hoc as they were driven by business
considerations at these companies rather than research goals.
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when workers are conducting the same tasks, generative AI helps lower-ability or lower-
experience workers more (e.g., Brynjolfsson, Li, and Raymond 2023; Noy and Zhang
2023). Our results extend this finding by showing that even when workers are performing
tasks according to their tenure or seniority, generative AI increases productivity more for
lower-ability workers.

Our preferred estimate pools estimates across all three experiments and places more
weight on periods with larger differences in treatment status. We make these choices
because our analysis must confront challenges related to statistical power, despite the
large number of software developers in the experiments. These challenges arise due to
large variation in measured outcomes and factors that reduce the take-up and duration
of the three experiments.4 The experiment at Microsoft started before ChatGPT and
Copilot were widely known, and initial uptake was low. Shortly after a larger fraction
of developers in the treatment group started using it, the control group was also allowed
access. At Accenture, only a few hundred people participated in the experiment. Lastly,
at Anonymous Company, the treatment consisted of a staggered roll-out with only a
short period of time with differences in treatment status.

Most studies of the impact of generative AI tools on worker productivity have been
conducted in controlled lab-like experiments (Peng et al. 2023; Vaithilingam, Zhang, and
Glassman 2022, Campero et al. 2022, Noy and Zhang 2023). In a lab-in-the-field experi-
ment on consultants employed by Boston Consulting Group, Dell’Acqua et al. 2023 find
that productivity on 18 tasks designed to mimic the day-to-day work at a consulting
company increased by 12%-25%. Evidence from these experiments generally suggests
significant productivity effects of generative AI. The exception is Vaithilingam, Zhang,
and Glassman 2022, which did not find a statistically significant difference in completion
time. A second common observation from these studies is that generative AI has the
largest effect on the least productive and least experienced workers (e.g., Noy and Zhang
2023).

While lab experiments offer a valuable opportunity to examine the short-term impli-
cations of generative AI, challenges and complex interactions arise when these tools are
deployed in real-world environments (Jaffe et al. 2024). There are some observational
studies of the effects of generative AI in an actual workplace setting (Hoffmann et al.
2024; Yeverechyahu, Mayya, and Oestreicher-Singer 2024) that do not have the benefit of
random experimental assignment of these technologies.

Our work complements both the literature on lab experiments as well as these obser-
vational studies by studying the impact of generative AI using a field experiment in an
actual workplace setting. To date, there is still a dearth of experimental studies exam-
ining the effect of generative AI in a field setting. In a notable exception, Brynjolfsson,
Li, and Raymond 2023 find that an AI-based conversational assistant increases the pro-
ductivity of customer chat support agents by 14%. Our study complements theirs by
examining a field experiment with high-skilled and highly paid knowledge workers, a
group that is particularly relevant given the prediction that high-skilled jobs will be most
affected by this technology. Although we examine a different part of the skill distribu-

4We observe large variation in the output of software developers due to significant heterogeneity in
their seniority, with more senior managers being less likely to engage in coding activities.
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tion, we find similar productivity increases. Like Brynjolfsson, Li, and Raymond 2023,
we also find that these gains are primarily driven by improved output from recent hires
and employees in more junior roles.

2 Setting and Experiments

2.1 What Is AI-Assisted Software Development?
AI Assistants for software development offer intelligent code suggestions and auto-
completion within integrated development environments. Prominent examples include
GitHub Copilot, Amazon CodeWhisperer, and Replit Ghostwriter. In our study, we ex-
amine the effects of one of these tools, GitHub Copilot. GitHub Copilot was developed
by GitHub in partnership with OpenAI. The development of Copilot involved combining
advanced machine learning techniques and natural language processing. A substantial
amount of code from public GitHub repositories was used to train Copilot. This exten-
sive dataset allowed the AI model to learn from real-world coding practices, patterns,
and styles across various programming languages and frameworks.

