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Abstract

Using rich data on hourly physical productivity and thousands of ownership changes
fromUS power plants, we study the effects of acquisitions on efficiency and underlying
mechanisms. We find a 2% average increase in efficiency for acquired plants, begin-
ning five months after acquisitions. Efficiency gains rise to 5% under direct ownership
changes, with no significant change when only parent ownership changes. Investi-
gating the mechanisms, three-quarters of the efficiency gain is attributed to increased
productive efficiency, while the rest comes from dynamic efficiency through changes
in production allocation. Our evidence suggests that high-productivity firms buy un-
derperforming assets from low-productivity firms and make them as productive as their
existing assets through operational improvements. Finally, acquired plants improve
their performance beyond efficiency by increasing output and reducing outages.
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1 Introduction
A fundamental issue in antitrust policy is the trade-off between the market power and
efficiency effects of mergers. The increase in market power raises prices for consumers;
however, potential efficiency gains can counteract this effect, rendering the net impact of
mergers on welfare ambiguous (Williamson, 1968). Although there is extensive literature
on the price effects of mergers, we have limited evidence on how mergers affect efficiency
(Whinston, 2007; Asker and Nocke, 2021).1 With little guidance from empirical evidence,
researchers analyzing the competitive effects of mergers often rely on hypothetical effi-
ciency gains (Farrell and Shapiro, 2010; Nocke and Whinston, 2022; Berger et al., 2023).2

A major challenge in analyzing the efficiency effects of mergers is distinguishing true
efficiency gains fromother potentialmerger effects, such as changes inmarket power, buyer
power, and product quality. Due to the limitations of common production datasets, most
productivity studies rely on revenue-based productivity (TFPR), derived from revenues
and input expenditures, rather than quantity-based measures (Foster et al., 2008; Atalay,
2014). Using TFPR is particularly problematic in merger analysis because changes in
market power, buyer power, or quality can affect TFPR even without any efficiency gains.
This makes it difficult to identify the true efficiency effects of mergers.3

In this paper, we provide large-scale evidence on the efficiency effects of mergers while
tackling these challenges. We focus on acquisitions in the US electricity generation indus-
try between 2000 and 2023. Four key features of this industry allow us to overcome the
difficulties in quantifying merger efficiencies. First, we observe, at the hourly frequency,
the physical quantities of both output and the primary input, the consumption of fuel,
which makes up 79% of operational costs. Using this high-frequency data, we construct
an efficiency measure (heat rate) and analyze how it changes around the time of acquisi-
tion. Second, electricity is a homogeneous product, eliminating potential quality changes
that could confound our analysis. Third, the power generation industry experienced a
significant number of acquisitions during the sample period. Our sample includes 505
transactions with 3,515 generator ownership changes, representing an average of 4.5% of
the industry’s annual capacity. These ownership changes exhibit significant heterogeneity
in transaction, firm, and plant characteristics, which we leverage to study the mechanisms

1Weinberg (2008), Ashenfelter and Hosken (2010), and Kwoka (2014) provide reviews of the literature on the
price effects of mergers.

2As an example, consider these quotes from Nocke and Whinston (2022): “there is a clear need for much
better evidence on the efficiency effects”; “we observe that the literature on efficiency effects of horizontal
mergers is extremely limited”; “...there is remarkably little solid empirical evidence on this point.”.

3The examination of efficiencies is a standard part of merger review; see Section 3.3 of the Merger Guidelines
(DOJ and FTC, 2023).
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of efficiency gains. Finally, electricity generation is an important industry, with efficiencies
leading to positive externalities through decreased emissions (EPA, 2018b).

Our analysis begins with a difference-in-differences estimation, comparing the effi-
ciency of acquired plants to those not involved in acquisitions. We find that, on average,
the efficiency of acquired plants increases by 2.0% after acquisitions. However, this average
effect masks significant heterogeneity from the two types of ownership changes observed
in the data: parent and subsidiary level ownership changes. Ownership changes only
at the parent level do not change efficiency on average, whereas changes in subsidiary
ownership result in a 4.9% increase. This finding highlights the influence of the direct
owner in power plant operations. Finally, examining the timing of efficiency gains, we
observe improvements beginning five months post-acquisition, stabilizing after eighteen
months. This suggests that new owners require time to implement efficiency-improving
changes.

Efficiency increases in electricity generation can manifest in various ways, not all of
which are necessarily welfare-improving. For instance, generators incur additional costs
when adjusting production levels, known as ramp costs, so acquirers might improve
efficiency by reducing production and ramping (Borrero et al., 2024). Alternatively, they
can use generatorsmore intensively at the expense of reliability (Borenstein et al., 2023). To
understand the nature of efficiency effects, we study other generator outcomes indicative
of performance, including output, capacity utilization, outages, and emissions. We find
that acquired generators increase generation by 7.3%, raise capacity utilization by 2.2%,
and experience a 33.5% reduction in outages following the acquisition. These results
suggest that acquirers improve other dimensions of plant performance beyond efficiency,
and efficiency gains occur without deterioration in other performance indicators.

While evidence of efficiency gains after mergers is important, understanding the un-
derlying mechanisms is essential for informing antitrust policy and generalizing findings
from this industry to others. With this motivation, the remainder of the paper conducts a
comprehensive mechanism analysis by investigating heterogeneity in the efficiency effects
and modeling sources of efficiency gains in power plants.

We start by analyzing the characteristics of generators, firms, and transactions that may
be informative about efficiency effects. We find that, on average, generators with above-
median capacity experience a 3.3 percentage points (pp) larger efficiency increase than
those with below-median capacity. This difference perhaps reflects greater incentives to
improve efficiency in larger-capacity units, as any improvement in efficiency would yield
higher returns. Regarding firm characteristics, efficiency improvement is 4.1 pp higher
when the acquirer is larger than the median and 5.8 pp higher when the acquirer is a serial
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acquirer. These results suggest that a firm’s experience in plant operation and acquisition
is an important predictor of post-acquisition efficiency gains. Finally, we examine the
differential impact of cross-market acquisitions on efficiency, finding that they result in
efficiency gains 3.9 pp lower than within-market acquisitions.

We then proceed to a more structural analysis to uncover the mechanisms behind
efficiency gains. We focus on two mechanisms through which a firm can increase the
efficiency of electricity generation: (i) improving the performance of individual genera-
tors (productive efficiency) and (ii) optimizing production allocation dynamically within
a generator to reduce ramping (dynamic efficiency). We develop a testable prediction for
eachmechanism and quantify their contributions bymodeling the efficiency of generators.
In particular, relying on a Leontief electricity production function as a microfoundation,
we model the heat rate as a function of output, ramp rate, and weather conditions (tem-
perature and humidity). The availability of hourly production data allows us to estimate
this function for each generator separately for pre- and post-acquisition periods, thereby
directly measuring the change in production function due to acquisitions.

We test the role of the first mechanism, productive efficiency, by quantifying the effi-
ciency change due to shifts in the heat rate curve, controlling for ramp and weather condi-
tions. For dynamic efficiency, we analyze the variation of an acquired plant’s production,
with less variation over time indicating dynamic efficiency. To quantify its contribution, we
use the estimated production function model and calculate the efficiency increase due to
changes in the post-acquisition production distribution while keeping the heat rate curve
as in the pre-acquisition technology.

We find that productive efficiency accounts for most (three-quarters) of the total ef-
ficiency gain. The average heat rate curve of acquired generators shifts downward after
acquisition at every production level, suggesting that acquirers improve generators’ in-
ternal efficiency. We also find evidence supporting an increase in dynamic efficiency.
Following acquisitions, generators’ coefficient of variation (CoV) of production tends to
decrease, explaining the remainder of the efficiency increase.

Having established the role of productive efficiency, the next natural question is how
acquirers improve productive efficiency. There are two potential channels: (i) operational
improvements, which involve, for example, installing control software, implementing ef-
fective maintenance, providing personnel training, or adopting best practices, and (ii)
capital investments, which involve equipment upgrades. Process improvements suggest
transfers of intangible capital post-acquisition (Atalay et al., 2014), whereas capital up-
grades indicate either credit constraints faced by the former owner or insufficient incentives
to make efficiency-improving capital investments (Midrigan and Xu, 2014). Although the
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large-scale nature of our study precludes us from directly observing what changes inside
the plant, we supplement our efficiency data with two additional datasets to distinguish
between thesemechanisms: (i) data onplantmanagers and (ii) data on capital expenditures
and non-fuel costs.

Starting with the manager data, we find that 55% of acquired power plants change
managers within one year of acquisition. These new managers are 5.6 pp more likely to
have amaster’s degree and 4.3 ppmore likely to have a bachelor’s degree thanmanagers of
non-acquired plants. In contrast, we find no evidence of increased capital expenditures or
non-fuel costs after acquisitions. Therefore, the new owners appear to improve efficiency
through low-cost operational improvements rather than high-cost capital investments.
This analysis contributes to the growing body of evidence suggesting that acquisitions
serve as a mechanism for transferring within-organization knowledge to newly acquired
assets (Hortaçsu and Syverson, 2007; Bloom et al., 2012; Atalay et al., 2014; Eliason et al.,
2020).

Efficiency gains through operational improvements point to superior capabilities of
acquirers in plant operation and utilization compared to target firms. To further explore
this and understand how acquisitions reallocate assets within the economy, our final
analysis estimates and compares the productivity of target and acquirer firms. We find
that high-productivity firms buy underperforming assets from low-productivity firms
and make the acquired assets as productive as their existing assets after acquisitions.
On average, acquirers are 1.7% more productive than the targets, and assets sold by the
target firms underperform their other assets by 3%. These findings suggest acquisitions
allocate assets to firmswith both relative and absolute advantages in utilizing those assets,
providing evidence for both the “high-buys-low” and “like-buys-like” theories of merger
gains in the literature (Jovanovic and Rousseau, 2002; Rhodes-Kropf and Robinson, 2008).

Aswith all retrospectivemerger analyses, an identification challenge in our paper is the
potential endogeneity ofmergers. To address this concern, we implement several strategies
and robustness checks. First, our specification incorporates a rich set of controls along
with flexible time trends (fuel, technology, vintage, and state), accounting for factors that
potentially influence selection into acquisitions. Second,we analyze the timingof the effect,
demonstrating parallel trends between the treated and control groups three years before
acquisitions and an increase in efficiency starting a few months after acquisitions. Third,
we show that our results are robust to the empirical method, sample period, acquisition
definition, and data frequency in measuring efficiency.

We conclude the introduction by noting that our results do not characterize the full
impact of acquisitions, as we have identified only one component of the merger welfare
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analysis. Furthermore, the magnitude of the efficiency effect identified in this paper might
not extend to industries with significantly different production techniques or acquisition
motives compared to electricity generation. Although we focus on a single sector to
leverage the available data and numerous acquisitions, we provide detailed evidence of
mechanisms to draw broader lessons from this sector.

Contribution to the Literature This article contributes to the literature on the effects of
mergers on productivity. As noted byWhinston (2007) and Asker and Nocke (2021) in the
two latest IO handbooks, there is a limited number of papers on the productivity effects
of mergers. Among these studies, Blonigen and Pierce (2016) apply the De Loecker and
Warzynski (2012)method to separately identify the effects ofmergers onmarket power and
productivity in US manufacturing plants. Their findings suggest an increase in market
power but no evidence of a productivity effect. Kulick (2017) studies mergers in the
US ready-mix concrete industry, finding that prices rose due to increased market power
despite a 6% productivity increase in acquired plants. Braguinsky et al. (2015) examine the
effects of consolidation in the early 20th-century Japanese cotton spinning industry. They
find that although acquirers are not more productive conditional on operation, they are
more profitable due to better inventorymanagement and higher capacity utilization. After
acquisitions, the acquirers improve capacity utilization in the acquired plants, raising both
productivity and profitability.4

This article contributes to the literature studying efficiency in the power generation
industry, which has focused mainly on the effects of deregulation that began in the 1990s
(Knittel, 2002; Bushnell and Wolfram, 2005; Fabrizio et al., 2007; Davis andWolfram, 2012;
Hausman, 2014; Cicala, 2015, 2022). These studies compare the performance of plants in
states that pursued restructuring to those in states that did not, generally finding a positive
impact of restructuring on plant operations.5 Our paper differs from this literature, as we
analyze the effects of ownership changes rather than deregulation on productivity.6 We
primarily focus on the post-deregulation period and exclude forced divestitures due to

4Evidence of cost savings fromother industries includesmeat products (Nguyen andOllinger, 2006), railroads
(Bitzan and Wilson, 2007; Chen, 2024), electricity distribution (Kwoka and Pollitt, 2010; Clark and Samano,
2022), radio (Jeziorski, 2014), banking (Focarelli and Panetta, 2003), and healthcare (Dranove and Lindrooth,
2003; Harrison, 2011; Schmitt, 2017). These studies typically analyze firm costs, which include both input
prices andfirmproductivity. Another strand of literature provides evidence on efficiency effects by analyzing
a single merger. Some examples are the Molson and Coors merger (Grieco et al., 2018) and the Miller and
Coors merger (Ashenfelter et al., 2015) in the brewing industry, and the Boeing-McDonnell Douglas merger
(An and Zhao, 2019) in the aerospace industry.

5MacKay and Mercadal (2024) find that, despite decreasing generation costs, wholesale prices increased due
to market imperfections.

6Bushnell and Wolfram (2005) also study the impact of ownership changes on power plant efficiency. Their
study focused on utility divestitures in the context of industry deregulation. By contrast, our study examines
ownership changes that occurred after deregulation.
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deregulation from our sample. In the literature studying electricity markets, our paper
also relates to Hortaçsu and Puller (2008) and Hortaçsu et al. (2019), who study the
heterogeneity of firms’ strategic bidding ability in wholesale electricity auctions and how
ownership changes potentially affect strategic ability.

Finally, this paper contributes to the recent wave of retrospective merger research that
examines the impact of mergers on various firm outcomes. This literature has advanced
our understanding of cross-market mergers (Lewis and Pflum, 2017; Dafny et al., 2019),
vertical mergers (Luco andMarshall, 2020), monopsony power (Prager and Schmitt, 2021),
buyer power (Craig et al., 2021), price effects (Bhattacharya et al., 2024; Brand et al., 2023;
Brot-Goldberg et al., 2024), quality (Eliason et al., 2020; LaForgia, 2024), product availability
(Atalay et al., 2024), firm entry (Fan and Yang, 2025), capacity utilization (Kalnins et al.,
2017), employment (Geurts and Van Biesebroeck, 2019), and political influence (Moshary
and Slattery, 2024). We complement this body of work by studying how mergers affect
efficiency and providing evidence of the mechanisms.

2 Institutional Background and Plant Productivity
This section begins with the institutional background of the power generation sector,
followed by an overview of mergers and acquisitions in the industry. We then discuss
power plant operation and our approach to measuring plant productivity.

2.1 The Power Generation Sector in the US

The US electric power sector accounts for roughly 2% of the US GDP (Bradley & Asso-
ciates, LLC, 2017). Before the 1990s, US electricity generation was predominantly supplied
by regulated and vertically integrated utilities. These entities typically served a specific
territory and controlled all components of the sector, including generation, transmission,
and distribution. The returns of these utilities were regulated through rate-of-return on
capital investments and cost-of-service regulation (Joskow et al., 1989). This highly regu-
lated market structure provided minimal incentives for efficiency improvements, leading
to significant inefficiencies in electricity generation (Fabrizio et al., 2007; Cicala, 2015).

In the 1990s, the industry underwent significant deregulation. In many states, electric-
ity generation was decoupled from transmission and distribution, with most generators
transitioning to market-based compensation. This shift coincided with the establishment
of independent system operators (ISOs), which manage the electricity grid and organize
the wholesale market for electricity. By 2020, about 70% of US electricity demand was
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served through seven ISOs (EIA, 2020).7

2.2 Acquisitions in the Power Sector

Large power companies are often structured into multiple subsidiaries under a single
parent company, each serving distinct locations and segments of the power sector. These
parent companies frequently own assets in generation, transmission, and distribution
within the same region, although some operate subsidiaries across various parts of the
country. Following the deregulation wave in the 1990s, there was a notable increase in
mergers and acquisitions among these entities (Davis and Wolfram, 2012). Moreover,
financial firms, particularly private equity firms and bank funds, began investing heavily
in the power generation sector (Andonov and Rauh, 2023).

Acquisitions in the power sector can be categorized into two types: (i) asset acquisi-
tions and (ii) subsidiary acquisitions. Asset acquisitions involve a firm selling parts of its
power plant portfolio, with the acquired assets placed under a subsidiary of the acquiring
company. Subsidiary acquisitions occur when a parent company acquires another com-
pany’s subsidiary, including all its assets. In asset acquisitions, both parent and subsidiary
owners change, whereas in subsidiary acquisitions, only the parent owner changes.8 For
a visual explanation of these acquisition types, see Figure OA-3.

Proposed power plant acquisitions in the US electricity sector are subject to review by
the Federal Energy Regulatory Commission (FERC), the Department of Justice (DOJ), and
state Public Utility Commissions (PUC) (Niefer, 2012). FERC conducts its review under
Section 203 of the Federal Power Act to determine if the merger aligns with the public
interest (FERC, 2012). The DOJ’s review focuses on the potential anticompetitive effects.
If either the DOJ, FERC, or PUC finds consumer harm, they may challenge the merger or
require remedies.9 Despite reviews by three government agencies, most proposed power
plant mergers over the past two decades have gained approval (Hempling, 2018).

Firms cite various motives for acquisitions, including synergies, financial benefits, and
complementarities between different asset types.10 Since fuel represents a large portion of

7We use ISO as an umbrella term for both ISOs and regional transmission organizations.
8In some cases, two companies merge to form a new entity, and power plants become part of this new entity.
These cases typically fall under subsidiary acquisitions.

9To give some examples, in 2005, the Exelon-PSEG merger was not completed after failing to get approval
from the New Jersey PUC (Morris and Oska, 2008; Wolak and McRae, 2008). In 2012, following the DOJ’s
request, Exelon Corporation and Constellation divested three plants in Maryland (Bushnell et al., 2012).

10Formany acquisitions in our sample, we accessed investor presentations and conference calls, which allowed
us to identify the stated motives. Examples include (i) improvements in management (AES-DPL merger),
(ii) cost synergies of $175 million per year (NRG-GenOn merger), (iii) annual cost savings of $150 million
(Mirant-RRI Energy merger), and (iv) benefits of geographic, fuel, market, and earnings diversification
(Vistra-Dynegy merger). Other motives include increasing the consumer base, diversifying the portfolio
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operational costs, fuel efficiency improvements are often cited as a primary source of cost
savings post-acquisition.11

2.3 Electricity Production and Efficiency Measure

A major challenge in analyzing merger efficiencies is the scarcity of suitable data, as most
industries lack reliable cost and physical productivity measures (Asker and Nocke, 2021).
The US power generation industry is unusual in this respect because of the availability of
high-frequency fuel efficiency data. This section describes the efficiency measures used in
this study and explains the production process at power plants.

A power plant is an industrial facility that generates electricity. As of 2020, there were
11,070 utility-scale electric power plants in the US (EIA, 2020). Typically, power plants
includemultiple generators, transforming different forms of energy (primarily heat, wind,
or solar) into electricity using various production technologies. Our research focuses on
fossil fuel generators as their efficiency is more easily measured with available data.

Fossil fuel generators produce electricity using the heat energy released from burning
fuels (coal, natural gas, and oil).12 In this process, the input is measured as the heat content
of the fuel used in generation, while the output is measured as the electricity generated.
This leads to a natural efficiency metric, called heat rate, which indicates how efficiently a
generator converts fuel into electricity. Heat rate is calculated as the ratio of the fuel’s heat
content, in million British thermal units (MMBtu), to the generator’s electricity output in
megawatt-hours (MWh). Our measure of efficiency is the inverse of heat rate:

Fuel Efficiency (Inv. Heat Rate) =
Energy Output (MWh)
Energy Input (MMBtu) . (1)

Heat rate is the critical determinant of generator efficiency since fuel is the major input,
representing 79% of operating costs.13 For this reason, it is a standard efficiency metric in
the industry, commonly used by regulatory agencies and firms (EPRICA, 2014; EIA, 2015).

Most importantly for this paper, fuel efficiency provides key advantages in analyzing
the efficiency impacts of acquisitions. First, fuel efficiency is a quantity-based measure
derived from input and output quantities rather than from revenues and input expendi-
tures. Consequently, it is not directly affected by changes in input or output prices due to
across technologies and regions, and accelerating efforts to comply with potential future environmental
regulations.

11As an example, Figure OA-1 shows a slide from an investor presentation for the 2018 Dynegy and Vistra
Energy merger, where firms claim that heat rate improvements will lead to $30 million cost savings.

12In thermal power plants, water is heated to generate steam, which moves through a turbine attached to a
shaft. As the steam flows, it causes the shaft to spin, driving a generator that produces electricity.

13Based on the authors’ calculations; see Section B.5 for methodology.
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Figure 1: Representative Heat Rate Curve
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Note: The green line represents the typical heat rate curve in electricity generation, showing how heat rate
changes with the production level. The blue bars represent a hypothetical distribution of production as a
function of generator capacity.

buyer and market power effects, allowing us to distinguish efficiencies from other merger-
induced changes. Second, electricity is a homogeneous product, precluding any potential
impacts on quality.14 Finally, the efficiency measure relies primarily on sensor data rather
than survey responses, as is common in many other industries.15

Several factors can influence the heat rate in a power plant. Figure 1 displays a hypo-
thetical example of a heat rate curve, where the green line represents the heat rate and
the blue bars represent a typical production distribution as a percentage of capacity. As
suggested by the heat rate curve, a power plant’s efficiency depends on its production
level, typically reaching its peak when operating near full capacity. Moreover, fluctuations
in production significantly affect efficiency. Given that electricity cannot be stored on a
large scale and demand varies over time, power plants must frequently adjust their pro-
duction in response to changing market conditions. These adjustments, known as ramp
costs, reduce the overall efficiency of electricity generation (Borrero et al., 2024).

Although electricity generationmay appear relativelymechanical, the efficiency of gen-
erators in the US shows notable variation as in other manufacturing industries (Syverson,
2011). Figure 2 shows the distribution of annual residual log productivity of generators
after controlling for a rich set of observables, including ramp, generator age, fuel type,

14Some post-acquisition changes, such as reliability and environmental performance, might be viewed as
aspects of the ’quality’ of electricity generation. We will analyze these aspects later in the paper.

15It is worth noting that our efficiency measure is fuel efficiency rather than TFP and does not account for
non-fuel inputs. While non-fuel inputs play a less significant role in electricity generation compared to other
manufacturing industries, and substitution from fuel to other inputs is limited (Fabrizio et al., 2007), we
explore them in Section 6. We also provide a theoretical foundation of fuel efficiency based on a Leontief
production function in Section 5.2.
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Figure 2: Distribution of Residual Log Productivity
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Note: This figure shows the distribution of residual yearly log productivity of fossil fuel generators in the US
between 2000 and 2023, after controlling for year, standard deviation of heat rate, generator age, fuel type,
technology, capacity, boiler manufacturer and model.

technology, capacity, boiler manufacturer, and model.16 The difference between the 90th
and 10th percentiles of log productivity is 0.46, indicating that generators in the top decile
are 58% more productive than those in the bottom decile.17 The large dispersion in resid-
ual productivity highlights the role of unobserved heterogeneity in efficiency and suggests
that there is substantial room for efficiency improvements in many power plants.

Improving the heat rate performance of a generator can be achieved in two main
ways: (i) operational improvements and (ii) capital upgrades. Operational improvements,
generally lower cost than capital upgrades, include a range of practices such as installing
control software, continuously monitoring unit and equipment performance, promptly
repairing equipment impacting heat rate, training personnel, and implementing effective
maintenance.18 Every year, power plant managers convene at the Heat Rate Improvement
Conference to discuss these practices (EPRI, 2022).19 The second approach to improving

16We provide the details of this estimation procedure in Section B.1.
17The 90-10 percentile ratio of 1.58 is smaller than typical findings in other manufacturing sectors (Syverson,
2011), likely because we condition on a richer set of observables than in other settings. Other researchers
have also observed the heterogeneity in power plant productivity. Sargent & Lundy, LLC (2009), in a
study commissioned by the EPA, finds that the heat rates of coal-fired power plants range from 5 to 32.7
MMBtu/MWh. Staudt and Macedonia (2014) examine factors contributing to heat rate variation, including
facility size, capacity factor, and coal type, and find considerable unexplained variability in heat rate.

18Several software products are available to monitor and improve power plant performance, such as PI Data
Historian, EtaPRO/Virtual Plant, and Emerson Enterprise Data Server. Heat rates can also be improvedwith
turbine enhancements such as blade and seal repairs, cycle control optimization, boiler improvements, and
deposit removal. Boiler improvements involve heat transfer surface maintenance, burner system inspection,
and intelligent soot blower utilization. For methods of heat rate improvements and other examples, see EPRI
(2009); EIA (2015); Emerson Process Management (2016); Environmental Defense Fund (2017).

19Figure OA-4 highlights a few case studies of heat rate improvements from the 2015 conference, as reported
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plant efficiency is by upgrading critical equipment, such as boilers, fuel feeders, and
cooling systems, as old equipment deteriorates and new technology becomes available.

A critical factor influencing operational practices in a power plant is managerial and
engineering input. As documented in detail in Bushnell and Wolfram (2009), the skills
of key personnel can profoundly impact power plant performance. These personnel are
responsible for continuously monitoring unit and equipment performance, conducting
periodic tests to assess equipment condition, and planning production and maintenance
schedules. Bushnell and Wolfram (2009) notes the operator’s impact as follows: “the act
of balancing all of these input parameters was described by one manager as playing the
piano and one star operator was considered a virtuoso on the instrument”.20

Improving power plant efficiency is also crucial for environmental reasons. The higher
a plant’s efficiency, the less fuel it requires, directly leading to reduced emissions of local
pollutants and greenhouse gases. As a result, enhancing fuel efficiency can be an effective
method to mitigate emissions, a fact acknowledged by policymakers in the EPA’s Clean
Power Plan (EPA, 2018b).

3 Data and Summary Statistics
Our primary objective is to compile a dataset that allows us to construct a measure of
generator efficiency and identify ownership changes. In this section, we outline our data
sources and present summary statistics.

3.1 Data Sources

We combine data from the FERC, the Environmental Protection Agency (EPA), the Energy
Information Administration (EIA), the North American Electric Reliability Corporation
(NERC), S&PGlobalMarket Intelligence (GMI, formerly SNL Financial), andVelocity Suite
at the firm, plant, and generator levels for fossil fuel-fired power plants in the continental
US from January 2000 to March 2023. This section briefly describes the datasets, while
AppendixAprovidesmoredetailed informationon thedata sources, variable construction,
and descriptive statistics.

Generator and Plant Level Data. Weuse data fromEIA, EPA, FERC Form 1, Velocity Suite,

in Fitzgerald and Gelorme (2015). The following quote is particularly noteworthy: "For years we’ve talked
about heat rate, but let’s be honest, in reality, it hasn’t driven maintenance and operational activities to a
great degree”.

20As another example of the importance of personnel, PacifiCorp Energy states in their 2016 Heat Rate
Improvement Plan Document that “Continuous improvement and management of unit heat rates is the
responsibility of all plant personnel” and “good management of heat rate requires that plant management
make optimizing heat rate a priority each day” (PacifiCorp Energy, 2016).
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and GMI to construct generator- and plant-level datasets. For generators, the information
includes the installation year, fuel type, technology type, capacity, boiler model, and boiler
manufacturer. For plants, we construct data on regulation status, location, ISO, and FERC
region. In addition, for approximately 35% of power plants, we have information on the
number of employees, non-fuel costs, and capital expenditures.21

Production Data. We use the EPA’s Continuous Emissions Monitoring Systems (CEMS)
to obtain hourly input and output data. This dataset provides generation, heat input, and
various emissions for nearly all fossil fuel units in the US.22 Additionally, CEMS provides
information on the environmental programs each generator is subject to and the scrubbers
used for various pollutants. We merge this dataset with our generator- and plant-level
data as detailed in Appendix A.1.

Ownership and Acquisition Data. We construct a dataset on fossil fuel generator acqui-
sitions by combining two separate datasets on ownership and transactions from GMI, as
well as information from company press releases and newspaper articles.23.The ownership
data includes all shareholders and their shares at both subsidiary and parent company
levels. The transaction data provides details on transferred assets, transaction size, buyer
and seller, announcement and closing dates, conference call transcripts, and descriptions.
Given that virtually all power plant acquisitions in this industry require notification to
regulatory agencies, this dataset provides comprehensive coverage of transactions during
the study period.24 It is well-known that ownership datasets may misidentify acquisitions
by interpreting firm name changes and restructurings as ownership changes (Davis et al.,
2024; Arora et al., 2021). We address this issue by cross-referencing transaction and own-
ership data and reviewing transaction descriptions, press releases, and news articles as
detailed in Appendix A.5.

Maintenance and Outage Data. We obtain event-level data on outages, capacity reduc-
tions (derates), and maintenance from the Generating Availability Data System (GADS)

21The data sources for capital expenditures and non-fuel inputs are FERC Form 1 and Rural Utilities Service
(RUS) Form 12, which are available only for major electric utilities as defined by FERC.

22Every fossil-fuel generator in the US with a capacity greater than 25 MW must comply with the EPA CEMS
program. This sample represents approximately 95% of the US fossil fuel generating capacity.

23GMI, previously known as SNL Financial, collects data for the US electricity sector using regulatory filings
from agencies like the Securities and Exchange Commission (SEC), FERC, Rural Utilities Service (RUS), EIA,
and state-regulated utilities (GMI, 2024). Additionally, it uses news aggregators to capture news articles,
press releases, and corporate announcements. GMI has been widely used by researchers to study electricity
markets (Davis and Hausman, 2016; Jha, 2020; Abito et al., 2022; Borenstein and Bushnell, 2022)

24Before 2019, all power plant transactions required FERC approval regardless of size. On February 21,
2019, the FERC issued a rule setting a $10 million threshold for approval and a $1 million threshold for
notification within 30 days. See https://www.ferc.gov/news-events/news/ferc-issues-final-rules-revising-
utility-merger-hydropower-regulations, accessed on June 30, 2024.
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database through a data-sharing agreement with NERC. This dataset covers all generators
with a capacity over 20 MW, which are required to report events affecting their generation
capabilities to NERC. Available from 2013 to 2021, the data includes each event’s start
and end times, type, and cause. The generator names are anonymized in this dataset,
but information on capacity, state, fuel type, and monthly production hours is available.
Using this information, we match this data to CEMS units using an algorithm described
in Section A.7, achieving a match rate of 92.8% based on capacity.

Personnel Data. We compile monthly data on plant personnel from 2000 to 2020 using
an EPA database of plant representatives, including names, tenure start and end dates,
and contact information. We successfully matched about 70% of the personnel names to
their LinkedIn profiles, thereby obtaining their title and education. Using LinkedIn data,
we verified that 78% of the listed personnel are plant managers, while the remainder are
primarily environmental compliance personnel and engineers. Thus, we consider plant
representatives to be plant managers for the purposes of this study.

Other Datasets. We collect hourly data on ambient temperature and humidity from
Velocity Suite for power plants in our sample, as weather conditions can affect generation
performance. We also obtain firm-level industry classifications and the publicly listed
status from GMI.

3.2 Construction of the Generator and Acquisition Sample

Our initial sample includes all electricity generators in the contiguous US that operated
between January 2000 and March 2023 and are subject to CEMS regulations (5,876 gen-
erators). From this set, we exclude cogenerators that produce both steam and electricity,
reducing the sample to 5,264 generators.

For acquisitions, we start with 5,216 generator acquisitions involved in any firm-to-firm
transaction between January 2000 andMarch 2023. We eliminate acquisitions before a unit
becomes operational and after its retirement (534) and minority acquisitions where less
than 50 percent of the shares change ownership (864).25 Next, we eliminate the ownership
changes due to restructuring that happenedmostly in the early 2000s because the source of
efficiency improvements in these cases relates to incentive changes instead of acquisitions
(Cicala, 2015; Fabrizio et al., 2007). To do this, we primarily use data from Cicala (2015),
Abito et al. (2024), and EIA Electricity Monthly Reports. We further supplement this
data with the regulatory status from EIA, Velocity Suite, and S&P Global and eliminate

25A retired power plant may change ownership due to the value of its land or salvageable equipment or to
transfer environmental cleanup responsibilities to the new owner.
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Figure 3: Summary Statistics on Power Plant Transactions
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(b) Distribution of Transaction Size

Note: Panel (a) shows the annual percentage of fossil fuel electricity generation capacity that changed
ownership in the US from 2000 to 2023. Panel (b) displays the distribution of transaction sizes based on
fossil fuel generation capacity in the US during the same period. In Panel (b), the unit of observation is a
transaction, with the five largest transactions labeled.

all ownership changes that result in a change in regulatory status within a 15-month
window. Appendix A.4 provides further details of this procedure. This step eliminates
615 acquisitions, reducing our sample to 3,515 generator acquisition events.

3.3 Descriptive Statistics on US Power Plant Acquisitions

This section presents descriptive statistics on fossil fuel power plant acquisitions. We
demonstrate that the industry has undergone a substantial number of acquisitions, with
significant heterogeneity in transaction, firm, and plant characteristics.

Figure 3(a) shows the share of fossil fuel electricity generation capacity that changed
ownership between 2000 and 2023.26 On average, 4.5% of the industry capacity changes
ownership annually, with some year-to-year fluctuations. As seen in Figure 3(b), these
transactions vary widely in generation capacity. While most transactions include a few
plants, there are some moderately-sized transactions involving 5,000–10,000 MW capacity,
as well as several large ones over 10,000 MW capacity.27 This variation indicates that our
evidence is not solely from a few large mergers, and we can test the heterogeneity of the
effect by different transaction characteristics.28

26We define an acquisition as a change in ownership when a different firm gains themajority of the generator’s
shares post-acquisition. In a small number of cases where no firm holds more than 50% of the shares, an
acquisition is defined as a change in the largest shareholder.

27Table OA-1 lists the 25 largest transactions during the sample period.
28Despite many acquisitions in the study period, there has been no significant change in market concentration
in the US as shown in Figure OA-5, which reports the national market shares of the largest 5, 10, 20, and 30
firms by capacity owned. The concentration fluctuates but remains broadly stable due to significant entry
and exit in the industry. Some examples can be seen in Figures OA-7 and OA-8, where we report firms with
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Table 1presents summary statistics ongenerators, firms, and transaction characteristics.
Our sample consists of 505 transactions, covering 3,515 distinct acquisition events that
involve 2,048 unique generators. Most of these generators are gas-fired (82%) and operate
within an ISO (77%). About half of the acquisitions are cross-market transactions, where
the acquirer does not own existing capacity in the acquisitionmarket. The sample includes
244 unique acquirers and 224 unique target firms, with acquirers owning slightly more
units than targets on average.

In Column (3), we present the same statistics, but this time for the first acquisition of
each generator, which forms our baseline sample in the empirical analysis. The observ-
able unit characteristics are broadly similar between this subsample and all acquisitions
(Column (2)). Comparing acquired generators in Column (3) with all generators in our
sample (Column (1)), we find no meaningful differences in capacity, average installation
year, and whether they operate in an organized market. However, we note differences in
fuel type, with acquired generators more likely to be gas-fired (77% vs 71%). This trend
primarily comes from the large number of coal power plant retirements in the 2010s, fewer
acquisition opportunities due to coal plants being more likely to be in regulated states,
and the uncertainty about the future of coal power plants (Davis et al., 2022). To address
potential identification challenges arising from this and other potential differences, we
control for monthly trends by fuel type, technology, capacity, and installation year in our
empirical specifications.

Finally, the last two columns categorize the generators into two acquisition types we
identified: those involving both subsidiary and parent ownership changes and those
involving only parent ownership changes. Typically, a subsidiary is the legal entity that
owns the power plant, while the parent company owns the subsidiary. Some transactions
(asset acquisitions) involve changes in both subsidiary and parent ownership, whereas
others (subsidiary acquisitions) involve changes only in parent ownership. Columns (4-5)
list summary statistics for each generator’s first acquisition of each type. We observe that
these transaction types differ mainly in size, with parent-only ownership changes being
significantly larger (an average of 15 vs 5 units). This is consistent with the nature of
parent-only ownership changes, which often involve taking over a large part of the target’s
portfolio.

We next document the firm composition in the industry. Figure 4 displays the evolution
of ownership shares by the primary activity of the company (utilities, industrials, and
financials) and by company type (publicly listed, private, government-owned). Panel (a)

the largest capacity increase and decrease between 2010 and 2023.
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Table 1: Summary Statistics

All
Units

All
Acquisitions

First
Acquisitions

Subsidiary/Parent
Change

Only Parent
Change

(1) (2) (3) (4) (5)

Panel A. Generator Characteristics

# of Units 5264 3515 2048 1089 1142
# of Plants 1581 1223 744 380 405
# of Unique Units 5264 2048 2048 1089 1142
# of Unique Plants 1581 726 726 373 400
% Gas 0.71 0.82 0.77 0.89 0.68
% Coal 0.18 0.09 0.12 0.04 0.17
% Other Fuels 0.10 0.09 0.11 0.07 0.15
% Cross-Market - 0.57 0.58 0.51 0.57
% in ISO 0.69 0.77 0.74 0.81 0.70
Avg. Unit Capacity 173.04 164.43 171.28 155.77 171.16

(184.75) (159.01) (173.39) (145.02) (179.41)
Avg. Installation Year 1986.37 1990.59 1989.29 1994.60 1984.43

(20.08) (16.24) (17.27) (14.25) (17.86)

Panel B. Firm Characteristics

# of Acquirer Firms - 244.00 182.00 126.00 61.00
# of Target Firms - 224.00 159.00 111.00 70.00
Avg. # of Units Acquirer Owns - 45.81 45.94 50.72 39.35

- (53.40) (49.20) (54.88) (39.54)
Avg. # of Units Target Owns - 32.13 33.91 37.51 38.07

- (47.23) (49.57) (50.64) (53.30)
Avg. Acquirer Firm Capacity - 5244 5595 6369 6391

- (8698) (9112) (9605) (9507)
Avg. Target Firm Capacity - 7314 7466 8312 6200

- (9862) (9335) (9948) (7532)

Panel C. Transaction Characteristics

# of Transactions - 505 318 213 72
Avg. Transaction Size in # of Units - 7.0 6.4 5.1 15.9

- (12.9) (11.2) (7.8) (19.9)
Avg. Transaction Size in Capacity - 1191 1164 812 2909

- (2378) (2039) (1491) (3510)

Note: This table includes summary statistics on acquisitions of fossil fuel-generating US units between 2000
and 2023. A description of the sample’s construction can be found in Section 3.2. Each column reports
the counts and characteristics of the data at varying sample restriction levels. Column (1) reports statistics
from all generators in the data. Column (2) reports data from acquired generators. Column (3) restricts the
acquisition sample to the first acquisition of each generator. Column (4) reports statistics for first acquisitions
of each unit that involve both subsidiary and parent owner changes, while Column (5) focuses on the first
parent-only owner change for each generator. The numbers in parentheses represent the standard deviation.
The market definition for the cross-market calculations is the power control area. In Columns (2-5), the
number of unique plants may differ from the total plant count, as in rare cases, units within the same
plant were acquired at different times. Average acquirer and target characteristics report information before
acquisitions. All capacity information is reported in MW.
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Figure 4: Share of Generation Capacity by Firm Type
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Note: Panel (a) shows the percent share of fossil fuel generation capacity in the US between 2000 and 2023
by the primary industry type of the parent company. The “Utilities” category includes the generation
capacity of both regulated and non-regulated power plants owned by energy companies. Panel (b) shows
the same statistics by categorizing parent owners into Public Companies, Private Investment Firms, Private
Companies, and Government Institutions. These financial firms primarily include private equity firms,
pension funds, and bank funds. The classification is taken from GMI.

indicates an increasing presence of financial firms in the industry. The share of total
capacity owned by financial firms rose from 2.5% in 2000 to 13.9% in 2023, suggesting a
substantial reallocation of assets from utilities to financial firms. Panel (b) highlights that
publicly listed firms own slightly more than half of the industry capacity, with their share
remaining stable over time. Finally, government institutions—primarily local governments
in rural areas, except the Tennessee Valley Authority—own 10.8% of total capacity.29

4 Empirical Results
Our empirical strategy aims to identify the effects of acquisitions on power plant produc-
tivity and other key operational outcomes. For this purpose, we implement a difference-
in-differences research design that compares productivity trends of acquired generators to
those that were never or not-yet acquired. The main advantage of our empirical setting is
the availability of a high-frequency measure of generator productivity, which enables us

29An important institutional detail in electricity markets is variation in market structure and regulation across
states. As shown in Table 1, most acquisitions (77%) occur in organized markets where electricity prices
are determined through competitive auctions. This trend is also reflected in the geographic distribution of
acquisitions in Figure OA-9, where states with nonregulated wholesale generation have significantly higher
numbers of acquisitions relative to their size (see also Table OA-2). This highlights the potential role of
regulatory institutions and market characteristics in shaping firms’ selection into mergers, which should be
taken into account when interpreting our results.
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to track changes in productivity immediately before and after acquisitions.
We find that acquisitions increase the productivity of power plants by 2.0% on aver-

age, but with significant heterogeneity across acquisition types. In particular, ownership
changes at both the subsidiary and parent owner levels lead to a 4.9% average efficiency
gain, whereas ownership changes only at the parent company level suggest no statistically
significant efficiency effect. We conclude this section by examining the heterogeneity of
the efficiency effect and studying how acquisitions affect other plant outcomes, such as
generation and outages.