As developers write software code or plain text comments, Copilot analyzes the con-
text and generates relevant code snippets, comments, and documentation. It can au-
tocomplete code that developers might manually type or suggest snippets they would
otherwise need to search for online. This capability can save developers time and poten-
tially improve code quality by offering suggestions the developer might not be aware of.
However, like all LLM-based tools, Copilot can make mistakes. If developers rely on it
without review, it could potentially introduce errors or decrease code quality.

2.2 Experiments
We analyze three randomized experiments conducted with software developers at Mi-
crosoft, Accenture, and Anonymous Company. In the Microsoft and Accenture experi-
ments, one group of developers (the treated group) was randomly assigned to be able to
access GitHub Copilot, whereas the other group (the control group) did not have access
to the tool for a period of seven (Microsoft) or four (Accenture) months. In the Anony-
mous Company experiment, all users gained access to the tool over a period of two
months, but access dates were randomized, with some teams gaining access six weeks
before others.

Microsoft The experiment at Microsoft started in the first week of September 2022, in-
volving a sample size of 1,746 developers primarily located in the United States. Of these
developers, 50.4% were randomly selected to receive access to Github Copilot. Random-
ization was implemented at both the individual and the team levels. The developers
work on building a wide range of software within Microsoft, with tasks that include en-
gineering, designing, and testing software products and services. They occupy various
positions in the company, ranging from entry-level developers to team managers. They
may work in a team or individually, depending on their task and team structure.
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Participants in the treated group were informed via email about the opportunity to
sign up for GitHub Copilot. The email also included information introducing GitHub
Copilot as a productivity-enhancing tool and outlining its potential impact on their cod-
ing tasks (see Figure 6 in Appendix). Beyond this email, treated participants did not
receive any specific instructions regarding their workload or workflow to ensure they
use GitHub Copilot in their natural work environment. Control group participants did
not receive any communication as part of the study.5 The experiment ended on May 3rd,
2023, as growing awareness of AI-assisted coding tools led the control group participants
to seek access to Copilot.

Accenture The Accenture experiment started in the last week of July 2023 and included
a number of Accenture offices located in Southeast Asia. Randomization occurred at the
developer level, with 61.3% of the 320 developers assigned to the treatment group. Treat-
ment group participants were informed over email that they were eligible to sign up
for GitHub Copilot. They also participated in a training session, which explained what
GitHub Copilot is, how to use it, and the potential benefits. Finally, the participating
managers were asked to encourage their reports’ adoption of GitHub Copilot. The con-
trol group was granted access to Copilot in December 2023, though uptake was lower
than in the treatment group.

Anonymous Company The Anonymous Company experiment started in October 2023.
It involved 3,054 developers who were all eventually invited to use Copilot. The invita-
tion dates were randomized, with new invites being sent out weekly between September
2023 and October 2023.

2.3 Variables and Outcome Measures
Measuring the productivity of modern knowledge work is notoriously difficult. Our
setting has the advantage that almost all professional software development follows a
highly structured workflow, where specific tasks are defined and tracked through version
control software. Internally defined goals and tasks are, therefore, quantifiable. All three
participating organizations use the version control software GitHub. By observing the
developers’ GitHub activity, we can observe many of the variables that are part of their
workflow.

A main outcome of interest is “pull requests”, which can be thought of as a unit of
work for software developers. Within an organization, the scope of a pull request is likely
to remain relatively stable over time, shaped by organizational norms and conventions,
even though different organizations may define this scope differently. For instance, a
pull request may be asking for a feature to be added to a larger software project. A
pull request will lead to a code review, often by a more senior software developer. If this
review is passed, the code will be merged and thereby become part of the larger software
project.

We use three additional outcome variables related to the developers’ workflow. Before
submitting a pull request, a developer will work separately on her code, tracking smaller

5A small number of developers in the control group nevertheless got access to Copilot because they
were working on related tools.
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changes through “commits.” Periodically, the developer will “build” the code they are
working on, and we can observe whether it compiled successfully. While commits and
builds do not directly correspond to a deliverable, we expect them to be nevertheless
monotone in the amount of accomplished work. Lastly, we use the build success rate as
a measure of code quality.

In addition to these output measures, we observe how developers use Copilot. For
each developer who uses Copilot, we observe both the number of suggestions by Copilot
and the number of accepted suggestions.