4.1 Effects of Acquisitions on Efficiency

We estimate the effects of acquisitions on efficiency using a regression of the following
form:

H8C = �11{Pre-year 1} + �21{Post-year 1} + �31{Post-year 2} + �41{Post-year 3} + -8C + 8 + �C + &8C , (2)

where H8C is the log efficiency of generator 8 at week C (measured as inverse heat rate),
8 and �C are generator and week fixed effects, respectively.30 The controls, -8C , in our
preferred specification include ambient temperature and humidity, a dummy variable
for each environmental regulation indicating whether the generator is subject to that
regulation, and pollution control device (scrubber) indicators for NOG , SO2 and PM.31
Controlling for factors related to environmental regulations is important, as policy changes
over the past two decadesmay influence firms’ acquisition decisions or directly affect plant
efficiency due to scrubber installations.

In addition to these variables, we control for monthly time trends by state, installa-
tion year, fuel type, capacity bins, and technology type.32 By incorporating state-specific
time trends, we account for changes in electricity demand and supply of non-fossil fuel
generation. Furthermore, the time trends for generator characteristics allow for different
efficiency trajectories based on generator type. For example, generatorsmight experience a

30Even though theunderlyingdata are hourly, we estimate this specification at theweekly frequency to alleviate
computational complexity and reduce noise in the hourly data. We later perform a robustness check with
daily frequency.

31These programs are Clean Air Interstate Rule NOG Program, Nitrogen Oxides Budget Trading Program,
Cross-StateNOG Program,OzoneTransportCommissionProgram, State ImplementationPlanNOG Program,
Regional Greenhouse Gas Initiative, Clean Air Interstate Rule Ozone Season Program, Cross-State Ozone
Season Program (Group 1-2), New Hampshire NOG Program, Mercury and Air Toxics Standards, Clean Air
Interstate Rule SO2 Program, Cross-State Ozone Season Program (Group 1-3), Cross-State SO2 Program,
New Source Performance Standards for Toxics, Texas SO2 Program.

32Capacity bins are categorized as follows: 0-50MW, 50-100MW, 100-250MW, 250-500MW, 500-2000MW; fuel
types include gas, coal, and other; and technology types distinguish between combined cycle and other
technologies.
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decline in efficiency over their lifespans, which can be nonlinear and vary by their vintage.
We capture this variation by including installation-year-by-month fixed effects.

The model in Equation (2) includes coefficients of interest, �1 to �4, to estimate effi-
ciency effects from one-year pre-acquisition to three years post-acquisition.33 We include
�1 to examine potential pre-acquisition productivity effects, which could arise due to an-
ticipation effects or disruptions in the production process. The regression coefficients are
normalized relative to the period two years before the acquisition, and standard errors are
clustered at the acquisition level. We exclude acquired generators from the sample three
years after their first acquisition to ensure that their post-treatment periods are not used as
controls for other units. This means that we use only the first acquisition of each generator
in our baseline empirical model, with a robustness check that includes all acquisitions
presented in Section 7.34

It is worth noting that the unit of analysis is a generator rather than a plant. Although
the same firm usually owns all the generators within a plant, generators often have distinct
production profiles, maintenance schedules, and even retirement years (Gowrisankaran
et al., 2025). Therefore, we think the generator is the right level of analysis, and it is
maintained throughout the paper unless otherwise stated.

Table 2 presents results with various sets of control variables (Columns 1-4) and differ-
ent acquisition types based on subsidiary and parent owner changes (Columns 5-6). Our
preferred specification with the full set of control variables in Column (4) demonstrates
efficiency increases following ownership changes. The efficiency of acquired generators
increases by 0.6% one year after acquisition and reaches 2% after two years on average. The
efficiency increase is robust to including a rich set of controls and time trends, and there
is no efficiency change in the year leading up to the acquisition. Overall, these findings
suggest that acquisitions lead to some improvements in generator efficiency.

Columns (5-6) of Table 2 test whether the efficiency effect differs by the type of own-
ership change.35 Column (5) shows the estimates only for acquisitions with ownership

33Specifically, 1{Pre-year 1} is an indicator variable for 1 to 12 months pre-acquisition; 1{Post-year 1} for 0 to 12
months post-acquisition, 1{Post-year 2} for 13 to 24 months post-acquisition, and 1{Post-year 3} for 25 to 36 months
post-acquisition.

34One potential concern is that never-treated units operating in the same markets as treated units may be
affected by acquisition through competitive spillovers, thereby violating the Stable Unit Treatment Value
Assumption (SUTVA). To address this concern, we implement a matching approach in Section C.4 that
matches each treated unit only with those from different markets. Moreover, Table OA-4 presents results
based solely on small acquisitions—those involving less than 10% of market capacity and thus unlikely
to generate significant spillovers. These estimates closely align with our main findings, suggesting that
spillover effects, on average, are likely not substantial enough to impact our estimates.

35When estimating the effects of acquisition on one subsample of acquired units, we exclude the other acquired
generators from the regression rather than grouping themwith the never-acquired units so that they are not
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Table 2: Effects of Acquisitions on Generator Productivity

All
Acquisitions

Types

All
Acquisitions

Types

All
Acquisitions

Types

All
Acquisitions

Types

Subsidiary
and Parent
Changes

Only
Parent
Changes

(1) (2) (3) (4) (5) (6)

Dependent Variable: Log of Efficiency

Pre-acquisition (1 Year) 0.002 0 -0.003 -0.003 -0.002 -0.007
(0.004) (0.003) (0.003) (0.003) (0.005) (0.003)

Post-acquisition (1 Year) 0.018 0.015 0.006 0.006 0.015 -0.01
(0.006) (0.006) (0.005) (0.005) (0.007) (0.005)

Post-acquisition (2 Years) 0.035 0.034 0.02 0.02 0.039 -0.003
(0.009) (0.008) (0.007) (0.007) (0.01) (0.007)

Post-acquisition (3 Years) 0.039 0.036 0.02 0.02 0.049 -0.008
(0.011) (0.01) (0.009) (0.009) (0.012) (0.007)

Ambient Temp. & Humidity X X X X X X
Unit & Week FE X X X X X X
State by Month FE X X X X X
Unit Characteristic by Month FE X X X X
Scrubber & Enviro. Prog. FE X X X

'2 0.707 0.726 0.752 0.753 0.763 0.764
# of Observations 1.838M 1.838M 1.838M 1.838M 1.494M 1.575M
# of Never-Treated Units 2311 2311 2311 2311 2311 2311
# of Treated Units 2046 2046 2046 2046 1089 1142

Note: This table presents the coefficient estimates of �1 , �2 , �3 , and �4 from estimating Equation (2). Columns
(4-6) present our baseline specification, where we allow for time trends to vary flexibly by unit characteristic
and includeweather, scrubber, and environmental program controls. Unit characteristic fixed effects include
installation year, fuel, technology, and unit capacity bins. The dependent variable is the logarithm of the
inverse heat rate. Standard errors are acquisition at the plant level. Table OA-3 presents the same analysis
results but for the subsample of acquisitions with both subsidiary and parent company changes.

changes at both the parent and subsidiary levels. By contrast, Column (6) includes own-
ership changes at only the parent level. The results suggest significant heterogeneity in
the efficiency change based on acquisition type. When only the parent owner changes,
the estimate is small and not statistically significant, whereas for both subsidiary and
parent ownership changes, it indicates an efficiency increase of 4.9%. One might expect
the efficiency effects to differ in these two cases because the subsidiary owners typically
exert direct control over power plant operations and personnel, whereas the parent owners
exercise indirect control through actions such as appointing directors, approving capital
expenditures, and setting performance targets (Akey and Appel, 2021). Furthermore,
changes at the parent level are more likely to be financial acquisitions, potentially driven
by motivations such as diversification and environmental policy considerations rather
than efficiency gains (Andonov and Rauh, 2023). Overall, our results highlight that effi-
ciency gains are influenced by the level of ownership change in the corporate structure
and whether the direct owner changes.

used as control units.
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Figure 5: Dynamic Effects of Acquisitions on Productivity
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Note: This figure presents the coefficient estimates of �̂B where B ∈ (−36, 36) from Equation (3) along with
95% confidence intervals. The dependent variable is the logarithm of the inverse weekly heat rate. The unit
of observation is generator-week. Standard errors are clustered at the acquisition level.

After demonstrating the impact of acquisitions on generator efficiency, we shift our
focus to the dynamic effects. Our goal is to determine the timing of efficiency changes
and to test for different pre-treatment trends between the acquired and other generators.
To this end, we estimate the change in efficiency around the time of acquisition using the
following specification:

H8C =
∑

B∈(−36,36)
�̂B�8(C′+B) + -8C + 8 + �C + &8C , (3)

where �8(C′+B) is a monthly indicator variable equal to 1 for generator 8 if it is acquired in
month C′, and zero otherwise. -8C includes the same control variables as before. Since
we find efficiency effects only in acquisitions where both the subsidiary and parent owner
change, we focus exclusively on those acquisitions hereafter.

The estimates of dynamic effects are shown in Figure 5. The pre-acquisition coefficients
are small and statistically insignificant, indicating similar productivity trends between
acquired and non-acquired generators before acquisition. The difference between these
groups remains small until five months post-acquisition, at which point the efficiency
of acquired plants begins to diverge. On average, the efficiency of acquired generators
increases by 5% eighteen months post-acquisition and then stabilizes. Not observing
efficiency gains immediately after acquisitions suggests that the new owner requires time
to implement efficiency improvements.
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To interpret our results on efficiency gain as causal, we rely on the assumption that an
acquisition creates a discontinuous change in power plant behavior, and any unobservable
efficiency trends that might lead to selection would be gradual enough to be distinguish-
able from the more discrete acquisition effect. Our data-rich setting offers key advantages
for this assumption to hold, as we observe production at short intervals and incorporate
flexible time trends that account for factors likely to influence selection into acquisitions.
Additionally, parallel trends holding three years pre-acquisition, coupledwith the produc-
tivity increase beginning just a fewmonths post-acquisition, further suggest that efficiency
gains are not likely caused by unobserved confounding factors.

Still, ownership changes are, of course, not random, and unobservable factors could
influence efficiencywithout acquisitions. If acquirers observe these factors, thatmight lead
to reverse causality, with acquisitions made in anticipation of efficiency gains. Although
we cannot eliminate all potential identification threats or account for every unobservable
factor, we conduct several robustness checks to ensure our results are robust to various
specification choices and identification threats. For example, one possible scenario is
that the acquirer observes that the target plant’s manager will retire soon and decides
to buy the plant, anticipating that the new manager will improve efficiency. To address
such a concern, we estimate the effects of manager changes on efficiency in the absence
of mergers and find no efficiency increase (Figure OA-10). In addition, we do a battery
of robustness checks, including matching estimators, the Callaway and Sant’Anna (2021)
estimator, estimationwith daily data, estimationwith net generation, weighted estimation,
and placebo tests with minority acquisitions. We find that the results are robust to these
specification choices.36 See Section 7 for a summary of robustness checks and Appendix F
for the corresponding results.

The results so far suggest that the efficiency of power plants improves following own-
ership changes. Yet, it is important to recognize that efficiency gains in power plants can
occur in various ways, not all of which are socially beneficial. For instance, generators
might improve their average efficiency by decreasing production and reducing ramping,
but this could lead to increased production from a high-cost generator. Alternatively, new
owners might operate generators more intensively, increasing their short-term efficiency
but potentially causing increased outages and declining long-term performance. In the

36We emphasize that our estimates report the average treatment effect on the treated (ATT), specifically the
efficiency effects of the proposed acquisitions. In our setting, the ATT, not the average treatment effect
(ATE), is the primary and policy-relevant object of interest because we want to learn the effects of actual
acquisitions, not hypothetical ones that would occur at random. However, this requires interpreting our
results with an understanding of the circumstances under which mergers are proposed and the existing
regulatory approach to merger review. As a result, our results do not directly allow for a counterfactual
analysis under specific changes in antitrust policy, such as those considered in Bhattacharya et al. (2024).
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Table 3: Effects of Acquisitions on Generator Performance Measures

Dep. Var. Total
Generation

Capacity
Utilization

Operating
Hours

Forced
Outages/Derates

Log CO2
Intensity

(1) (2) (3) (4) (5)

Pre-acquisition (1 Year) -169.221 0.003 -1.556 -0.003 0.006
(186.918) (0.004) (0.882) (0.012) (0.006)

Post-acquisition (1 Year) 192.18 0.006 -0.096 -0.026 -0.009
(267.302) (0.005) (1.137) (0.015) (0.007)

Post-acquisition (2 Years) 457.981 0.013 0.584 -0.034 -0.037
(346.979) (0.005) (1.427) (0.019) (0.01)

Post-acquisition (3 Years) 527.331 0.015 0.985 -0.063 -0.046
(383.545) (0.006) (1.593) (0.02) (0.013)

Ambient Temp. & Humidity X X X X X
Unit & Week FE X X X X X
Unit Characteristic by Month FE X X X X X
Scrubber & Enviro. Prog. FE X X X X X

Pre-acquisition Mean 7207.429 0.665 45.116 0.188 -0.419
'2 0.797 0.595 0.695 0.243 0.842
# of Observations 2.612M 1.494M 2.612M 0.705M 1.418M
# of Controls 2311 2311 2311 1383 2026
# of Treated Units 1089 1089 1089 409 977

Note: This table presents the coefficient estimates of �1 , �2 , �3 , and �4 from estimating Equation (2). Unit
characteristic fixed effects include state, installation year, fuel type, technology type, and unit capacity bins.
The unit of observation is generator-week. Standard errors are clustered at the acquisition level. The
number of observations in Column (4) is lower than the rest because the outage and maintenance data begin
in 2013. Some units in Column (5) are missing because their �$2 emissions always equal zero in the data.
The corresponding event study figure for each regression is reported in Figure OA-13. The units of the
dependent variables are, respectively: (i) MWh, (ii) a unitless ratio between 0 and 1, (iii) hours, (iv) a unitless
ratio between 0 and 1, (v) tons of carbon per MWh.

rest of this section, we provide additional analyses to gain insights into efficiency gains
while reserving amore formal investigation of underlyingmechanisms for the next section.

We examine the effect of ownership changes on various operational outcome mea-
sures, including generation, capacity utilization, operating hours, outages, and the carbon
intensity of production. Capacity utilization is defined as the average hourly production
as a proportion of capacity over a week, conditional on operation. Operating hours are
calculated as the total hours a unit is operational in a given week. For outages, which are
available between 2013 and 2021, we calculate the share of hours in a given week a unit
experiences a forced outage or derate. Finally, the CO2 intensity is calculated by divid-
ing CO2 emissions by generation. Using these outcome measures, we estimate the same
specification as in Equation (2).37

37We estimate the first four outcomes in levels rather than logarithms to account for the presence of zeros.
For generations, its distribution shown in Figure OA-6 indicates a thin upper tail, so a small number of
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The coefficient estimates in Table 3 indicate improvements in plant performance across
multiple dimensions. In Column (1), we find that acquired generators increase their
generation by 7.3% compared to the baseline following the acquisition, so the efficiency
improvements do not come at the expense of a decline in production.38 Columns (2-3)
suggest that generation increases at both the intensive and extensive margins. We observe
that acquired power plants increase capacity utilization by 1.5 pp and operating hours by
about 1 hour, though the latter is not statistically significant at the 5% level. The increase in
utilization can be viewed as another source of productivity gain, as the generator produces
more output conditional on the existing capital and labor stock, as argued in Braguinsky
et al. (2015). Moving to Column (4), the results indicate improvements in reliability, with
a 6.3 pp reduction in average probability of forced outages and derates, suggesting that
efficiency gains are achieved without compromising reliability. Finally, we note a 4.6%
decrease in CO2 intensity, mirroring the results on efficiency gains, as CO2 emissions are
inversely proportional to heat input.39

4.2 Discussion of Results

Our findings in this section suggest that acquisitions lead to a 5% average increase in effi-
ciency, but only when both subsidiary and parent owners change. Additionally, acquired
generators tend to increase production and utilization, reduce outages, and improve emis-
sion intensity. How large is the average 5% efficiency gain? To interpret this finding, it is
helpful to compare our estimates to the average within-generator productivity growth in
this industry, which is only 0.3% annually.40 Given this modest within-generator produc-
tivity growth, the efficiency gains due to ownership changes are particularly noteworthy.

It is important to note that our analysis focuses on short-run to medium-run efficiency
and performance, up to three years. Power plants are long-lived assets, and heat rate
efficiencies may come at the cost of increased mechanical stress or wear and tear, which
high-output units is not likely to drive the results. Nevertheless, we estimate the same specification using
a Poisson regression in Table OA-8 and find a 4.1% increase in generation and a 2.2% increase in capacity
utilization.

38This regression also offers indirect evidence that acquirers do not exert market power by withholding
the output of the acquired generators. Moreover, this result does not necessarily imply that total market
quantity increases. The capacity of acquired generators is typically small compared to the overall market,
as illustrated in Figure OA-2. Because short-term electricity demand tends to be inelastic, any unit-level
generation increase typically occurs due to changes in the unit’s position on the dispatch curve—either
through reduced downtime or a decrease in marginal cost—which reallocates generation from other units.

39The effects on the other pollutants—SO2 and NOG—are also similar, with both falling by roughly 6%, as
shown in Table OA-9 and Figure OA-14. This suggests that efficiency improvements do not come at the
expense of worsened environmental performance.

40Refer to Figure OA-11, which illustrates the average year-to-year within-generator productivity growth for
generators not involved in acquisitions. The productivity growth fluctuates around zero, averaging a 0.3%
annual increase over the sample period.
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might appear in a horizon longer than three years. These dynamics suggest that heat
rate efficiencies may not fully capture the long-term trade-offs related to productivity.
Although the reduced precision of the estimates limits our ability to examine very long
horizons, we report the 5-year post-acquisition estimates for ourmain results in the Online
Appendix.41 The results clearly show a persistent improvement in heat rate over a five-year
horizon, whereas for other outcomes, the patterns are similar to our baseline results but
estimated with less precision.