For the Microsoft experiment only, we also see the hire date of developers and their
level at the company, allowing us to separate the analysis by tenure and seniority.

Table 1 shows summaries of the treatment and control groups across all three ex-
periments, as well as balance tests for the outcome variables. With the exception of
commits in the Accenture experiment, randomization successfully balanced the average
pre-treatment outcomes across the control and treatment groups. However, the table also
shows that for all outcomes (with the exception of the Build Success Rate), the standard
deviation exceeds the pre-treatment mean, and sometimes by a lot. This high variability
will limit our power in our experimental regressions below.

3 Adoption of Copilot

This section reports the adoption of Copilot in the experiments. Understanding adoption
patterns is important for assessing the effectiveness of the experiments in generating
random variation in Copilot usage. Furthermore, these patterns offer insights into the
adoption of AI tools in the workplace. We define the adoption period as the first time a
software engineer uses GitHub Copilot and consider an engineer as having adopted the
tool even if they later stop using it. This approach captures the initial willingness to try
and use the technology.

Figure 1 presents the cumulative adoption rates for the three experiments. In Panel
(a), we observe that during the first two weeks of the Microsoft experiment, only 8.5
percent of the treated group signed up for GitHub Copilot. This low adoption rate
might have been due to inattentiveness to the initial email notification. Consequently,
Microsoft sent two additional email reminders on Feb 15th, 2023, and Feb 28th, 2023.
These additional emails increased the take-up rate to 42.5% within two weeks of being
sent. The initial compliance in the control group was not perfect, with 0.5 percent of
individuals in the control group adopting Copilot. At the conclusion of the experiment
in April 2023, the control group was given access to Copilot, and we observed a rapid
adoption rate in the control group. However, by Jan 2024, adoption in the control group
(75.6%) remained below the adoption in the treated group (64.0%), providing limited
long-run variation in adoption generated by the experiment.

Panel (b) reports the adoption rate of Copilot in the Accenture experiment. In this
experiment, the treated group’s adoption rate was rapid at the start of the experiment,
but after 1-2 months, it plateaus at around 60%. When the control group is allowed to
adopt in December 2023, we see a slower but steady increase in adoption rate amongst
control users. By April 2024, the adoption rate for the treated group is 69.4%, while the

6



Control Treatment

Mean SD Mean SD Difference p-value

Panel A: Microsoft
Pull Requests 0.86 1.49 0.87 1.50 0.01 0.88
Commits 9.43 14.86 9.36 14.80 -0.07 0.94
Builds 7.76 12.99 7.67 12.73 -0.09 0.91
Build Success Rate 0.72 0.30 0.75 0.29 0.02 0.33
Short Tenure 0.48 0.50 0.52 0.50 0.04 0.23
Junior Level 0.55 0.50 0.61 0.49 0.06 0.03**

Panel B: Accenture
Pull Requests 0.13 0.47 0.14 0.47 0.00 0.85
Commits 2.56 6.00 3.64 7.25 1.08 0.01**
Builds 0.96 2.54 1.10 2.68 0.14 0.38
Build Success Rate 0.51 0.37 0.54 0.38 0.03 0.40

Panel C: Anonymous
Pull Requests 0.73 1.23 0.73 1.19 -0.00 0.99

Table 1: Balance Table
Notes: This table presents a comparison of pre-experimental outcomes in control and treatment
groups across experiments. For each measure, we present its mean and standard deviation in the
control group and in the treatment group. We also show the mean difference across these groups
and the p-value associated with an underlying test of a difference in means. We do not present
other outcome measures in Panel C because we do not have access to these data. The differences in
p-values are calculated using standard errors clustered at the level of treatment assignment, which
varies across experiments (Microsoft: mixed team-level and individual assignment; Accenture:
individual assignment; Anonymous Company: team-level assignment.).

adoption rate for the control group is 24.4%.
Panel (c) shows the staggered invitation to access Copilot (represented by the solid

line) and the cumulative adoption rate among all participants (dashed line). As evident
from the plot, all developers gained access to Copilot after six weeks. During the invi-
tation rollout in September and October, we observed a steady increase in adoption as
developers got access to Copilot. Following the initial increase in adoption, the adoption
rate plateaued, showing only small, steady increases for the remainder of the experiment.

It is worth noting that adopting Copilot is relatively easier and less costly compared
to other AI tools in the workplace. Copilot does not require any complementary invest-
ment, can be adopted at the individual level, and is already integrated into the software
development environment. However, despite these advantages, the adoption rate is sig-
nificantly below 100% in all three experiments, with around 30-40% of the engineers not
even trying the product. Moreover, we observe that the adoption rates are remarkably
similar across the experiments. This suggests that factors other than access, such as in-
dividual preferences and perceived utility of the tool, play important roles in engineers’
decisions to use this tool.
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(c) Anonymous Company Experiment

Figure 1: Cumulative Adoption Rates
Notes: The first two graphs show the cumulative rate of adoption over time for software devel-
opers in both the treatment and control groups across various experiments. In the Anonymous
Company experiment (Panel c), unlike the other experiments, all developers were granted ac-
cess to Copilot in a staggered fashion, with the order of access randomized among participants.
Hence, we show the cumulative fraction of users invited to participate and who adopted Copilot.

4 Empirical Strategy & Main Results

4.1 Empirical Strategy
Our empirical strategy exploits the experimental variation while accommodating imper-
fect compliance by utilizing the experimental assignment as an instrument for the adop-
tion of GitHub Copilot. For each experiment, we observe data at the developer-week
level. To gain precision, we control for both developer and week fixed effects (to account
for, e.g., differences in developer skills and holidays). This leaves us with the following
regression as our main specification:

yit = βDit + µi + γt + ϵit. (1)
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Here, β is the coefficient of interest, Dit is an adoption dummy that turns on after a
developer first uses GitHub Copilot, µi is a developer fixed effect and γt is a week fixed
effect.6 We estimate Equation 1 by two-stage least squares (2SLS), instrumenting Dit with
a dummy Zit that turns on for all developers randomized into the treatment group after
the start of the experiment.

Before we move on to the results, we have to discuss a key complication: our data
comes from experiments where the control group was eventually also allowed to access
GitHub Copilot. This is not a challenge for identification, but it reduces the power of
our instrument if we employ the naive strategy detailed above. In particular, consider a
hypothetical experiment that lasts just one month: at t = 0, developers are randomized
into treatment and control groups, where control is not allowed access to Copilot until
t = 4. Suppose further that, starting at t = 4, the differences in uptake between the two
groups start declining over time, asymptoting a zero uptake difference. If we naively
estimate (1) by 2SLS in this setting, the power of our instrument (and hence the precision
of our estimates) will be strictly declining in the number of periods we observe – in
the limit, with infinite periods, our instrument violates the relevance condition because
initial treatment assignment eventually fails to predict uptake. One potential solution to
this dilemma involves cutting out some data and only using t ∈ {1, . . . , 4} to estimate
the model. During this period, the instrument has maximal relevance. However, to the
extent that there is still an adoption difference between treatment and control groups at
t = 5, this strategy is wasteful in that it does not exploit all possible identifying variation.

To avoid ad-hoc decisions about how many periods after the experiment ends should
be included in the analyzed data, we weight the 2SLS estimates by the (period-by-period)
difference in adoption across treatment and control groups. The resulting weighted IV
regression gracefully handles the issue of declining instrument relevance, and it has been
previously proposed and analyzed in the context of uptake differences across individ-
uals by (Coussens and Spiess 2021; Huntington-Klein 2020); in the context of uptake
differences over time, a similar strategy was employed by Bloom et al. (2012) to improve
precision.

The impact of our weighting on the interpretation of our results is straightforward:
the weighted regression weights periods based on the difference in Copilot adoption
between control and treatment groups. As we can see in Appendix Figure 5, the weighted
IV estimates place greater emphasis on treatment effects during periods like March 2023
in the Microsoft experiment, where there was a significant difference in adoption between
the treatment and control groups. Thus, to the extent that one would expect treatment
effects that are heterogeneous over calendar time (e.g. because Copilot improved over
time), the weighting will affect which estimand our estimator is targeting. If, on the other
hand, treatment effects are unchanged over the course of the experiment, the weighting
will purely improve the precision of our estimates without affecting their interpretation.