We also estimate the reduction in CO2 emissions attributable to acquisitions. As de-
tailed in Appendix B.3, our analysis assumes that efficiency gains begin after each unit’s
first acquisition and that their production levels remain unchanged post-acquisition. Un-
der these assumptions, we calculate a cumulative decrease of approximately 360 million
tons in CO2 emissions due to acquisitions from 2000 to 2023. This reduction is equivalent
to the savings from replacing 800 TWh of gas-fired electricity generation with renewables.

4.3 What Predicts Efficiency Gains: Heterogeneity Analysis

This section explores whether efficiency gains are associated with observable plant or
firm characteristics. While these findings do not establish causality, they help derive
insights applicable to other industries by documenting transaction characteristics that
could predict efficiency gains. For this estimation, we modify Equation (2) by interacting
treatment indicators with observable variables /8C :

H8C = �11{Pre-year 1} + �21{Post-year 1} + �31{Post-year 2} + �41{Post-year 3} + �̄11{Pre-year 1} × /8C+
�̄21{Post-year 1} × /8C + �̄31{Post-year 2} × /8C + �̄41{Post-year 3} × /8C + -8C + 8 + �C + &8C . (4)

We estimate this equation separately for a set of generator, firm, or transaction charac-
teristics that might be indicative of efficiency gains. In particular, we consider generator
capacity, generator age, whether the acquirer is a serial acquirer, acquirer size, andwhether
the acquisition is a cross-market acquisition. Details on the construction of these variables
are provided in Appendix B.42

Results, reported in Table 4, reveal that the efficiency increase is 3.4 pp larger when the
generator capacity is higher than the median of acquired generator capacity. This suggests
that acquirers might have stronger incentives to improve efficiency in larger plants, where
the returns on such improvements are potentially higher. We do not find any significant

41See Table OA-11 and Figure OA-16 for heat rate estimates, and Figure OA-17 for the other measures.
42We also estimate the heterogeneous effects in a single regression that includes all interaction terms and
report the estimates for the 10 most common acquisition types based on these observables in Table OA-10.
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Table 4: Heterogeneous Effects of Acquisitions on Productivity

Interaction Var. (Z) Capacity
>Median

Age
>Median

Serial
Acquirers

Firm Size
>Median

Cross-Market
Acquisitions

(1) (2) (3) (4) (5)

Dependent Variable: Log of Efficiency

Post-acquisition (1 Year) × Z 0.023 -0.001 0.014 0.012 0.002
(0.011) (0.012) (0.012) (0.012) (0.012)

Post-acquisition (2 Years) × Z 0.035 0.004 0.059 0.049 -0.021
(0.015) (0.016) (0.016) (0.017) (0.015)

Post-acquisition (3 Years) × Z 0.034 -0.011 0.058 0.041 -0.039
(0.018) (0.02) (0.02) (0.02) (0.019)

Ambient Temp. & Humidity X X X X X
Unit & Week FE X X X X X
Unit Characteristic by Month FE X X X X X
Scrubber & Enviro. Prog. FE X X X X X

'2 0.763 0.763 0.763 0.763 0.763
# of Observations 1.494M 1.494M 1.494M 1.494M 1.494M
# of Units 2311 2311 2311 2311 2311
# of Acquisitions 1089 1089 1089 1089 1089

Note: This table presents the coefficient estimates of �̄2 , �̄3 , and �̄4 from estimating Equation (4). Each
column reports results from a different regression by varying the interaction variable, /. Unit characteristic
fixed effects include state, installation year, fuel type, technology type, and unit capacity bins. The unit of
observation is generator-week, and the dependent variable is the logarithm of the inverse weekly heat rate.
Standard errors are clustered at the acquisition level. Appendix B.4 provides details about the heterogeneity
variables. See Table OA-5 for the full set of estimates, including �1 through �4 and �̄1 through �̄4.

differential effect with respect to generator age, as shown in Column (2). Next, we turn
to firm characteristics: whether the acquirer is a serial acquirer and acquirer size (total
owned pre-acquisition fossil fuel generation capacity). The results, reported in Columns
(3-4), indicate that efficiency improvements are 5.8 pp higher when the acquirer is a serial
acquirer and are 4.1 pp higher when the acquirer firm is larger than the median acquirer.
These findings suggest that a firm’s experience in plant operation and acquisitions could
explain efficiency gains. They also align with and complement the findings of Hortaçsu
et al. (2019) that large powerfirms aremore sophisticated in bidding inwholesale electricity
market auctions.43 Finally, in Column (5), we explore whether the efficiency effects differ
for cross-market acquisitions. We categorize a generator acquisition as a cross-market
acquisition if the acquirer owns no fossil fuel generation capacity in the acquisitionmarket
(defined as a power control area). We find that cross-market acquisitions exhibit 3.9 pp
lower efficiency gains compared to within-market acquisitions.

43Hortaçsu et al. (2019) explore a counterfactual scenario inwhich large firms acquire smaller ones and improve
their bidding operations. The evidence presented in this paper essentially validates the counterfactual
hypothesis proposed by Hortaçsu et al. (2019). For further discussion, see Section 6.2.
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We note that the heterogeneous effects observed in this analysis could arise from the
types of acquisitions that select into each category or from the inherent characteristics
of those acquisition types. For example, the lower efficiency effects in cross-market ac-
quisitions may occur because merging parties do not require strong efficiency gains to
propose the merger, as regulators are less likely to challenge it given the absence of market
power concerns. Alternatively, cross-market mergers might inherently lack the synergies
or firm-specific specializations that typically occur within a single market, resulting in
lower efficiency effects. Although our results in this section do not identify the exact
mechanisms, the following section provides further insights into the specific sources of
efficiency gains.44

5 Mechanisms

This sectionproposesmechanismsof efficiencygains, tests themempirically, andquantifies
their role using amodel of production in power plants. The key finding is that themajority
of efficiency gains come from increasing productive efficiency within a generator.

5.1 Mechanisms of Efficiency Improvements

Two mechanisms could explain the estimated efficiency gains: (i) productive efficiency
and (ii) dynamic efficiency. We first define these mechanisms and then develop a testable
prediction for each one.

Productive Efficiency. Productive efficiency arises when the plant’s new owner imple-
ments operational processes or invests in new equipment that improves efficiency. This
mechanism occurs solely through increasing the generator’s efficiency, enabling it to pro-
duce more with less fuel for a given production level. Therefore, it is independent of
changes in the ramp profile or synergies with other plants in the same market. As illus-
trated in Figure 6(a), an implication of productive efficiency is a lower heat rate curve,
leading to the following testable prediction:

Prediction 1: If acquirers improve productive efficiency, the generator’s heat rate curve

44Another important potential source of heterogeneity is market and state characteristics, as we showed that
most acquisitions happen in organizedmarkets and deregulated states. To analyze this, TableOA-6 examines
heterogeneity based on three factors: (i) units operating in organizedmarkets (ISO), (ii) units located in states
with high acquisition activity (relative to the median), and (iii) units in deregulated states. We find that if
a unit is in an ISO or in a deregulated state, the efficiency impact is about 4-5% larger. Additionally, the
efficiency impact is 1.8% larger in high acquisition activity states (though not significant at the 5% level).
These results stress the importance of regulation and market structure in this industry, as markets and
restructuring are associated with increased acquisition activity, which has a higher impact on efficiency.
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Figure 6: Illustration of Mechanisms of Efficiency Gains
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Note: This plot illustrates the two mechanisms of efficiency gains studied in Section 5.1. Panel (a) shows
efficiency gains through productive efficiency, where the generator’s heat-rate curve shifts downward, pro-
ducing greater efficiency at every capacity level. Panel (b) shows the dynamic-efficiency mechanism, where
the heat-rate curve remains unchanged, but the production distribution becomesmore concentrated because
ramping declines.
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shifts down.

Dynamic Efficiency. Dynamic efficiency arises from changes in the generation level over
time. As discussed in Section 2.3, a key aspect of power generation is that efficiency is
influenced by both the level of production and changes in production. Generators that
experience significant production shifts incur ramp costs, which reduce overall efficiency.
Power plants must manage these ramp costs due to the stochastic nature of electricity de-
mand, which requires coordination between trading desk personnel responsible for sub-
mitting supply bids and plant operators overseeing production. Jha and Leslie (2023) notes
that uncertainty in residual demand or mismanagement in production can significantly
increase ramp costs.45 Figure 6(b) illustrates the dynamic efficiency effect, showing a more
concentrated production distribution and, therefore, lower ramp costs post-acquisition. A
testable hypothesis derived from this mechanism is:

Prediction 2: If acquirers improve dynamic efficiency, the variation of generation goes
down.

5.2 Quantifying Productive Efficiency Using Production Functions

We start by testing for productive efficiency using an empirical strategy guided by Predic-
tion 1. In particular, we estimate a production function for generators, where we model
heat rate with the following equation:

H8C = 58�(&8C , '8C , -8C) + &8C , (5)

where H8C = log(Fuel8C/&8C) is log heat rate, &8C is production of generator 8 at hour C and,
'8C is the ramp rate defined as the hourly change in production, (&8C − &8C−1)/�8 , where
�8 denotes generator capacity. The other variables, -8C , include ambient temperature and
ambient humidity. Subscript 8 denotes the generator, C denotes the hour, and � indicates
the pre- or post-acquisition period.

As described in Bushnell and Wolfram (2005), this form of heat rate modeling can
be micro-founded from a Leontief electricity production function. To see this, assume
electricity is produced according to the following production function:

&8C = min(68(�8C , '8C , -8C)&8C , ℎ8( 8C , !8C)$8C), (6)

45One source of dynamic efficiency could be portfolio effects, where a firm operating multiple power plants
in the same market could achieve portfolio-level efficiencies through ramp synchronization and efficient
production allocation. Separating this mechanism from dynamic efficiency is challenging; therefore, we
consider it part of dynamic efficiency effects.
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where �8C ,  8C , !8C are fuel, capital and labor inputs, &8C is unobserved, time-varying
fuel efficiency, -8C are observable factors affecting fuel efficiency, and $8C is total factor
productivity. This Leontief production function, under a cost minimization assumption,
implies that &8C = 68(�8C , '8C , -8C)&8C . Assuming 68(·) is strictly monotone in �8C , it can be
inverted to write �8C = 6−1

8
(&8C , '8C , -8C)&8C . Dividing both sides by &8C and taking the

logarithm yields the functional form in Equation (5).
Importantly, the production function in Equation (5) is indexed by 8 and �, where �

equals 1 in the post-acquisition periods and 0 in the pre-acquisition periods. Therefore,
we estimate a generator-specific production function separately for the pre- and post-
acquisition periods, with 580 representing the production technology of generator 8 before
the acquisition and 581 representing it afterward.

It is worth highlighting the benefits of estimating generator-specific production func-
tions. The form in Equation (5) accommodates heterogeneity in production technology
across generators through the generator-specific and time-varying production function 58�.
Since 58� captures productivity differences across generators and over time, the production
function literature generally interprets &8C as an ex-post shock (or measurement error) to
output that is orthogonal to inputs. Thus, our model is likely to be robust to transmission
bias, which creates a correlation between productivity level and inputs (Marschak and
Andrews, 1944; Ackerberg et al., 2015). Furthermore, through a time-varying production
function, we model the effects of acquisitions not only on the productivity level but also
on the production technology.

We can estimate a flexible production model due to the availability of hourly data, as
it provides a large number of observations for each generator, even within a limited time
frame around acquisitions. This highlights the advantages of a data-rich environment,
contrasting with the production function literature, which often imposes an industry-level
functional form due to data limitations (De Loecker and Syverson, 2021).

We use a nonparametric local polynomial regression to estimate the functions 580 and
581 for each acquired generator as detailed in Appendix B.2. To estimate 581, we use three
years of post-acquisition data, while 580 is estimated using data from three years prior to
the acquisition. We thenmeasure the changes in productivity by calculating the difference
between the post-acquisition and pre-acquisition heat rate curves for each generator and
then averaging these differences. Specifically, we calculate:

Δ�(&) = 2?>BC(&) − 2?A4(&) =
1

#02@

#02@∑
8=1

(
581(&, '̄8 , -̄8) − 580(&, '̄8 , -̄8)

)
,
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Figure 7: Estimates of Average Heat Rate Curves
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Note: This figure shows estimates of average heat rate curves three years before acquisition and three years
after acquisition. Panel (a) shows this for the acquired generators group, and Panel (b) shows this for the
control group constructed by a matching procedure detailed in Section C.4. The treated group sample is
the same as Column (5) of Table 2. Figure OA-12 reports the confidence band for the difference between the
two heat rate curves obtained from a bootstrap procedure. Further details of the estimation procedure are
provided in Section B.2.

where #02@ represents the number of acquired generators and& ∈ [10, 100] is the produc-
tion level as a percentage of capacity.46 The terms 2?A4(&) and 2?>BC(&) denote the average
heat rate at production level & before and after acquisition, respectively. The control
variables are set to '̄8 and -̄8 , which is 0 for ramp rate, and the pre-acquisition medians
for temperature and humidity to isolate the effects of post-acquisition changes in these
variables. Thus, Δ�(&), known as the average structural function (Blundell and Powell,
2003), represents the change in the average heat rate at each production level controlling
for ramp and weather conditions.

We also construct a control group by matching each acquired generator to those never
acquired in a differentmarket based on capacity, age, fuel, and technology type, as detailed
in Appendix B.2. We then apply the same estimation procedure to these control generators
to quantify changes in the heat rate curves without acquisitions.

Figure 7(a) reports 2?>BC(&) and 2?A4(&) for the acquired generators, while Figure 7(b)
displays these curves for the control group. Comparing pre- and post-acquisition heat rate
curves reveals a downward shift in the heat rate curve for acquired generators at every
production level, with larger effects near the generator’s capacity. In contrast, the control
group’s heat rate curve remains stable.47 We also calculate a confidence band for the
difference between the pre- and post-acquisition heat rate curves of acquired generators,

46The utilization values start at 10% because production at lower capacity levels is rare and tends to yield noisy
estimates.

47The slight shift in the heat rate curve of control generators is consistent with the within-generator aggregate
efficiency growth documented in Figure OA-11.
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as presented in Figure OA-12, confirming that the difference is statistically significant.
These results provide direct evidence that the acquirers increase the productive efficiency
of the acquired generators by improving their heat rates.

Having estimated the heat rate curves, we can now quantify the total efficiency gain
from the downward shift in the heat rate curve. To do this, we integrate the difference
between the post- and pre-acquisition curves as follows:

Δ =
1

#02@

#02@∑
8=1

∫ (
581(&, '̄8 , -̄8) − 580(&, '̄8 , -̄8)

)
3�80(&),

where �80(&) represents the pre-acquisition production distribution of generator 8. This
calculation maintains the production distribution from the pre-acquisition period and
quantifies efficiency gains solely from changes in the heat rate curve. The result indicates a
3.9% (CI: 2.9%, 4.8%) increase in efficiency, accounting for approximately three-quarters of
the total efficiency gain observed in the event study. Therefore, most of the efficiency gain
stems from increased productive efficiency attributable to the acquirers’ improvements to
the generator’s internal operations.

5.3 Quantifying Dynamic Efficiency Mechanism

Wenext assess the role of dynamic efficiency. Prediction 2 posits that increaseddynamic ef-
ficiency results in reduced production variability post-acquisition. To test this, we consider
three measures of production variability: the CoV of heat rate, the CoV of utilization, and
the number of ramps.48 These metrics collectively provide insights into how acquisitions
influence the production dynamics of a generator.

We estimate our baseline regression using these measures as outcome variables and
report the estimates in Table 5. Post-acquisition, we observe significant reductions in all
measures of production variability. Specifically, the CoV of heat rate decreases by an
average of 0.029 from a pre-acquisition mean of 0.235, and the CoV of utilization drops
by 0.029 from a pre-acquisition mean of 0.364. We also find a significant decline in the
number of ramps, showing a 12% decrease from the pre-acquisition level.

We can also quantify the contribution of the dynamic efficiency effect using the pro-

48We define a ramp event as a change in production where the output increases from below 20% to above 80%
of the plant’s capacity or decreases from above 80% to below 20% within a period of less than three days.
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Table 5: Regression Results on Dynamic Efficiency Mechanism

Dep. Var. CoV of Heat Rate CoV of Utilization Number of Ramps
(1) (2) (3)

Pre-acquisition (1 Year) -0.001 0 -0.059
(0.005) (0.004) (0.1)

Post-acquisition (1 Year) -0.016 -0.015 -0.265
(0.007) (0.005) (0.138)

Post-acquisition (2 Years) -0.026 -0.026 -0.369
(0.008) (0.008) (0.159)

Post-acquisition (3 Years) -0.029 -0.029 -0.435
(0.009) (0.008) (0.167)

Ambient Temp. & Humidity X X X
Unit & Week FE X X X
Unit Characteristic by Month FE X X X
Scrubber & Enviro. Prog. FE X X X

Pre-acquisition Mean 0.235 0.364 3.499
'2 0.195 0.528 0.452
# of Observations 1.476M 1.476M 1.476M
# of Never-Treated Units 2309 2309 2309
# of Treated Units 1089 1089 1089

Note: This table presents coefficient estimates of �1 , �2 , �3 , and �4 in Equation (2) from a regression of the
CoV of heat rate, CoV of utilization, and number of ramps on treatment dummies. The CoVs are calculated
from hourly data every week; thus, the regressions use weekly data. Unit characteristic fixed effects include
state, installation year, fuel type, technology type, and unit capacity bins. The number of observations in
Columns (1-2) is smaller because CoV cannot be calculated for some weeks due to a small sample size.
Figure OA-15 reports each regression’s corresponding event study figure. Standard errors are clustered at
the acquisition level.

duction model developed in Section 5.2 as follows:

1
#02@

#02@∑
8=1

( ∫
581(&, ', -̄8)3�81(&, ') −

∫
581(&, ', -̄8)3�80(&, ')

)
,

where �81(&, ') and �80(&, ') denote the distributions of production and ramp rate post-
and pre-acquisition. This calculation essentially poses the following counterfactual ques-
tion: What would be the efficiency difference if the generator had the post-acquisition
heat rate curve ( 581) in both the pre- and post-acquisition periods while only changing the
production profile from �80 to �81? In other words, it controls for production technology
and captures efficiency effects only due to changes in the production distribution. We
caveat that this calculation reflects both changes in production variability and the effect
of shifting output toward the plant’s efficient scale, even though the latter is not strictly
a dynamic efficiency. This calculation yields an efficiency gain of 1.7% (CI: 0.0%, 4.2%),
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corresponding to around 30% of the total effect.49
It is important to recognize that improvements in dynamic efficiency can arise from

various factors. One potential factor is increased productive efficiency: a marginal gen-
erator in the dispatch curve that becomes more efficient after acquisition may operate
infra-marginally more often, leading to reduced ramping. Another explanation could be
decreased outages and forced maintenance, which would reduce ramping between in-
active and operational modes. Furthermore, the acquirer may change the power plant’s
operations or improve coordination between the bidding desk and plant operators. Al-
though our analysis does not separate the impact of these individual sources, it highlights
the importance of ramping costs in improving power plant efficiency.

The analysis in this section focused only on marginal cost gains from fuel efficiency.
Acquisitions may also reduce fixed costs or result in non-fuel cost savings. For example,
decreased ramping can reduce wear and tear, thus lowering maintenance expenses and
prolonging the lifespan of capital. Additionally, acquisitions may generate economies of
scale in maintenance and bidding (Haldi andWhitcomb, 1967; Hortaçsu and Puller, 2008).
Although these fixed cost efficiencies could be large, they are generally not considered
in merger analysis (Röller et al., 2006) and cannot be accurately measured with our data.
Therefore, they fall outside the scope of this paper.