6For the initial phase of the Microsoft experiment, we do not observe intensive usage data. Hence, we
say a developer at Microsoft has adopted Copilot after they either register to use it (relevant in the initial
phase) or we see any usage of Copilot (relevant in the later phase.)
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4.2 Results

We present our main (weighted) results in Table 2, split by experiment.7 At Microsoft, we
find positive effects of Copilot on the number of completed pull requests, the number of
commits made, and the number of times that code was build (i.e., compiled.) However,
only the effect on the number of pull requests is statistically significant at conventional
significance levels. We find no negative effect on the build success rate, which would
be negatively affected if Copilot was writing code that does not compile and these mis-
takes are not caught by developers. At Accenture and Anonymous Company we find
comparable effect sizes, but these effects lack statistical significance.

Outcome Microsoft Accenture Anon. Comp. Pooled

Pull Requests 27.38** 17.94 54.03 26.08**
(12.88) (18.72) (42.63) (10.3)

Commits 18.32 -4.48 - 13.55
(11.25) (21.88) - (10.0)

Builds 23.19 92.40*** - 38.38***
(14.20) (26.78) - (12.55)

Build Success Rate -1.34 -17.40** - -5.53
(4.23) (7.12) - (3.64)

N Developers 1,521 316 3,030 4,867
N Clusters 690 316 432 1,438

Table 2: Experiment-by-Experiment Results (Weighted IV).
Notes: This table provides estimates of the effect of GitHub Copilot adoption on the number of
Pull Requests, Commits and Successful Builds across three experiments at Microsoft, Accenture,
and Anonymous Company. Each entry corresponds to an estimate of β in (1) expressed as a
percentage of the control mean. Standard errors are clustered at the level of treatment assign-
ment, which varies across experiments (Microsoft: mixed team-level and individual assignment;
Accenture: individual assignment; Anonymous Company: team-level assignment.)

In the final column, we combine estimates across experiments (taking the precision-
weighted average across our three experiment-by-experiment estimates) to get the most
precise estimate of the effect of the coding assistance tool.8 While standard errors are con-
sistently large, we find evidence of the productivity-enhancing effects of GitHub Copilot:
on average, the number of weekly pull requests made by developers increases by 26.08%
(SE: 10.3%), the number of weeklycommits increases by 13.55% (SE: 10.0%), and the num-
ber of weekly builds increases by 38.38% (SE: 12.55%).

Before moving on, we discuss an additional experiment run at Accenture that was
abandoned due to a large layoff affecting 42% of participants, resulting in a lack of data
on Copilot usage (and hence adoption status). Because of these data quality issues, we
relegate this experiment to Appendix D. However, if we conservatively impute Copi-

7We relegate unweighted results (which are less precise) to Appendix A.
8Thus, β̂Pooled =

(
∑e∈E 1/σ̂2

e
)−1

∑e∈E β̂e/σ̂2
e where E = {Microsoft, Accenture, Anon. Comp}, β̂e refers

to the estimate in experiment e, and σ̂e refers to the standard error.
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lot adoption status, we find a negative point estimate of -39.18% (SE: 36.78%) on the
number of completed pull requests. The estimates on the number of commits 43.04%
(SE: 38.8%) and builds 12.33% (SE: 53.6%) are both positive, though also not statistically
significant. The combined results do not change much when we include this second Ac-
centure experiment: the number of pull requests made by developers increases by 21.34%
(SE: 9.92%), the number of commits increases by 15.39% (SE: 9.69%), and the number of
builds increases by 37.03% (SE: 12.22%).

5 Heterogeneity

Previous literature has noted that productivity enhancements driven by large language
models are heterogeneous across skill level and education (Brynjolfsson, Li, and Ray-
mond 2023; Noy and Zhang 2023). In particular, large language models have been found
to help the least educated, least skilled workers the most. Because we have access to
developer characteristics for the Microsoft experiment, we can separate out our estimates
of the productivity effects of Copilot by tenure and seniority. In doing so, we are (to our
knowledge) the first to confirm these prior findings for highly-paid experts.

In particular, we now break out results by (i) the tenure and (ii) the level of employees
at Microsoft9. We split developers into short and long tenure based on the median ob-
served tenure in our data.10 Any developers that have been with Microsoft for less than
the median time at the start of the experiment are considered “short tenure,” and all
other developers “long tenure.” Similarly, we split developers into “junior” and "senior"
based on the level at which they are hired at the company.

We begin our analysis by considering the heterogeneity in adoption patterns in Figure
2(a-b). We see that short-tenure developers are 9.5 percentage points (SE: 2.2pp) more
likely to adopt Copilot (84.3% vs 74.8%), consistent with prior research suggesting that
younger workers (who naturally have lower tenure on average) are more likely to adopt
new technologies (Meyer 2011). The same effect is at play for the junior developers, which
are 5.3 percentage points (SE: 2.1pp) more likely to adopt (82.1% vs 76.8%), though the
adoption difference is slightly smaller in this dimension.

The next panel, Figure 2(c), reveals that employees of shorter tenure are more likely
to continue using Copilot more than one month after initial adoption, suggesting that
they perhaps expect larger benefits from the technology than their more experienced
counterparts. Judging by Figure 2(d), this effect does not seem present when comparing
junior to senior developers. Finally, Figure 2(e) reveals that higher-tenure developers are
approximately 4.3% (or 1.0 percentage points) less likely to accept code suggested by
Copilot. When comparing junior to senior developers, this difference in acceptance rates
is much smaller at 1.8% (or 0.5 percentage points), though it goes in the same direction
of senior developers being less likely to accept AI suggestions.

Moving on towards output measures in Figure 4, we see that the productivity-enhancing
effects of Copilot are stronger for lower tenure and more junior developers. While our

9We measure level as of March 1st, 2023, which is the earliest date available in our data.
10As it is considered sensitive information, we cannot reveal the exact median tenure, but it is between

2 and 4 years.
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Figure 2: Heterogeneity of Adoption and Usage of Copilot
Notes: This figure explores heterogeneous adoption and usage patterns of Copilot across devel-
oper tenure and level. Panel (a) provides the adoption of Copilot over time broken out by whether
a developer’s tenure with Microsoft at the beginning of the experiment was below or above me-
dian; panel (b) does the same for level. Developers who have only been with the company for a
short period and junior developers are slightly more likely to adopt. Panels (c) and (d) provide
event studies that detail the extensive margin, i.e., how likely a developer is to have used Copilot
at all a given number of months after her first usage of Copilot; short-tenure developers are more
likely to stick with Copilot. Panel (e) shows the fraction of Copilot suggestions that are accepted
by developers; short-tenure developers are slightly more likely to accept suggestions.
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Figure 3: Heterogeneity of Copilot Effect by Tenure and Level (Weighted IV).
Notes: This figure provides weighted IV estimates of the effect of adopting Copilot on total num-
ber of pull requests, commits, and builds broken out by (a) whether a developer’s tenure with
Microsoft at the beginning of the experiment was below median (short tenure) or above median
(long tenure) and (b) which level a developer was hired into. The dots are estimates derived
from estimating (1) separately for short- and long-tenure developers, and the bars provide 95%
confidence intervals based on standard errors clustered at the level of treatment assignment. For
all three outcome measures, the effects on productivity are stronger for short-tenure developers.

estimates are noisy and not statistically significant at conventional levels, the pattern is
the same across all three outcome measures: short-tenure developers increase their out-
put by 27% to 39% while long-tenure developers have more marginal gains of 8% to 13%.
However, we note that because of our emphasis on the average effect of initially adopting
Copilot and the patterns in Figure 2(c), the estimates for longer-tenure developers may
be attenuated by a larger extent of developers abandoning the technology after an initial
trial phase. Still, there is no difference in usage conditional on adoption between junior
and senior developers in Figure 2(d) and still we see in 4(b) that junior developers in-
crease their output by 21% to 40% while senior developers have more marginal gains of
7% to 16%.