6 How Do Acquirers Improve Productive Efficiency?
So far, our analysis hasdemonstratedefficiency improvements followingownership changes,
mainly due to increased productive efficiency. This result raises a natural follow-up ques-
tion: How do acquirers achieve these efficiency gains? We will now address this question.

6.1 Productive Efficiency: Operational Improvements or Investment?

In Section 2.3, we proposed two potential mechanisms to improve a power plant’s produc-
tive efficiency. The first mechanism involves implementing low-cost operational improve-
ments, such as personnel training, efficient production management, best practices, and
improvements in repairs and maintenance. Such improvements would indicate a knowl-
edge transfer from the acquirer to the acquired plant. The second mechanism entails
high-cost capital investments by acquirers to upgrade existing equipment, suggesting that
the previous owner faced credit constraints or lacked the incentives to make efficiency-
improving capital investments.

Disentangling these two sources is useful not only for understanding the nature of

49The productive and dynamic efficiency effects do not sum to exactly 100% due to noise in estimation.
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Figure 8: Effects of Acquisitions on Manager Change
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efficiency gains but also for informing antitrust policy. For efficiencies to be recognized in
merger evaluations, they must be merger-specific.50 Efficiencies from relaxing capital con-
straints would not be merger-specific, as they could also be attained through alternative
means, such as raising new capital or minority investment. In contrast, knowledge trans-
fers can be considered merger-specific because they involve exchanging organizational
knowledge and intangible capital between the merging entities, a process that is unlikely
to occur outside of a merger (Atalay et al., 2014).

We aim to disentangle the sources of productive efficiency improvements using addi-
tional data on manager changes, capital investments, non-fuel inputs, and maintenance.
Specifically, we investigate whether power plants undergo personnel changes and increase
capital expenditures post-acquisition. The former would suggest operational changes,
whereas the latter would provide evidence for the role of capital investment. Moreover,
by analyzing non-fuel inputs and maintenance, we evaluate the possibility of substituting
fuel with other inputs to achieve efficiency gains.

We use the dynamic difference-in-differences specification in Equation (3) to explore
whether acquired plants experience more managerial changes than non-acquired plants.
The dependent variable is set to 1 if the power plant manager is replaced in a given month
and 0 otherwise. Results shown in Figure 8 reveal a significant increase in managerial
changes post-acquisition: acquired plants are 15 pp more likely to experience a change

50The 2023 Horizontal Merger Guidelines state, “the merger will produce substantial competitive benefits that
could not be achieved without the merger under review”. (DOJ and FTC, 2023)
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within one month and 45 pp within two months, relative to the non-acquired plants.
Using LinkedIn data, we also analyze the qualifications of new managers and find that
new managers are 5.58 pp (s.e.=2.51) more likely to hold a master’s degree and 4.26 pp
(s.e.=1.79) more likely to have a bachelor’s degree than those involved in changes without
mergers.

The results on manager changes raise an important question: Can the efficiency gains
be solely attributed to manager changes? To explore this, we estimate the efficiency effects
separately for acquisitions with and without manager changes (reported in Table OA-7)
and for manager changes without acquisitions (reported in Figure OA-10). The findings
indicate that manager changes without acquisitions have no significant efficiency effects,
whereas acquisitions without manager changes still lead to large efficiency improvements.
Although these results are not conclusive on their own, they suggest thatmanager changes
alone are not sufficient to generate efficiency gains, and firms cannot achieve efficiencies
simply by replacing their manager. Our interpretation is that manager turnover indicates
significant operational changes, and it must be accommodated by organizational changes
to generate efficiency gains. These insights echo the common findings in the literature on
the role of management practices and organization in explaining productivity differences
(Bloom and Van Reenen, 2010; Macchiavello and Morjaria, 2022).51

Next, we examine the changes in capital expenditures and non-fuel inputs after acqui-
sitions, acknowledging that this analysis relies on a different and more limited dataset.
Specifically, data on capital expenditures, number of employees, and non-fuel intermedi-
ate input costs are available only for a subset of plants reporting to FERC, and they are
annual, unlike the hourly heat rate data. Therefore, while these findings provide useful
insights, they warrant cautious interpretation given these data limitations.

The coefficient estimates in Table 6 suggest that acquired plants do not increase capital
expenditures. The coefficient estimate for capital expenditures is -24%, but it is imprecise
due to the small sample size. Nevertheless, it is still possible to reject the hypothesis
that capital expenditure increases by more than 5% at the 10% significance level.52 The
estimates for non-fuel materials costs and labor in Columns (2-3) are also noisy, but they

51To further understand the role of managerial changes in efficiency gains, Table OA-12 reports the additional
increase in the probability of a manager change across different types of acquisitions, using the observable
characteristics from the heterogeneity analysis in Section 4.3. This analysis suggests that the probability of a
managerial change tends to be positively correlated with the likelihood of observing higher efficiency gains,
providing suggestive evidence for the interpretation that managerial changes signal operational changes in
the plant.

52Further evidence against the capital expenditure hypothesis comes from the timing of efficiency gains and
operating hours. Significant capital investments typically require more than five months to implement and
usually involve considerable downtime, neither of which we observe.
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Table 6: Effects of Acquisitions on Non-fuel Costs and Maintenance

Dep. Var. Log Capital
Expenditures

Log Non-fuel
Costs

Log Number
of Employees

Maintenance
Probability

(1) (2) (3) (4)

Pre-acquisition (1 Year) -0.214 -0.335 -0.22 -0.013
(0.161) (0.4) (0.111) (0.009)

Post-acquisition (1 Year) -0.052 -0.112 -0.326 -0.024
(0.163) (0.211) (0.124) (0.012)

Post-acquisition (2 Years) -0.236 0.095 -0.06 -0.038
(0.17) (0.267) (0.136) (0.014)

Post-acquisition (3 Years) -0.236 -0.304 -0.003 -0.048
(0.176) (0.297) (0.156) (0.014)

Ambient Temp. & Humidity X X X X
Unit & Week FE X X X X
Unit Characteristic by Month FE X X X X
Scrubber & Enviro. Prog. FE X X X X

Pre-acquisition Mean - - - 0.096
'2 0.896 0.704 0.946 0.15
# of Observations 0.018M 0.018M 0.017M 0.705M
# of Controls 1472 1643 1553 1383
# of Treated 176 203 148 409

Note: This table presents the coefficient estimates from estimating the effects of acquisitions on capital
expenditures, non-fuel intermediate input costs, number of employees (all observed at the annual frequency),
and maintenance (observed at the weekly frequency). Standard errors are clustered at the acquisition level.
Note that the capital expenditure information is available only for major electric utilities as defined by the
FERC.

similarly provide evidence against large increases. These findings suggest that efficiency
increases do not come from capital expenditures; instead, operational improvements are
the key drivers of increases in productive efficiency.

In our final analysis, we examine howmaintenance changes after acquisition, as it could
also be viewed as an input in electricity generation. Moreover, maintenance is important
in its own right to understand plant performance because decreased forced maintenance
might indicate better equipment management by new owners, which would increase
production, as the generator would go offline less often for maintenance. We analyze
the probability that a generator undergoes maintenance in a given week. The results in
Column (4) suggest that maintenance probability decreases after acquisitions, indicating
that more maintenance duration is not the primary means of improving efficiency.
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6.2 Who Acquires Whom: Productivity of Acquirer and Target Firms

This section estimates the productivity levels of acquirer and target firms to determine
whether (i) acquirers are more productive than target firms and (ii) acquirers have a com-
parative advantage in utilizing acquired assets. This analysis not only provides evidence
on the mechanisms of efficiency improvements but also offers insights into the broader
economic implications of ownership changes. Acquisitions, as a key mechanism of re-
source reallocation among firms, can lead to allocative efficiency gains in the economy
by transferring assets from less productive to more productive firms or enabling better
utilization of these assets.

We modify our baseline specification in Equation (2) by including three sets of indi-
cator variables to estimate the efficiency levels of three distinct asset types: (i) acquired
generators, (ii) the acquirer’s existing generators not involved in the transaction, and (iii)
the target’s existing generators not involved in the transaction. Formally, we estimate the
following specification:

H8C =

3∑
9=1

�191{Pre-year, 1-3} 9 + �291{Post-year, 1-3} 9 + -8C + �C + &8C , (7)

where 9 represents the asset types listed above and H8C is log productivity.53 This specifi-
cation estimates the efficiency of the target’s assets, acquirer’s assets, and acquired assets
around the time of acquisition. Note that this regression does not include generator fixed
effects, as we aim to estimate level differences in productivity rather than changes. How-
ever, we account for generator characteristics by controlling for generator age, capacity,
technology, fuel type, and scrubbers. We restrict the sample to transactions where both
the acquirer and target own generators not involved in the transaction.54 We normalize
the efficiency of the acquirer’s generators to zero in the pre-acquisition period.

Figure 9 presents the estimated coefficients for three groups: the acquirer’s existing
assets (in red), the target’s existing assets (in blue), and the acquired assets (in black). First,
we observe that acquisitions do not significantly impact the productivity of existing assets,
with the productivity levels of both acquirer and target remaining stable around the time
of acquisition. Notably, however, acquirers have a productivity level 1.7% higher than
target firms. As a result, acquisitions reallocate assets from less to more productive firms,
although the difference in productivity is relatively modest.

53For the acquired plants, we exclude the first year after acquisition to estimate the long-term effects of
acquisitions.

54This subset accounts for 67% of all acquisitions.
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Figure 9: Efficiency of Acquirer and Target Firms
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Note: Regression estimates from Equation (7). Red, blue, and black bars show the change in the acquirer’s
existing assets, the target’s assets, and the acquired assets, respectively. Error bars indicate 95% confidence
intervals. The efficiency of the acquirer’s assets in the pre-acquisition periods is normalized to zero. Standard
errors are clustered at the plant level.

Next, we compare the productivity of acquired plants with the acquirer’s and target’s
existing plants. A key observation is that target firms tend to sell their underperforming
assets: the sold plants are 3% less productive than other plants in the target’s portfolio.
What happens to these underperforming plants after acquisition? The efficiency of these
plants improves by 5%, reaching the same efficiency level as the acquirer’s other plants.

The findings in this section indicate that high-productivity firms buy underperforming
assets of low-productivity firms and make the acquired asset as productive as its existing
assets after the acquisition. This pattern corroborates our earlier conclusion that efficiency
improvements come primarily from operational improvements through knowledge trans-
fers. Furthermore, these results also provide empirical evidence about the theories of
merger gains in the literature. One common theory, the Q theory of mergers (Jovanovic
and Rousseau, 2002), posits that there are inherent productivity differences between firms,
and acquisitions transfer assets from low- to high-productivity firms. This implies a “high-
buys-low” pattern. According to another theory proposed by Rhodes-Kropf and Robinson
(2008), assets and firms could be complementary, with firms having varying degrees of
capability in operating different assets. This implies a “like-buys-like” pattern. Our results
lend support to both theories ofmergers by demonstrating that assets are allocated to firms
with relative and absolute advantages in utilizing them.

This analysis also serves as an important input for merger analysis, particularly in
determining post-merger marginal costs for firms with different efficiencies (Farrell and
Shapiro, 1990). A key question in this context is the transferability of efficiency between
firms, as prior research has highlighted that organizational challenges in integrating firms
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can hinder the transfer of productivity-improving practices (Weber and Camerer, 2003;
Malmendier et al., 2018). Our empirical analysis contributes to this question by providing
evidence that efficiency could be transferable in the context of power plant acquisitions.

A natural question arising from this section’s findings and the paper’s overall conclu-
sions is why previous owners do not implement the operational improvements. Given
that our study is an industry-level analysis rather than a firm-level case study, we cannot
provide a definitive answer to this question. Nonetheless, it is important to note that
our results align with substantial evidence of persistent firm-level productivity differences
in various industries (Syverson, 2011; Gibbons and Henderson, 2012). We interpret our
evidence to suggest that some firms develop intangible capital over time for more efficient
power plant operation, and this within-organization knowledge is transferable through
ownership changes. This can occur in many forms, for example, by transferring asset-
specific expertise (Hortaçsu and Syverson, 2007; Atalay et al., 2014), operational strategies
(Eliason et al., 2020), or managerial practices (Bloom et al., 2012). Therefore, acquisitions
provide a channel for spreading intangible capital across firms, which is less likely to be
achieved through other means.55

7 Robustness Checks
In this section, we explore the robustness of our findings by considering alternative specifi-
cations. Detailed descriptions of this analysis and the corresponding results are provided
in Appendix C and Appendix F.
Estimation Frequency: Our main analysis uses weekly data to estimate the effects of
acquisitions, as this aggregation reduces noise in the hourly data and is computationally
convenient. To assess the robustness of our findings, we conduct the same estimation
using daily frequency. The results, reported in Figure OA-18, remain consistent at the
daily frequency, although there is a slight increase in standard errors.
Acquisition Sample: In our baseline specification, we focus only on each generator’s first
acquisition to avoid using data from post-acquisition periods. As a robustness check, we
extend our analysis to include all acquisitions of generators during the sample period. The
findings, reported in Column (4) of Table OA-13, Figure OA-20, and Table OA-16, suggest
a slightly smaller effect than our baseline result, indicating that the efficiency gains may
be lower with subsequent acquisitions.

55This source of efficiency gains differs from the technology-related synergies studied in the merger literature.
Some examples include economies of density in the ride-hailing industry (Rosaia, 2020), congestion-related
efficiency in the telecommunications industry (Elliott et al., 2025), and reduction in shipping distance in the
beer industry (Miller and Weinberg, 2017).
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Weighting by Capacity: Our main specification estimates the average effects without
accounting for the varying capacity sizes of acquired generators. In a robustness check,
we weigh observations by capacity, which provides a more accurate measure of total cost
savings. The results from this specification suggest similar efficiency effects, indicating
that the evidence does not primarily come from small units (Column (2) of Table OA-13,
Table OA-15, and Figure OA-23).
Estimation with Net Generation: While our primary analysis uses gross generation due
to its high-frequency availability, we also conduct a robustness check using net generation
data from EIA. The results, reported in Figure OA-22, Column (3) of Table OA-13, and
Table OA-17, are broadly similar to our main findings, though the effect is slightly lower.
Estimation after 2010: A potential concern in our analysis is the impact of deregulation,
which overlaps with our sample period for a few years in the early 2000s. Although we
exclude ownership changes corresponding to divestitures, we conduct a robustness check
by restricting our analysis to acquisitions after 2010. The results are reported in Column
(3) of Table OA-13 and Figure OA-19.
Matching Difference-in-Differences: For the matching specification, we use the sample
of first acquisitions that experience both subsidiary and parent change. We match each
acquired generatorwith fivenever-acquired comparable units. For eachunit, wefirst create
a pool of potential control units that share the same fuel type and technology but operate
in different markets (ISO) to prevent spillover effects. We then match these generators
based on capacity and age using a least-squares distance metric, with weights inversely
proportional to each variable’s standard deviation. Results are presented in Column (5) of
Table OA-13 and Figure OA-22.
Staggered Difference-in-Differences: Recent developments in econometrics suggest that
the two-way fixed effects difference-in-differences approachmight produce a weighted av-
erage of all potential combinations of pairwise difference-in-differences estimators, where
the control unit in the pair could be a unit that is treated at a different time (Callaway and
Sant’Anna, 2021; Goodman-Bacon, 2021). To address this issue, we estimate cohort-specific
treatment effects using the Callaway and Sant’Anna (2021) method. The results, reported
in Figure OA-21, are similar to our baseline results.
Placebo Tests: We use minority acquisitions as a placebo test against potential unobserv-
able characteristics driving both acquisitions and efficiency changes. If such unobservables
exist, they would likely influence minority acquisitions as well. The results, reported in
Column (6) of Table OA-13 show no change in power plant efficiency following minority
acquisitions.
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8 Concluding Remarks
By reallocating resources between firms, acquisitions affect a significant portion of the
economy. Despite their importance, there is limited systematic evidence of their effects on
productivity. This study provides detailed empirical analyses of the efficiency effects of
ownership changes by examining a large sample of power plant acquisitions between 2000
and 2023 in the US.

Our empirical results can be summarized into three principal findings. First, acquired
plants experience, onaverage, a 2% increase in fuel efficiencywithinfive to eighteenmonths
after acquisitions. This effect is more pronounced, rising to 5%, for acquisitions involving
changes at both the subsidiary and parent owner levels. Second, acquired generators tend
to demonstrate improved operational performance: they produce more, increase their
capacity utilization, and decrease their outage frequency and emission intensity. Finally,
our evidence suggests that the new owners improve productivity by changing operational
processes rather than by making capital investments.

Our findings draw on a large number of acquisitions in the power generation industry
and high-frequency data on physical productivity. Using physical measurements in this
homogeneous product setting allows us to disentangle the productivity effects from other
potential merger effects, such as changes inmarket power, buyer power, or product quality.
With high-frequency data, we can treat mergers as discrete events and compare generator
productivity immediately before and after acquisitions. Finally, by aggregating evidence
from numerous acquisitions, we have the statistical power to uncover themechanisms that
generate efficiency gains.

The results of this paper have important policy implications, as they provide direct
input for evaluating the trade-off between market power and efficiency resulting from
mergers. Our results present a mixed view of whether mergers generate efficiencies. On
the one hand, we document that mergers in the electricity generation sector can generate
efficiencies that are large and through a mechanism that could be considered merger-
specific. On the other hand, not all mergers necessarily generate efficiencies; we find no
detectable average efficiency increase from parent ownership changes, which tend to be
larger and are less likely to influence plants’ operations. In conclusion, the main message
of our paper is that while efficiency effects in mergers should not be ruled out, they
necessitate careful analysis tailored to the circumstances of each merger.
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Do Mergers and Acquisitions Improve Efficiency?
Evidence from Power Plants

Mert Demirer and Ömer Karaduman

Online Appendix

A Data Appendix
This section provides the details of the data sources used in the paper.

A.1 Unit-Level Data

We use EIA Forms 860 and 923, EPA’s Continuous EmissionsMonitoring Systems (CEMS),
GMI, and Velocity Suite to construct a dataset for generator characteristics and production.
The EIA forms and CEMS data sources are public, whereas GMI and Velocity Suite are
private data providers for energymarkets. The EIA Forms cover the universe of generators
in the US, whereas the CEMS data includes generators with a capacity above 25 MW that
are subject to a set of environmental regulations. GMI and Velocity are data providers
that compile unit- and plant-level information from various resources, including EIA, EPA,
FERC, and other proprietary sources. We merge these datasets based on generator names
and plant identifiers (ORISPL code). The merged dataset comprises monthly panel data
that includes information on plants and generators. This information provides regulation
status, technology type, installation year, fuel type, coal type, boiler type, boiler model,
boiler manufacturer, capacity, fuel cost, prime mover category, dispatch type, whether a
unit is connected to the grid, internal generator, whether the unit is marginal or infra-
marginal, and whether the unit can switch fuel. We provide more details about some of
the variables below.

Generation Under EPA regulations, most fossil fuel power plants are required to make
continual compliance determinations for environmental regulations. For this purpose, the
EPA collects boiler-level hourly production and emissions data (heat input, gross electricity
generation, emissions) from power plants and makes these data publicly available. The
coverage of these data corresponds to roughly 96% of US fossil fuel-powered generation
in 2018 (EPA, 2018a). While these data are available starting in 1995, they are primarily
incomplete before 2000. For this reason, we restrict the study period from January 2000 to
March 2023. With these restrictions, the final dataset includes all US fossil fuel generators
that comply with the CEMS program, except those in Alaska and Hawaii. This procedure
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results in an hourly unit-level dataset on generation, fuel input, and heat rate between
January 2000 and March 2023. We aggregate these data to weekly levels in some of the
analyses employed in the paper.