6 Conclusion

To summarize, we find that usage of a generative AI code suggestion tool increases soft-
ware developer productivity by 26.08% (SE: 10.3%). This estimate is based on observing,
partly over years, the output of almost five thousand software developers at three differ-
ent companies as part of their regular job, which strongly supports its external validity.
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A Weighted vs Unweighted IV

This appendix provides versions of Table 2 and Figure 2 that do not use weights when
estimating 1. The resulting results have wider confidence intervals, but point in the same
direction as our main estimates. We also exhibit the weights that underlie Table 2 and
Figure 2.

Outcome Microsoft Accenture Anon. Comp. Pooled

Pull Requests 10.53 15.97 54.03 18.73
(24.82) (21.26) (42.63) (15.1)

Commits 5.54 -3.60 - 0.97
(22.20) (22.19) - (15.69)

Builds 5.87 96.05*** - 49.66**
(27.25) (28.05) - (19.55)

Build Success Rate 3.92 -18.10* - -5.39
(8.17) (9.55) - (6.21)

N Developers 1,521 316 3,030 4,867
N Clusters 690 316 432 1,438

Table 3: Experiment-by-Experiment Results (Unweighted IV).
Notes: This table provides estimates of the effect of GitHub Copilot adoption on the number of
Pull Requests, Commits and Successful Builds across three experiments at Microsoft, Accenture,
and Anonymous Company. Each estimate is expressed as a percentage of the control mean.
Standard errors are clustered at the level of treatment assignment, which varies across experi-
ments (Microsoft: mixed team-level and individual assignment; Accenture: individual assign-
ment; Anonymous Company: team-level assignment.)
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Figure 4: Heterogeneity of Effect of Copilot By Tenure and Level (Unweighted IV)
Notes: This figure provides unweighted IV estimates of the effect of adopting Copilot on total
number of pull requests (top left), commits (top right), and builds (bottom center) broken out
by whether a developer’s tenure with Microsoft at the beginning of the experiment was below
median (short tenure) or above median (long tenure.) The estimates are derived from estimating
(1) separately for short- and long-tenure developers. For all three outcome measures, the effects
on productivity are stronger for short-tenure developers.
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Figure 5: Regression Weight
Notes: This figure provides the weights used in the IV estimates underlying Table 2. Recall that
we are weighting the IV estimates to exploit information from periods where the instruments
predicts uptake. Hence, we use the difference in adoption across the control and treatment group
by a given date as our weight. This matters most for the Microsoft experiment, in which the
control group adopted at an elevated rate when its access was granted in March 2023. For this
experiment, we put extra weight on the period just before the control group was allowed to adopt
Copilot.
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B Data Cleaning

We provide details on which individuals we had to exclude from each raw dataset, and
the reasons for their exclusion.

B.1 Microsoft
In the original sample of the dataset, we have 1,746 individuals. We kept only software
engineers, which leaves us 1,538, and we dropped people who switched organizations,
leaving us 1,522. Finally, we dropped one individual who adopted before the experiment
started, with a final sample of 1,521.

We also drop the data for the last week of the dataset, since the dataset does not
record the full week of activity for the last week.

Finally, note that while the restriction for the control group was lifted in April 2023,
ten individuals in the control group adopted before that date. We include these individ-
uals in our regressions, and they naturally weaken the strength of the instrument.

B.2 Accenture
We drop individuals who have no record of data, and people who left the company. We
start with the original dataset with 369 individuals, and after dropping individuals with
no outcome measure found we are left with 320, and after dropping individuals who left
the company we are left with a final sample of 316.

Finally, we note that while individuals in the control group were allowed to adopt
starting December 2023, there was one one individual in the control group who adopted
in October 2023. We include this individual in our regressions.