The heat rate is calculated by dividing the total heat input by the total electricity output
at the analysis frequency (hourly, daily, or weekly). If there are significant changes in
production within the hour, the heat rate could be very high or very low. This sometimes
generates noise in heat rate estimates, especially at small production levels. To account
for this, we winsorize the weekly heat rates above 16 or below 6 MMBtu per MWh. This
winsorization affects 2.47% of observations.56

Wematch unit-level generation data from CEMS to unit-level data from the abovemen-
tioned data sources. While most units are easily matched using the unit name, some do
not match as the EPA uses boilers as units, whereas the EIA uses generator names. For
those cases, we rely on the EPA’s Power Sector Data Crosswalk on the EPA’s website.57
This crosswalk does not include units that retired before 2020. We manually match those
retired and other unmatched units based on capacity, installation year, and retirement year
information.

Emissions Togetherwithgeneration andheat input, CEMSalsoprovidehourly emissions
data for pollutants SO2, NOG , and CO2. Using these variables, we calculate emission
intensity as total emission in each category divided by total generation at the weekly level.
To eliminate outliers due to measurement errors, we winsorize these variables at the 1st
and 99th percentiles.

Enviromental Programs CEMSprovides information onwhich environmental programs
units are subject to. These programs include the Acid Rain Program; Cross-State Air
Pollution NOG Annual Program; Cross-State Air Pollution NOG Ozone Season Group 1
Program; Cross-State Air Pollution NOG Ozone Season Group 2 Program; Cross-State Air
Pollution NOG Ozone Season Group 3 Program; Cross-State Air Pollution SO2 Annual
Group 1 Program; Cross-State Air Pollution SO2 Annual Group 2 Program; Mercury
and Air Toxics Standards; New Hampshire NOG Program; NSPS Greenhouse Gas Rule;
Regional Greenhouse Gas Initiative; SIP Call NOG Budget Trading Program; and Texas
SO2 Trading Program.

EnvironmentalControlEquipment CEMSprovidesdataonenvironmental control equip-
ment used in boilers for SO2, NOG, and particulate matter (PM) reduction. This includes

56In some very rare cases, generation is reported in different units, for example, in KWh instead ofMWh. These
cases are easy to detect because they lead to extremely high or extremely low and physically implausible
heat rates. We correct these cases before further processing the data.

57https://www.epa.gov/airmarkets/power-sector-data-crosswalk.
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the installation date and type of each piece of equipment. A generator may use multi-
ple pieces of equipment for a particular pollutant. From this dataset, we create control
variables that indicate whether a unit has at least one scrubber for each pollutant type.

Capacity Estimation EPA data do not provide capacity information. We infer yearly
capacity fromgenerationusing the following algorithm. Eachyear, wekeepgenerators that
operate cumulatively for more than 120 hours (5 days). Then, we obtain the annual hourly
generation distribution and use the 99th percentile of the observed hourly generation
conditional on operating in the CEMS data every year. This algorithm yields a generator
capacity that is stable over time for most units. If a unit generates for less than 120 hours,
we do not use this algorithm for capacity estimates due to the small sample size. For
those units, we backfill capacity information from previous years. To check the accuracy
of this algorithm, we run it for the units that have a perfect match in the EPA and EIA data,
for which we have the true capacity information from the EIA. We find that the capacity
generated from the EPA data aligns with that provided by the EIA.

A.2 Plant-Level Data

We use Velocity Suite and GMI to construct data for plant-level characteristics. From these
data sources, we obtain information on location, ISO, FERC region, regulation status, and
other important plant-level information. We also obtain data on non-fuel inputs from
Velocity Suite, such as capital expenditures, number of personnel, and non-fuel costs.
Velocity Suite compiles these data from two sources. The first dataset is the annual
FERC Form 1, a comprehensive financial and operating report submitted for electric rate
regulation. The second dataset is the Rural Utility Service (RUS) Form "Financial and
Operating Report Electric Power Supply". This form is only mandatory for major electric
utilities as defined by FERC, so the coverage for these variables is lower than the coverage
of other variables.

A.3 Personnel Data

Each power plant subject to at least one EPA programmust submit a representative contact
to the EPA. This representative information is useful for the EPA, as potential problems
need to be addressed quickly, and responsible parties should be accountable. These
data include the representative’s name, start and end dates, and contact information and
are available through the EPA’s Envirofacts Data Service API.58 We use these data on
plant representatives from the EPA between 2000 and 2020 to construct personnel data.

58https://www.epa.gov/enviro/envirofacts-data-service-api.
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However, this database does not include some key information, such as job titles. To obtain
this information, we matched representative names to their LinkedIn profiles and found
about 70% of representatives on LinkedIn. The match rate improves over time, reaching
80–90% in later years. LinkedIn profiles provide a history of job titles, employment, and
education. The job titles suggest that about 78% of representatives are plant managers,
and the rest are engineers or regulatory compliance managers. Considering that most
of these representatives are plant managers, we treat the representative personnel as the
plant managers in this study.

This procedure results in monthly plant-level panel data on plant managers. If the
managers are successfully matched to LinkedIn profiles, we also know their start and end
dates of employment and education history.

A.4 Divestiture Data

Significant deregulation reshaped the power generation industry after the 1990s. To dif-
ferentiate deregulation-driven divestitures from typical acquisitions, we construct a list
of power plants that were subject to divestiture-related ownership changes after 2000.
Because no comprehensive public dataset of forced divestitures exists during our sample
period, we use multiple data sources. These include Velocity Suite, GMI, EIA, and repli-
cation packages of previous academic research, specifically Cicala (2015) and Abito et al.
(2024).

We start with data from Cicala (2015), who provides a list of plant divestitures between
1990 and 2009. We also use data from Abito et al. (2024), who provided a list of ownership
changes from the EIA Electric PowerMonthly reports until 2009, documenting plant trans-
actions, including divestitures and other ownership changes within deregulated markets.
Finally, we compile regulatory status information from EIA-860 forms (2006–2020) and
identify regulatory status changes, classifying transitions from regulated (RE) to not regu-
lated (NR) as deregulation and from not regulated (NR) to regulated (RE) as re-regulation
(which is rare).

Next, we match this data to our sample and manually validate whether the ownership
changes correspond to regulatory status changes, using a ±15-month window around the
acquisition date recorded in our dataset. Lastly, we examine regulatory status changes
recorded in Velocity Suite and GMI datasets not previously identified. We again verify
these changes within a ±15-month period.

This approach results in 615 generator divestiture events from 2000 to 2023, which are
excluded from our primary acquisition analysis.
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A.5 Ownership and Acquisition Data

Every power plant acquisition should be notified to the corresponding state or federal
agency. For this reason, the power generation industry has comprehensive information
on power plant acquisitions. We construct ownership change data using two separate
ownership and transaction datasets from GMI. We augment this dataset using company
press releases and newspaper articles about these acquisitions. GMIwas previously called
SNL Financial and has been used by many researchers to study electricity markets (Davis
and Hausman, 2016; Borenstein and Bushnell, 2022; Jha, 2020).

GMI gathers professional and ownership data across various industries, including the
energy sector, using multiple sources. For the energy industry in the US, GMI leverages
regulatory filings from agencies like the Securities and Exchange Commission (SEC), as
well as specific electricity industry-related filings from the FERC, Rural Utilities Service
(RUS), EIA, and State-Regulated Utilities (GMI, 2024). Additionally, GMI collects a wide
range of data from news aggregators, company websites, press releases, industry reports,
interviews, and corporate announcements.59

GMI ownership data come in the form of generator-owner-share. The ownership
information for each generator share is characterized by the name of the owner company,
its percent share of equity in the generating unit, and the owner’s ultimate parent company.
If a generator’s ownership changes over time due to an acquisition, GMI records this by
updating the power plant shares as an event with an event ID (transaction ID) and an
end date. The status of each share is recorded as either “Current” or “Sold”. “Current”
shares do not have an end date as they indicate the current ownership, while “Sold” shares
do have an end date indicating the end of a past ownership. There are also “Pending”
ownership shares, but these represent transactions that have yet to be completed as of
March 2023, so these observations are disregarded.

From the raw generator-share data, we construct a monthly panel that records infor-
mation about the companies that own each generating unit for the duration of our study
period. We rely on the dates listed with each ownership share to determine when a gener-
ating unit should enter the panel and when ownership changes occur. These data record
the companies that own each generating unit, the percent shares attributable to each owner,
and each owner’s ultimate parent company. If an ownership group is active for less than
an entire month, meaning a power plant is acquired after the first of the month and resold
before the end of that same month, then we exclude the ownership group involved in
this intra-month change from the panel. Intra-month ownership changes account for less

59https://www.spglobal.com/marketintelligence/en/solutions/sp-capital-iq-pro.
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than one percent of the generator-share data. GMI backfills any company name change,
so firm name changes are not reflected as ownership changes. Moreover, GMI maintains
a consistent company identifier for owners throughout the panel, so we do not need to
rely on company names. To summarize, this procedure results in a month-generator panel
dataset with the following information: the largest three shareholders of the generator,
the parent company of each shareholder, and the percentage of the power plant owned by
each shareholder.

The second dataset is mergers and acquisitions data. This dataset provides detailed
information for every transaction, such as buyers, sellers, transaction type, and deal value.
This dataset includes a transaction ID and transaction description where one can see
acquired assets, acquisition motives, and other important information. We merge the
transaction data to the ownership panel using transaction IDs available in both datasets.
The merged data give us a complete picture of ownership changes, including new and
previous owners and important transaction characteristics.

In the GMI transaction data, we observe that approximately 21.8% of transactions do
not include a deal description. For these transactions, we manually search for information
about the companies involved to understand the nature of the transactions. Most of
these transactions were cases where the power plant changed ownership between two
subsidiaries of the same parent company, either due to corporate restructuring or forced
divestitures (for example, from the utility subsidiary to the independent power producer
subsidiary, see (Ishii, 2006)). We also notice that a small fraction of these acquisitions are
false due to company name changes. For this reason, we exclude the acquisitions with no
description and their corresponding ownership changes from our estimating sample.

Finally, in some cases, we observe another ownership or share change occurring shortly
after an acquisition. After manually reviewing these cases, we noticed that these are
typically follow-up ownership changes related to the first transaction. Therefore, whenwe
detect multiple acquisitions within a 3-month period, we treat them as a single acquisition
in our sample. A total of 182 unit acquisitions fall into this category.

A.6 Firm-Level Data

Even though the ownership and transaction data provide buyer and seller names and
identifiers, they do not provide information on firms, such as their industry and asset
size. To obtain this information, we used another data portal owned by GMI called S&P
Capital IQ Pro.60 S&P Capital IQ Pro and GMI use the same company identifier if the
firm is classified as a utility. For other firms, we manually searched for company names

60https://www.capitaliq.com/.
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in the platforms to create a crosswalk between company identifiers. We could match all
company names except for a few companies that went bankrupt or were investment funds.
Wemerge the S&PCapital IQ Pro databasewith our ownership panel using these company
identifiers. We obtained information about firms, such as their industry and publicly listed
status.

A.7 Maintenance and Outage Data

The Generating Availability Data System (GADS), managed by the NERC, is a database
and reporting system that collects and analyzes data on the performance and reliability
of power plants. The collected data helps utilities and other stakeholders analyze per-
formance trends, develop equipment reliability and availability benchmarks, and make
informed decisions about plant operations and maintenance. The GADS database is
divided into Events, Performance, and Unit datasets containing information on unit main-
tenance and disruptions at the hourly level, monthly unit generation, and time-invariant
unit characteristics, respectively. The intersection of these datasets yields a panel ranging
from 2013 to 2021 for 6,914 units that experienced any event.

To our knowledge, our paper is the first in the economics literature to use the GADS
data at the generator event level. For this reason, we provide a detailed description of data
construction below.

A.7.1 GADS Data Description

The primary focus of the GADS database is the Events dataset, which is aggregated at
the event level and describes the duration of disruptions and other issues experienced by
generators. These events can be broadly categorized as outages, which indicate a complete
disruption of production; derates, which are associated with periods of production lower
than expected capacity; non-curtailing events, which do not affect the productive capabil-
ities of units; and inactive periods, during which units are not producing for some reason
other than those associated with outages. Depending on the urgency, outages and derates
are further categorized as forced, planned, or maintenance events. Forced events must be
addressed immediately or near-immediately, whereas planned and maintenance events
are disruptions that have been anticipated over a longer period of time; planned events
typically coincide with planned inspections and are thus scheduled months in advance,
whereas maintenance events are less emergent than forced events but require attention
before the next planned event.

The GADS data describe unit generation in addition to the events. These data, called
Performance data, are aggregated at the monthly level and report generation in terms of

OA-7



hours, along with descriptive information such as fuel and unit type. NERC also provides
time-invariant unit characteristics in the Unit dataset; of particular interest in these data
are the unit’s geographic location and nameplate capacity.

A.7.2 Processing GADS Data

We use the raw GADS data to construct an events panel unique at the unit-hour level.
The foundation of this panel is the Events data, though the performance and unit data
supplement the Events data with unit characteristics and production information. The
Unit data provide capacity and geographic information of a unit, and the Performance
data provide fuel type information, which is taken as the most recently reported fuel type
for a given unit, as well as monthly production hours. The processing of these data is
minimal; the Performance data contain some duplicate observations that are dropped, but
cleaning efforts are otherwise focused on the Events data.

Similar to thePerformancedata, theEvents data include someapparent duplicate obser-
vations. The data documentation suggests that the data should be unique at the unit-event
level, where a combination of descriptors and date range describes an event. These event
descriptors include event type, contribution code, cause code, and amplification code,
where contribution code indicates whether an event was the primary cause of disruption,
and cause and amplification codes each provide more detail describing the event (such
as a particular piece of equipment malfunctioning). We assign our own event identifier
based on the combination of descriptors detailed above and drop duplicate events based
on this definition. This cleaning step drops 1,380 observations, which account for 0.03%
of the raw sample.

The raw Events data are split into yearly files, so individual events that span multiple
years must be concatenated manually. The raw data include a flag indicating whether an
observation corresponds to an event that continues into the next year or is a continuation
of an event from a previous year. We concatenate events across years, using this flag to
distinguish between events that span calendar years instead of those that start (end) on the
first (last) date of a given year. It follows that an event continuing into the next year should
match a corresponding event such that the end and start dates are the same. For a given
pair of adjacent years, we concatenate events when appropriate, matching them based on
the event descriptors described above (i.e., unit owner, unit, event type, contribution code,
cause code, and amplification code) as well as coinciding start and end dates. We repeat
this exercise once more to account for events that may span multiple years, matching 75%
of events flagged as spanning multiple years.

The Events data also include partially or completely overlapping events that are oth-

OA-8



erwise identical; in other words, there are events that are identical across descriptors that
start at the same time but end at different times, and vice versa. These events are always
derating or non-curtailing events, and likely correspond to different periods of work or,
alternatively, different periods of capacity restriction. Given our focus on the timing and
nature of events and not the extent of work or capacity restrictions, we drop any event that
is completely subsumed by another event that is identical in terms of descriptors. One
important distinction is partially overlapping events, which we keep in the data as distinct
disruptions. This excludes 1,424 superfluous events.

In sum, this process drops 0.7% of the raw sample and yields a dataset defined at the
event level, in which a unit can experience multiple concurrent events. Observations are
identified by Unit-Owner-Event Type-Cause-Contribution-Amplification-Start Date com-
binations. From this dataset, we generate a restricted Events dataset that excludes units
that are not located in the contiguous United States or produce for less than 100 hours
over the sample period. Additionally, hydro and nuclear units are excluded from this
restricted set, which accounts for 71.2% of units and 69.3% of reported events in the full
Events dataset.

Taking the cleaned Events data as input, we construct a balanced hourly events panel
for all units that includes event ID and descriptors for up to five concurrent events. Units
seldom experience more than five events simultaneously; these events account for 0.05%
of all unit-hours or 0.09% of unit-hours conditional on at least one observed event, so this
constraint has minimal qualitative impact.

A.7.3 Matching GADS Units to CEMS Data

The hourly events panel facilitates a granular comparison between GADS event incidence
and CEMS production. Additionally, the GADS performance data allow a direct compar-
ison between GADS production and CEMS production data, albeit at the monthly level,
due to the limitations of GADS granularity. As a first step, we attempt tomatch units across
datasets by correlating monthly production hours; this approach is supplemented with
an hourly comparison, in which we calculate the probability of production conditional
on events. This process, described in further detail below, matches 3,988 GADS units to
CEMS units.
Monthly Algorithm The monthly algorithm attempts to match units across datasets by
correlating monthly production hours. The GADS performance data report monthly
production in terms of generation hours; to ease comparison, the hourly CEMS production
data are aggregated to the monthly level by calculating the number of hours in a given
month during which a unit produces any output. Units are grouped into "buckets" based
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on state and a broad categorization of fuel type, distinguishing among coal, gas, and other
fuels. Within each bucket, production is correlated for all unit pairs across datasets over the
months during which both units are available for production. Correlations are calculated
with a variety of measures to account for outlier sensitivity; the key measures include
Spearman, Kendall, and Pearson coefficients, though we run additional correlations for
robustness that winsorize the production hour distributions and, separately, focus on
months where both units are actively producing. We calculate the average correlation
coefficient across measures and produce a scatter plot for each potential match. We
manually reviewed the scatter plots to determine true matches. Each potential match
is given a score of 1 through 6, based on the following definitions: definite unit match,
definite plant match, probable match, multiple potential matches, no match, and no need
to match on account of low production. To supplement the correlation calculation and
distinguish among multiple strong candidates, we also compare unit characteristics, such
as retirement status or capacity. In sum, this algorithm matches 3,671 (3,469) GADS units
to CEMS units.

This process is repeated on the subset of unmatched GADS units with buckets defined
by the state, allowing for some flexibility with fuel type when comparing units across
datasets. For this additional iteration, we restrict attention to unmatched CEMS units as
well as CEMS units that are not matched with utmost confidence; in other words, we
exclude CEMS units matched to GADS units for which we are reasonably certain that the
unit match is precise. This step generates an additional 304 GADS unit matches.
Hourly Algorithm The hourly algorithm matches units across datasets by calculating
the probability of production, conditional on an observed event. We evaluate matches
based on the rate at which unit production accords with event occurrence. To underpin
this logic, we take the monthly matches as given and plot the distribution of production
probabilities conditional on various event types. Focusing in particular on units that
are matched with confidence, these distributions show that units experiencing an outage
event overwhelmingly do not produce; likewise, a unit experiencing an isolated derate
event (i.e., a derating without any other concurrent events) is very likely to produce.
These findings square with the GADS documentation describing each of these events.
Intuitively, a unit that experiences an outage cannot produce, whereas a unit experiencing
a derating event without any other extenuating circumstances (i.e., simultaneous outage
or reserve shutdown) should operate at reduced capacity. Approximately 66.4% of units
experience an isolated derating event, though 99% of units experience an outage event at
some point; the overwhelming majority of units that experience an isolated derating event
also experience an outage at some point during the sample period.
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Given these patterns, we devise scores to rate the extent to which a unit’s production
coincides with expectations, given an outage or isolated derating event. We calculate four
different scores: (i) a derate score, which is the probability of production, conditional on
an isolated derating event; (ii) an outage score, which is the probability of no production,
conditional on any outage; (iii) an average score, which is a simple average of the derate
and outage scores61; and (iv) a composite score: the probability of production conditional
on an isolated derating or the probability of no production conditional on any outage.

These scores are calculated over the intersecting periods of GADS event times and
CEMS production times. As such, we do not calculate conditional probabilities during
times prior to a unit’s entry or following a unit’s retirement. This is meant to reduce the
number of false positives thatmay arise from an inactive unit perfectly overlappingwith an
outage event. However, this approach introduces an additional source of false positives in
that production and event times may overlap minimally and thus achieve an erroneously
high score. To account for this possibility, we also calculate the share of event time during
which a unit is available for production and scale the average and composite scores by this
share. Doing so minimizes the potential for false positives by scaling down the scores of
matches that barely overlap.

As in the initial monthly algorithm, GADS units are compared to CEMS units based on
the state and broad fuel grouping. To provide additional focus, comparisons are restricted
to those units that operate over similar time periods; this operational overlap is calculated
as the share of months during which both units produce any amount of output. We only
attempt to match those units whose production shares are within 2.5 percentage points.

We calculate the scores discussed above for all unit combinations within these con-
straints. We rely on the monthly matches as a benchmark to identify additional matches
because these have been manually reviewed and verified. For each score, we calculate
the share of GADS units for which the hourly and monthly algorithms generate the same
match; the score that yields the highest rate of concurrence across algorithms is considered
the optimal score.

Concurrence rates tend to vary considerably across fuel types, so we select optimal
scores for each fuel grouping: the optimal score for coal, gas, and other units is composite,
average scaled by overlap, and composite scaled by overlap, respectively. For each unit, we
calculate the difference in optimal scores between the topmatches based on the assumption
that the score of a true match will far exceed the next best option. We plot the distribution
of these differences, breaking them out by fuel grouping, as well as whether the match
concurs with the monthly algorithmmatch. Focusing on the GADS units that are matched

61If a unit does not experience an outage (derate), then the average score is equal to the derate (outage) score.
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to different CEMS units (i.e., the hourly algorithm does not correctly identify the unit
match given the monthly results), we use this distribution to identify a threshold above
which false positives are very unlikely based on the right tail of the distribution. We apply
this threshold to GADS units that were not matched to any unit in the monthly algorithm
in order to identify additional matches that are unlikely to be false positives. Taking these
additional matches, we manually review correlation matrices similar to those generated
in the monthly algorithm to weed out erroneous matches, applying match scores based
on the scheme outlined in the monthly algorithm. This procedure yields an additional 13
matches to CEMS units.
Match Results This iterative matching process yields 3,994 matched GADS units in total;
matches to CEMS units account for 81.1% of GADS units, and matches make up 92.8% of
CEMS capacity. The entire process matches approximately 90% of GADS coal units and
87.5% of GADS gas units to CEMS units, while less than 50% of other units are matched.
Though we were not able to match every GADS unit, these matches do account for the
vast majority of GADS units as well as the vast majority of CEMS capacity. The bulk of
unmatched units fall into the "other" fuel category; likewise, the capacity of these units
tends to be towards the lower extremes or negligible, suggesting that the most relevant
and significant units have been matched.
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B Estimation Details
This section provides the details of various estimation procedures employed in the main
text.

B.1 Estimation of Residual Productivity

This section explains how we estimate the annual residual log-productivity reported in
Figure 2. Our goal is to account for the observable factors that can affect generator
productivity and document large heterogeneity in residual generator productivity over
time and across firms.

We estimate regressions with a rich set of observables and fixed effects to obtain resid-
ual productivity. In particular, in the first step, we use weekly heat rate data aggregated
from hourly data and regress the logarithm of the inverse heat rate on time-varying ob-
served plant characteristics and unit-year indicators. These time-varying variables include
week fixed effects, state-month fixed effects, regulation status, total load, the number of
idle hours, the standard deviation of heat rate, and the number of times the production
increases by more than 2% and 5% of the production capacity in that week. By controlling
for these factors, we account for the potential effects of production profiles on efficiency.
In the second step, we take the estimated unit-year fixed effects and regress them on time-
invariant unit characteristics that include capacity, fuel type, boiler manufacturer, and
generator model.62 The second regression accounts for productivity differences explained
by observable generator characteristics. We plot the estimated residuals from this second
regression in Figure 2. The time-varying observables in the first-step regression explain
45% of the variation in weekly heat rate, and the time-invariant observables explain 42%
of the remaining variation in the second step.

B.2 Heat Rate Curve Estimation

We estimate the generator-specific heat rate curves using hourly data before and after the
acquisition by controlling for productivity level (percent of capacity) and ramp rate. We
define ramp rate as the change in production compared to the previous hour, relative to
capacity.

We use the sample of acquired generators in estimating Equation (3) for the treated
group. Then, we take the production profile of these generators for the three years preced-
ing the acquisition and years 2 and 3 following the acquisition. We exclude data within

62Generatormodel and characteristics aremissing for about 20% of generators. For these, we include amissing
dummy variable.
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the first year post-acquisition because efficiency improvements take time to materialize,
and we aim to measure the long-term effects of the acquisition. We remove generators
from the sample if a generator is inactive more than 80% of the time, either during the
pre-period or post-period. The results are robust to this restriction, but they tend to be
unstable because the estimates for rarely active generators could be extremely noisy for
some generation levels in the heat rate curve. We non-parametrically estimate the heat
rate curves with this sample using a local polynomial regression. In particular, we use the
loess() function in R’s stats package with the default tuning parameters for bandwidth
selection. We separately applied the local polynomial regression for each generator pre-
and post-acquisition to estimate their heat rate curve.

To construct the control group, we match each acquired generator to a never-acquired
generator. For the matching procedure, we follow what is described in Section C.4 except
that we match each generator to only one rather than three. After constructing the control
sample, we estimate pre- and post-acquisition heat rate curves as if these control generators
are acquired at the same time as the matched acquired generators.

We estimate the confidence band for the difference between pre- and post-acquisition
heat rate curves for the treated generators using a bootstrap procedure. We resample the
treated generators with replacement and estimate the heat rate curve for the sample. We
repeat this 500 times and report the 2.5 and 97.5 percentiles of the bootstrap distribution.

B.3 Calculation of CO2 Emission Reductions Due to Acquisitions

To quantify the efficiency gains from acquisitions in terms of changes in CO2 emissions for
each unit, we limit our analysis to the Subsidiary/Parent Company changes from the first
acquisitions. We assume that after the acquisition, generators produce the same amount
of electricity as they would have if not acquired. Additionally, we assume a uniform
industry-wide efficiency increase of 0.3% per year, applied consistently across months and
plants.

Using the CEMS dataset, we analyzemonthly CO2 emissions at the unit level. We iden-
tify the month of the first acquisition for each unit and calculate CO2 emission intensity
for every month. Post-acquisition, we adjust this intensity to account for non-acquisition-
related gains due to the industry-wide efficiency increase. Then, we aggregate the total
generation and CO2 emissions before the acquisition and compare them to the total gener-
ation and implied CO2 emissions after the acquisition to determine CO2 intensity changes.
Assuming no change in production post-acquisition, we calculate the hypothetical total
emissions if the unit had maintained its pre-acquisition CO2 emission intensity. The total
CO2 emission savings are then determined by the difference between this hypothetical
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scenario and the actual post-acquisition emissions.
With this set of assumptions, the total cumulative decline in CO2 emissions between

2000 and 2023 is roughly 360 million tons. This corresponds to the emissions reduction
from replacing 800 TWh of electricity generated from natural-gas-fired plants with renew-
ables, assuming CO2 emissions are roughly 0.4 tons per MWh for gas-fired power plants
(EIA, 2024a). With the assumption of a 30% utilization rate for wind power plants (EIA,
2024b), this is roughly equal to 13 GW of capacity investment in wind power plants from
2000 to 2023.

B.4 Details on Heterogeneity Analysis

In this subsection, we describe the constructions of variables used in the heterogeneity
analysis.

• Plant Age > Median: An indicator variable that equals 1 if the age of the acquired
generator is greater than the median. We consider all generators in our main speci-
fication to calculate the median age.

• Unit Capacity > Median: An indicator variable that equals 1 if the capacity of the
acquired generator is larger than the median. To calculate the median capacity, we
consider all generators in our main specification and find the median capacity.

• Serial Acquirer: An indicator variable that equals 1 if the total capacity acquired
between 2000 and 2023 is larger than the median of the total capacity acquired by
firms during the same period.

• Acquirer Size > Median: An indicator variable that equals 1 if the total capacity of
the acquirer pre-transaction is larger than the median capacity of firms involved in a
transaction between 2000 and 2023.

• Cross-Market: An indicator variable that equals 1 if the capacity owned by the
acquirer in the markets involved in the acquisition is 0 before the acquisition. We
define a market as a power control area.

B.5 Calculation of Fuel Cost Share in Operating Expenses

To compare fuel costs for gas and coal power plants to total variable costs, we use cost data
from Velocity Suite. This dataset, derived from FERC Form 1 (pages 320-323), provides
annual electric operating andmaintenance expenses for investor-owned utilities. We focus
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on total fuel expenses and total power production non-fuel operations and maintenance
(O&M) expenses for our analysis.

Since the non-fuel O&M expenses cover all fuel types, we first exclude utilities with
hydro andnuclear powerproduction. As the report does not include renewableproduction
expenses separately, we focus on the years 2000-2012 to avoid including non-fuel O&M
expenses related to renewables. This approach yields 1,900 utility-year observations. We
then calculate the ratio of fuel expenses to the sum of fuel and non-fuel O&M expenses.
For the 2000-2012 period, this ratio is 79%. Extending the calculation to the 2000-2022
sample results in a slightly lower ratio of 76%.
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C Robustness Checks
In this section, we provide the details of the robustness checks we employ in this paper.

C.1 Acquisition Sample

Since our sample spans 23 years, many generators have been acquired multiple times.
Approximately half of the 2,048 units that have ever been acquired experienced multiple
ownership changes during the study period. In our main specification, we consider
only the first acquisition of each generator because, with multiple acquisitions, the post-
acquisition period of the first overlaps with subsequent acquisitions. For those generators,
it is unclear how to conduct a proper event study. In this section, we investigate the
robustness of our results to this sample restriction by estimating event studies that include
all acquisitions.

The first robustness check includes all acquisitions except those within 36 months of
each other. We exclude these acquisitions because the post- and pre-acquisition periods
overlap. Using this sample, we estimate Equation (2) with some key differences. For
each event, we include post-treatment indicator variables for 36 months following the
acquisition and pre-treatment indicator variables for 36 months before the acquisition.
The treatment variables are set to zero for 36 months after an acquisition and 36 months
before the next acquisition. Therefore, we assume treated plants follow the same trends
as the control group between the two acquisitions.

C.2 Data Frequency

We estimated ourmain specification usingweekly data, where efficiency is defined as total
electricity output divided by total heat input for that week. We chose weekly frequency
because it reduces the computational complexity and decreases noise from aggregating
hourly data. In this section, we analyze whether our results are robust to changes in data
frequency by considering daily frequency.

Estimation with daily data follows the same steps as the estimation with weekly data.
We aggregate fuel input and electricity output to a daily level and define daily efficiency
as total daily electricity output divided by total daily fuel input. The treatment variables
are monthly indicator variables for each month, 36 months before and 36 months after
acquisition. We estimate the same specification as in Equation (2), but include the day of
theweek as an additional control variable. We also tried to estimate the hourly specification
but could not do so when including control variables, as the number of observations
reached close to 1 billion, and memory requirements exceeded 500 GB.
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C.3 Staggered Difference-in-Differences

Our main specification includes weekly heat rate data, but the treatment coefficients are
included at the monthly level to increase precision. Since staggered treatment effect
estimation requires data frequency tomatch treatment frequency, we aggregate our data to
the monthly level by taking the average weekly heat rates in a given month and estimating
the staggered difference-in-differences at the monthly level. We use the never-treated
group as the control group. With this sample, we estimate the Callaway and Sant’Anna
(2021) method.

Due to the computational complexity that comes with a large number of treated units
and a long panel, we were not able to use standard staggered difference-in-differences
packages.63 Instead, we use the R packageDiDforBigData (Setzler, 2022), which provides a
big-data-friendly andmemory-efficient difference-in-differences estimator in the staggered
treatment contexts.

C.4 Matching Difference-in-Differences

Wematch each of our acquired units to the five nearest neighbors from the pool of control
units that have never been acquired during our sample period. For each treated unit, we
first find the never-treated active units during the acquisition time with the same fuel and
technology type but in a different ISO (to prevent spillovers). This never-treated sample
constitutes the pool of candidate control units for that unit. Then, we find the nearest
neighbor unitswith respect to capacity and age using a least-squaresmetric to calculate the
distances between generation units. The weights in the metric are inversely proportional
to the standard deviation of the corresponding variable. We allow control units to be
matched to multiple acquired plants. Using these nearest neighbors, we calculate the
unit-specific treatment effect as follows:

Δ̂.8C = .8C(1) − .̂8C(1), (8)

where .̂8C(1) is the average heat rate of the control units that are matched to 8 and scaled
such that the average outcome of the control one month before the acquisition is the same
as the outcome of the treated unit. By indexing the levels to a baseline period, we obtain a
unit-specific “difference-in-differences” estimate. We take the average of the unit-specific
treatment effects to obtain the final estimates reported in Figure C.4.

To construct the confidence intervals, we employ a bootstrap procedure, where we

63For example, the R package provided by the authors (Callaway and Sant’Anna, 2020).
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resample without replacement of the treated generators and follow the same matching
procedure described above. We repeat this procedure 100 times and obtain a distribution
of efficiency gains from the bootstrap samples. We take the 2.5 and 97.5 percentiles of the
bootstrap distribution to construct the confidence intervals.

C.5 Observation Weights

In our regressions, we weighted units equally. A natural alternative to this is to weight
each generator by its capacity, which would be robust to a potential concern that all
efficiency gains come from small units. Moreover, capacity-weighted estimates would be
more informative about the total production affected by efficiency gains. To investigate
this, we estimate Equations (2) and (3) by weighting units by their capacity in that year.
The results from this estimation are reported in Table OA-13, Table OA-15, and Figure
OA-23. We find that the efficiency effect is slightly larger whenweweigh units by capacity,
which is consistent with the findings reported in Table 4 that the efficiency effect is larger
for larger units.

C.6 Placebo Test

We use minority acquisitions as a placebo test to control for potential unobservable factors
that might influence both acquisitions and changes in efficiency. If such unobservables are
present, they would likely affect minority acquisitions as well. Our analysis includes the
663minority acquisitions from our dataset, characterized by themajority owner remaining
the same post-acquisition. Based on the mechanisms of efficiency gains outlined in our
study, we would not expect any impact on power plant efficiency from these minority ac-
quisitions. We estimate the same specification as in Equation (2) by treating theseminority
acquisitions as events. The results, reported in Table OA-13, confirm our expectation that
we do not see any significant change in power plant efficiency after these events.
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D Additional Figures

Figure OA-1: A Slide from Investor Presentation About Efficiency Claims

Note: This figure is from a slide deck presented in the conference call of the acquisition of Dynegy by Vistra
Energy in 2018.

Figure OA-2: Market Share of Acquired Asset across Transactions
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Notes: Distribution of total capacity acquired as a share of total fossil-fuel firm capacity in each market (defined
as a power control area). Each observation represents a transaction–market pair.
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Figure OA-3: Illustration of Ownership Change Types
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(b) Asset Acquisitions
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(c) Subsidiary Acquisitions

Note: This figure demonstrates different types of acquisitions. Panel (a) is the corporate structure of com-
panies before the acquisition. Panels (b) and (c) show the corporate structure after the acquisition for asset
sales and subsidiary acquisitions, respectively.
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Figure OA-4: Slides and Case Studies of Heat Rate Improvements

(a) Case Study 1 (b) Case Study 2

(c) Case Study 3 (d) Case Study 4

Note: These pictures demonstrate some methods that were implemented in power plants to improve heat
rate. Source: Fitzgerald and Gelorme (2015).
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Figure OA-5: Change in US Power Generation Market Concentration by
Capacity
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Note: This figure shows the change of national concentration ratios in the overall US fossil fuel power plant
market between 2000 and 2023. For every concentration ratio, we calculate the total fossil fuel capacity of the
largest corresponding number of firms in the US and divide that by the total fossil fuel capacity in the US.

Figure OA-6: Distribution of Generator Capacity
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Notes: This distribution shows generator capacity (in MW). Each observation represents a generator-week, so the
distribution is weighted by the number of weeks each generator appears in the sample.
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Figure OA-7: Firms with Largest Capacity Increase,
2010–2023
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Note: This figure shows firms with the largest capacity increase in fossil fuel generation capacity in the US
between 2010 and 2020.

Figure OA-8: Firms with Largest Capacity Decrease,
2010–2023
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Note: This figure shows firms with the largest capacity decrease in fossil fuel generation capacity in the US
between 2010 and 2020.
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Figure OA-9: Geographic Distribution of Ownership Changes by Capacity
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Note: Geographical distribution of power plant acquisitions by capacity between January 2000 - March 2023.

Figure OA-10: The Effects of Manager Changes without Acquisitions on
Efficiency
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Note: This figure shows the effects of manager change on efficiency estimated using the specification given in
Equation (3). In particular, we treat a unit if the manager of that unit changes and there is no acquisition in
the three months preceding and following the manager change. Error bars show 95% confidence intervals.
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Figure OA-11: Average Within-Plant Annual Productivity Change
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Note: This figure shows average year-to-year within-plant productivity growth for the plants that were not
involved in an acquisition.

Figure OA-12: Confidence Band for the Difference in Heat Rate Curves
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Note: This figure shows the 95% confidence interval for the difference between acquired firms’ heat rate
curves pre- and post-acquisition, as reported in Figure 7(a). The estimates are reported from 200 bootstrap
replications.
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Figure OA-13: Effects of Acquisitions on Generator Performance Measures (Event
Studies)
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(a) Total Generation
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(b) Capacity Utilization
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(c) Operating Hours
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(d) Forced Outages/Derates
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(e) Log CO2 Intensity

Note: This figure presents the coefficient estimates of �̂B where B ∈ (−3, 3) from estimating Equation (2) with
yearly treatment indicators to improve precision. Unit characteristic fixed effects include state, installation
year, fuel type, technology type, and unit capacity bins. Unit of observation is generator-week. Error bars
show 95% confidence intervals. Standard errors are clustered at the acquisition level.
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Figure OA-14: Change in Emissions After Acquisitions

−0.2

0.0

0.2

−3 −2 −1 0 1 2 3

 Years from Acquisition

 C
ha

ng
e 

in
 S

O
2

(a) SO2

−0.1

0.0

0.1

−3 −2 −1 0 1 2 3

 Years from Acquisition

 C
ha

ng
e 

in
 N

O
X

(b) NOG

Note: This figure presents the coefficient estimates of �̂B where B ∈ (−3, 3) from estimating Equation (2) with
yearly treatment indicators to improve precision. Unit characteristic fixed effects include state, installation
year, fuel type, technology type, and unit capacity bins. Unit of observation is generator-week. Error bars
show 95% confidence intervals. Standard errors are clustered at the acquisition level.

Figure OA-15: Results on Dynamic Efficiency Mechanism (Event Studies)
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(a) CoV of Heat Rate
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(b) CoV of Utilization
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(c) Number of Ramps

Note: This figure presents the coefficient estimates of �̂B where B ∈ (−3, 3) from a regression of the CoV
of heat rate and utilization and number of ramps on treatment dummies using Equation (2), using yearly
treatment indicators to improve precision. Unit characteristic fixed effects include state, installation year,
fuel type, technology type, and unit capacity bins. Error bars show 95% confidence intervals.