B.3 Anonymous Company
The original sample has 3,054 individuals. We drop individuals who have shown/adopted
before they were given access, and are left with a final sample of 3,030 individuals.
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C Experiment Details

Figure 6: E-mail Sent To Participants in the Microsoft Experiment
Notes: This figure exhibits the copy that was sent to participants in the Microsoft experiment.
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Control Treatment
Mean Std. Dev Mean Std. Dev Difference p-value

Pull Requests 0.08 0.26 0.09 0.29 0.02 0.38
Commits 6.28 11.24 5.28 10.09 -1.00 0.30
Builds 5.32 10.32 5.23 10.52 -0.09 0.93
Build Success Rate 0.49 0.33 0.50 0.33 0.01 0.60

Table 4: Balance Table for First Accenture Experiment
Notes: This table presents a comparison of pre-experimental outcomes in control and treatment
groups across experiments. For each measure, we present its mean and standard deviation in the
control group, and in the treatment group. We also show the mean difference across these groups,
and the p-value associated with an underlying test of a difference in means. The differences in
p-values are calculated using standard errors clustered at the level of treatment assignment.

D The First Accenture Experiment

We do not discuss at length in the main text another experiment which was run by
Accenture in April 2023 and included a number of Accenture offices located in Southeast
Asia. This experiment was abandoned by the company after Accenture laid off 19,000
employees that some month (cnn.com), including 42% of the developers participating in
this experiment. Still, this attrition was balanced across treatment and control, and we
can thus subset to the 204 developers who were not let go for our analysis; indeed Table 4
confirms that after this subsetting, treatment and control are still balanced. The problem
emerges because Microsoft did not log all Copilot usage data for this experiment, as the
company considered it abandoned. In particular, we lack adoption data for the control
group until October ’23. Without this adoption data, any analysis is potentially biased.

Still, because our initial analysis revealed that this experiment was the only exper-
iment across the three in which we have a negative (though statistically insignificant)
point estimate for Copilot’s effect on productivity, we proceed to analyze this experiment
in this appendix by imputing that nobody in the Control group adopts Copilot until Oc-
tober ’23, yielding the adoption path in Figure 7. Thus, in the worst-case scenario, it
could be that all the adoptions that we attribute to October 2023 already happened right
at the beginning of the experiment. This data quality concern means our treatment effect
estimates will be conservative (as we may mistakenly count up to 10% of the control
group as non-adopters during half of the sampling period.)

Keeping in mind this caveat that our treatment effect estimates are potentially conser-
vative, we report the results from this first Accenture experiment in Table 5. We find a
negative point estimate of -39.18% (SE: 36.78%) on the number of tasks completed. Still,
this estimate has a high degree of statistical uncertainty, and we note that the estimates
on the number of commits 43.04% (SE: 38.8%) and builds 12.33% (SE: 53.6%) are both
positive, though also not statistically significant.

21



0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1

C
um

ul
at

iv
e 

R
at

e

Apr 23 Jul 23 Oct 23 Jan 24 Apr 24
Date

Treated
Control

Figure 7: Cumulative Adoption Rates for First Accenture Experiment.
Notes: The first three graphs show the cumulative rate of adoption over time for software devel-
opers in both the treatment and control groups across various experiments. In the Anonymous
Company experiment (Panel d), unlike the other experiments, all developers were granted ac-
cess to Copilot in a staggered fashion, with the order of access randomized among participants.
Hence, we show the cumulative fraction of users invited to participate, and who adopted Copilot.

Outcome Accenture #1
Pull Requests -39.18

(36.78)
Commits 43.04

(38.80)
Builds 12.33

(53.60)
Build Success Rate -0.99

(16.51)

N Developers 204
N Clusters 204

Table 5: Weighted IV Results for First Accenture Experiment.
Notes: This table provides estimates of the effect of GitHub Copilot adoption on the number of
Pull Requests, Commits and builds across three experiments at Microsoft, Accenture, and Anony-
mous Company. Each estimate is expressed as a percentage of the control mean. Standard errors
are clustered at the level of treatment assignment, which varies across experiments (Microsoft:
mixed team-level and individual assignment; Accenture: individual assignment; Anonymous
Company: team-level assignment.)
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