OA-28



Figure OA-16: Dynamic Effects of Acquisitions on Productivity (5-Year)
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Note: This figure presents the coefficient estimates of �̂B where B ∈ (−60, 60) from Equation (3) along with
95% confidence intervals. The dependent variable is the logarithm of the inverse weekly heat rate. The unit
of observation is generator-week. Standard errors are clustered at the acquisition level.
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Figure OA-17: Effects of Acquisitions on Generator Performance Measures (5-Years)
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(d) Forced Outages
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Note: This figure presents the coefficient estimates of �̂B where B ∈ (−5, 5) from estimating Equation (2) with
yearly treatment indicators to improve precision. Unit characteristic fixed effects include state, installation
year, fuel type, technology type, and unit capacity bins. Unit of observation is generator-week. Error bars
show 95% confidence intervals. Standard errors are clustered at the acquisition level.
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E Additional Tables

Table OA-1: Largest 25 Acquisitions by Fossil Fuel Power Plant Capacity

Acquirer Target Year Cap. (MW) # of units

Vistra Energy Corp. Dynegy Inc. 2018 27198 99
NRG Energy, Inc. GenOn Energy, Inc. 2012 26174 139
Volt Parent, Lp Calpine Corporation 2018 22991 127
RRI Energy, Inc. Mirant Corporation 2000 22748 140
Duke Energy Corporation Progress Energy, Inc. 2012 19048 134
Duke Energy Corporation Cinergy Corp. 2006 14923 70
GC Power Acquisition LLC CenterPoint Energy, Inc. 2004 13204 43
NRG Energy, Inc. Texas Genco Inc. 2006 13017 42
Westar Energy, Inc. Great Plains Energy 2018 12237 66
Vistra Corp. TXU Corp. 2007 11116 45
Exelon Corporation Constellation Energy Group 2012 10790 66
PPL Corporation E.ON AG 2010 10035 44
NRG Energy, Inc. Edison Mission Energy 2014 9052 30
FirstEnergy Corp. Allegheny Energy, Inc. 2011 8631 36
NextEra Energy, Inc. Engie SA 2017 8604 39
Dynegy Inc. Duke Energy Corporation 2015 8387 26
Reliant Resources, Inc. Orion Power Holdings, Inc. 2002 8247 85
AES Corporation DPL Inc. 2006 7879 33
Carolina Power & Light Company Florida Progress Corporation 2000 7721 63
Powergen PLC LG&E Energy Corp. 2000 7445 31
ArcLight Capital Partners, LLC Tenaska Energy Inc. 2015 7398 79
Dynegy Inc. Energy Capital Partners LLC 2015 7334 28
MidAmerican Energy Holdings NV Energy, Inc. 2013 7149 52
Astoria Generating Co. EBG Holdings LLC 2007 7143 66
Riverstone Holdings LLC Talen Energy Corporation 2016 6941 12

Note: Largest 25 acquisitions in the fossil fuel power generation industry between January 2000 and March
2023. The columns indicate the year the transaction occurred, total production capacity involved in the
transaction, and the total number of units that changed ownership.
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Table OA-2: Generator Acquisitions by State

State Number of
Units

Number of
Unit Acquisitions Ratio Regulation

Status in 2022

Rhode Island 11 20 1.82 Deregulated
Massachusetts 87 134 1.54 Deregulated
Illinois 237 339 1.43 Deregulated
New York 323 451 1.40 Deregulated
Pennsylvania 218 235 1.08 Deregulated
West Virginia 55 59 1.07 Regulated
New Hampshire 16 17 1.06 Deregulated
Maine 16 16 1.00 Deregulated
New Jersey 197 180 0.91 Deregulated
Nevada 77 67 0.87 Regulated
Ohio 167 139 0.83 Deregulated
Maryland 78 62 0.79 Deregulated
Connecticut 75 59 0.79 Deregulated
Arizona 102 80 0.78 Regulated
Kentucky 117 87 0.74 Regulated
Washington 23 15 0.65 Regulated
California 319 205 0.64 Deregulated
Arkansas 50 32 0.64 Regulated
Georgia 179 111 0.62 Mixed
Mississippi 108 65 0.60 Regulated
Missouri 122 72 0.59 Regulated
Texas 530 301 0.57 Deregulated
Kansas 64 36 0.56 Regulated
South Carolina 88 49 0.56 Regulated
Michigan 141 76 0.54 Mixed
Colorado 82 43 0.52 Regulated
Indiana 150 76 0.51 Regulated
Florida 399 191 0.48 Regulated
Utah 32 15 0.47 Regulated
Delaware 39 17 0.44 Deregulated
New Mexico 39 16 0.41 Regulated
Virginia 115 45 0.39 Mixed
Louisiana 109 41 0.38 Regulated
Oklahoma 100 32 0.32 Regulated
Montana 16 5 0.31 Mixed
North Carolina 162 41 0.25 Regulated
Wisconsin 130 32 0.25 Regulated
Alabama 109 26 0.24 Regulated
Tennessee 95 18 0.19 Regulated
North Dakota 21 2 0.10 Regulated
Oregon 13 1 0.08 Mixed
Wyoming 25 1 0.04 Regulated
Minnesota 82 3 0.04 Regulated

Notes: This table reports four statistics for each state: (i) the number of unique generators, (ii) the number
of generator acquisitions, (iii) share of acquisitions relative to total number of generators, and (iv) the state’s
generation-market regulatory status. The regulatory status is based on the authors’ own classification from
multiple resources. “Mixed” indicates states that have partial regulation.
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Table OA-3: Effects of Acquisitions on Generator Productivity (Subsidiary Change
Acquisitions)

Subsidiary
and Parent
Changes

Subsidiary
and Parent
Changes

Subsidiary
and Parent
Changes

Subsidiary
and Parent
Changes

(1) (2) (3) (4)

Dependent Variable: Log of Efficiency

Pre-acquisition (1 Year) 0.004 0.003 -0.001 -0.001
(0.007) (0.006) (0.005) (0.005)

Post-acquisition (1 Year) 0.03 0.026 0.016 0.016
(0.008) (0.007) (0.006) (0.006)

Post-acquisition (2 Years) 0.056 0.054 0.039 0.039
(0.012) (0.01) (0.009) (0.009)

Post-acquisition (3 Years) 0.069 0.071 0.05 0.05
(0.015) (0.014) (0.012) (0.012)

Ambient Temp. & Humidity X X X X
Unit & Week FE X X X X
State by Month FE X X X
Unit Characteristic by Month FE X X
Scrubber & Enviro. Prog. FE X

'2 0.712 0.735 0.762 0.763
# of Observations 1.494M 1.494M 1.494M 1.494M
# of Never-Treated Units 2311 2311 2311 2311
# of Treated Units 1089 1089 1089 1089

Note: This table presents the coefficient estimates of �1 , �2 , �3 , and �4 from estimating Equation (2) only
for acquisitions that have both subsidiary and parent ownership changes. Unit characteristic fixed effects
include installation year, fuel, technology, and unit capacity bins. The dependent variable is the logarithm
of the inverse heat rate. Standard errors are clustered at the acquisition level.
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Table OA-4: Effects of Small Acquisitions on Heat Rate (< 10% Market Capacity)
All

Acquisitions
Types

All
Acquisitions

Types

All
Acquisitions

Types

All
Acquisitions

Types

Subsidiary
and Parent
Changes

Only
Parent
Changes

(1) (2) (3) (4) (5) (6)

Dependent Variable: Log of Efficiency

Pre-acquisition (1 Year) 0.003 0.001 -0.004 -0.004 -0.002 -0.003
(0.004) (0.003) (0.004) (0.004) (0.005) (0.004)

Post-acquisition (1 Year) 0.021 0.019 0.007 0.007 0.015 -0.004
(0.006) (0.006) (0.005) (0.005) (0.007) (0.006)

Post-acquisition (2 Years) 0.039 0.040 0.022 0.022 0.039 0.007
(0.009) (0.008) (0.008) (0.008) (0.010) (0.008)

Post-acquisition (3 Years) 0.045 0.044 0.024 0.024 0.049 0.001
(0.012) (0.011) (0.010) (0.010) (0.012) (0.009)

Ambient Temp. & Humidity X X X X X X
Unit & Week FE X X X X X X
State by Month FE X X X X X
Unit Characteristic by Month FE X X X X
Scrubber & Enviro. Prog. FE X X X

'2 0.71 0.73 0.756 0.756 0.765 0.768
# of Observations 1.711M 1.711M 1.711M 1.711M 1.476M 1.438M
# of Controls 2311 2311 2311 2311 2311 2311
# of Treated Units 1590 1590 1590 1590 1030 689

Note: This table presents the coefficient estimates of �1 , �2 , �3 , and �4 from estimating Equation (2) only
for acquisitions that account for less than 10% of market capacity. Unit characteristic fixed effects include
installation year, fuel, technology, and unit capacity bins. The dependent variable is the logarithm of the
inverse heat rate. Standard errors are clustered at the acquisition level.
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Table OA-5: Heterogeneous Effects of Acquisitions on Productivity (Full Results)

Interaction Var. (Z) Capacity
>Median

Age
>Median

Serial
Acquirers

Firm Size
>Median

Cross-Market
Acquisitions

(1) (2) (3) (4) (5)

Dependent Variable: Log of Efficiency

Pre-acquisition (1 Year) -0.001 -0.001 -0.002 -0.001 -0.001
(0.005) (0.005) (0.005) (0.005) (0.005)

Post-acquisition (1 Year) 0.002 0.016 0.009 0.011 0.015
(0.009) (0.01) (0.008) (0.008) (0.009)

Post-acquisition (2 Years) 0.018 0.038 0.014 0.019 0.049
(0.01) (0.013) (0.009) (0.01) (0.013)

Post-acquisition (3 Years) 0.029 0.054 0.026 0.034 0.068
(0.013) (0.017) (0.013) (0.013) (0.016)

Post-acquisition (1 Year) × Z 0.023 -0.001 0.014 0.012 0.002
(0.011) (0.012) (0.012) (0.012) (0.012)

Post-acquisition (2 Years) × Z 0.035 0.004 0.059 0.049 -0.021
(0.015) (0.016) (0.016) (0.017) (0.015)

Post-acquisition (3 Years) × Z 0.034 -0.011 0.058 0.041 -0.039
(0.018) (0.02) (0.02) (0.02) (0.019)

Ambient Temp. & Humidity X X X X X
Unit & Week FE X X X X X
Unit Characteristic by Month FE X X X X X
Scrubber & Enviro. Prog. FE X X X X X

'2 0.763 0.763 0.763 0.763 0.763
# of Observations 1.494M 1.494M 1.494M 1.494M 1.494M
# of Units 2311 2311 2311 2311 2311
# of Acquisitions 1089 1089 1089 1089 1089

Note: This table presents the coefficient estimates of �1 , �2 , �3 , and �4 from estimating Equation (4). Each
column reports results from a different regression by varying the interaction variable, /. Unit characteristic
fixed effects include state, installation year, fuel type, technology type, and unit capacity bins. Unit of
observation is generator-week and the dependent variable is the logarithm of the inverse weekly heat rate.
Standard errors are clustered at the acquisition level. Details about the heterogeneity variables are provided
in Appendix B.4.
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Table OA-6: Heterogeneous Effects of Acquisitions on Productivity (Market and State
Characteristics)

Interaction Var. (Z) In
ISO

In a High Acquisition
Activity State

In a Deregulated
State

(1) (2) (3)

Dependent Variable: Log of Efficiency

Post-acquisition (1 Year) × Z 0.020 0.01 0.014
(0.014) (0.013) (0.013)

Post-acquisition (2 Years) × Z 0.025 0.003 0.044
(0.018) (0.017) (0.015)

Post-acquisition (3 Years) × Z 0.045 0.018 0.052
(0.020) (0.023) (0.018)

Ambient Temp. & Humidity X X X
Unit & Week FE X X X
Unit Characteristic by Month FE X X X
Scrubber & Enviro. Prog. FE X X X

'2 0.763 0.763 0.763
# of Observations 1.494M 1.494M 1.494M
# of Units 2311 2311 2311
# of Acquisitions 1089 1089 1089

Note: This table presents the coefficient estimates of �̄2 , �̄3 , and �̄4 from estimating Equation (4). Each
column reports results from a different regression by varying the interaction variable, /. Unit characteristic
fixed effects include state, installation year, fuel type, technology type, and unit capacity bins. The unit
of observation is generator-week, and the dependent variable is the logarithm of the inverse weekly heat
rate. Standard errors are clustered at the acquisition level. High-acquisition activity is determined by first
calculating the share of acquired units relative to the total number of units in each state. Then, the states
that are higher than the median of this measure are classified as high-acquisition activity states. Regulation
status is based on the authors’ own classification derived frommultiple sources; see Table OA-2. States with
partial regulation are counted as deregulated for the purposes of this regression.
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Table OA-7: Effects of Acquisitions with or without Manager Changes

Acquisitions w/
Manager Changes

Acquisitions w/o
Manager Changes

(1) (2)

Dependent Variable: Log of Efficiency

Pre-acquisition (1 Year) -0.008 0.013
(0.006) (0.01)

Post-acquisition (1 Year) 0.011 0.025
(0.008) (0.013)

Post-acquisition (2 Years) 0.038 0.039
(0.011) (0.017)

Post-acquisition (3 Years) 0.052 0.057
(0.014) (0.022)

Ambient Temp. & Humidity X X
Unit & Week FE X X
Unit Characteristic by Month FE X X
Scrubber & Enviro. Prog. FE X X

'2 0.777 0.777
# of Observations 1.34M 1.254M
# of Never-Treated Units 2311 2311
# of Treated Units 691 331

Note: This table presents the coefficient estimates of �1-�4 and �̄1-�̄4 from estimating Equation (2). Unit
characteristic fixed effects include state, installation year, fuel type, technology type, and unit capacity bins.
The unit of observation is generator-week, and the dependent variable is the logarithm of the inverse weekly
heat rate. Standard errors are clustered at the acquisition level. Columns (1-2) split these acquisitions into
two subsamples. In column (2), we include acquisitionswith accompanyingmanager changes; in column (3),
we include acquisitions with no manager changes. For Columns (2-3), the sample period for the regression
is between 2000 and 2020 due to the availability of manager data.

OA-37



Table OA-8: Poisson Regressions

Dep. Var. Total Load (MWh) Mean Load (%) Operating Time (hrs)
(1) (2) (3)

Pre-acquisition (1 Year) -0.019 0.004 -0.031
(0.02) (0.007) (0.021)

Post-acquisition (1 Year) 0.001 0.009 -0.009
(0.029) (0.007) (0.026)

Post-acquisition (2 Years) 0.046 0.020 0.007
(0.039) (0.008) (0.032)

Post-acquisition (3 Years) 0.041 0.022 -0.009
(0.04) (0.009) (0.034)

Ambient Temp. & Humidity X X X
Unit & Week FE X X X
Unit Characteristic by Month FE X X X
Scrubber & Enviro. Prog. FE X X X

# of Observations 2.592M 1.494M 2.597M
# of Controls 2311 2311 2311
# of Treated Units 1089 1089 1089

Notes: This table presents the percent effects of acquisitions on different outcome measures from estimating
Poisson regressions. Unit characteristic fixed effects include state, installation year, fuel type, technology type,
and unit capacity bins. The unit of observation is generator-week.
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Table OA-9: Effects of Acquisitions on Emissions Intensity

Dep. Var. Log NOx
Intensity

Log SO2
Intensity

(1) (2)

Pre-acquisition (1 Year) -0.013 0.01
(0.015) (0.016)

Post-acquisition (1 Year) -0.045 0.003
(0.022) (0.019)

Post-acquisition (2 Years) -0.066 -0.044
(0.027) (0.026)

Post-acquisition (3 Years) -0.058 -0.059
(0.03) (0.033)

Ambient Temp. & Humidity X X
Unit & Week FE X X
Unit Characteristic by Month FE X X
Scrubber & Enviro. Prog. FE X X

'2 0.873 0.949
# of Observations 1.493M 1.441M
# of Controls 2310 2216
# of Treated Units 1089 985

Note: This table presents the coefficient estimates of �1 , �2 , �3 , and �4 from estimating
Equation (2). Unit characteristic fixed effects include state, installation year, fuel type,
technology type, and unit capacity bins. The unit of observation is generator-week.
Standard errors are clustered at the acquisition level.
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Table OA-10: Heterogeneous Effects of Acquisitions on Productivity (Single Regression)

Interaction Var. (Z) Capacity
>Median

Age
>Median

Serial
Acquirers

Firm Size
>Median

Cross-Market
Acquisitions

(1) (2) (3) (4) (5)

Panel A: Heterogeneous Effects on Efficiency

Post-acquisition (1 Year) × Z 0.019 –0.001 0.011 –0.002 –0.001
(0.012) (0.013) (0.030) (0.028) (0.012)

Post-acquisition (2 Years) × Z 0.021 –0.011 0.068 –0.015 –0.027
(0.015) (0.017) (0.034) (0.034) (0.015)

Post-acquisition (3 Years) × Z 0.019 –0.035 0.101 –0.048 –0.051
(0.020) (0.022) (0.040) (0.038) (0.019)

Panel B: Effect on Most Commonly Observed Types
# Post-acq (3 Years)

104 0.075 X X X X
(0.021)

96 0.003 X
(0.016)

90 0.073 X
(0.026)

88 0.073 X X X
(0.024)

87 0.092 X X X X
(0.021)

87 0 .020 X
(0.015)

83 0.022 X X
(0.020)

68 0.022 X X X X
(0.023)

67 0.054
(0.023)

53 0.108 X X
(0.034)

Notes: Panel A presents results from the estimation of heterogeneous effects in a single regression where
all interaction variables are included. Panel B lists the 10 most commonly observed acquisition types based
on combinations of the observable characteristics used in the heterogeneity analysis (denoted as /). For
example, the first type is an acquisition of a unit with above-median unit capacity and below-median unit age
by a serial, above-median size acquirer in a cross-market acquisition. The column "N" reports the number of
unit acquisitions in each category, and the "Post-acq (3 Years)" column shows the sum of the corresponding
coefficients, including the constant term, which corresponds to the omitted category.)
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Table OA-11: Long-Run Effects of Acquisitions on Heat Rate (5-Years)
All

Acquisitions
Types

All
Acquisitions

Types

All
Acquisitions

Types

All
Acquisitions

Types

Subsidiary
and Parent
Changes

Only
Parent
Changes

(1) (2) (3) (4) (5) (6)

Dependent Variable: Log of Efficiency

Pre-acquisition (1 Year) -0.006 -0.004 -0.007 -0.007 -0.005 -0.014
(0.007) (0.007) (0.005) (0.005) (0.005) (0.006)

Post-acquisition (1 Year) 0.010 0.012 0.003 0.003 0.013 -0.017
(0.008) (0.008) (0.006) (0.006) (0.007) (0.008)

Post-acquisition (2 Years) 0.027 0.031 0.017 0.017 0.035 -0.010
(0.009) (0.009) (0.007) (0.007) (0.010) (0.008)

Post-acquisition (3 Years) 0.030 0.032 0.016 0.016 0.046 -0.016
(0.012) (0.011) (0.009) (0.009) (0.012) (0.009)

Post-acquisition (4 Years) 0.034 0.032 0.013 0.013 0.045 -0.014
(0.012) (0.011) (0.009) (0.009) (0.012) (0.009)

Post-acquisition (5 Years) 0.039 0.041 0.018 0.018 0.045 -0.009
(0.012) (0.012) (0.009) (0.009) (0.012) (0.010)

Unit & Week FE X X X X X X
State by Month FE X X X X X
Unit Characteristic by Month FE X X X X
Scrubber & Enviro. Prog. FE X X X

'2 0.706 0.725 0.752 0.753 0.761 0.765
# of Observations 1.94M 1.94M 1.94M 1.94M 1.547M 1.632M
# of Controls 2311 2311 2311 2311 2311 2311
# of Treated Units 2046 2046 2046 2046 1089 1142

Note: This table presents the coefficient estimates from estimating Equation (2) with 5-year post acquisition
coefficients. Columns (4-6) present our baseline specification, where we allow for time trends to vary flexibly
byunit characteristic and includeweather, scrubber, and environmental programcontrols. Unit characteristic
fixed effects include installation year, fuel, technology, and unit capacity bins. The dependent variable is the
logarithm of the inverse heat rate. Standard errors are clustered at the acquisition level. Table OA-3 presents
the same analysis results but for the subsample of acquisitions with both subsidiary and parent company
changes.

Table OA-12: Heterogeneous Effects of Acquisitions on Manager Turnover

Independent Variable: Capacity
> Median

Age
> Median

Serial
Acquirers

Firm Size
> Median

Cross-Market
Acquisitions

(1) (2) (3) (4) (5)

Manager Turnover -0.034 -0.069 0.020 0.075 -0.026
(0.005) (0.005) (0.005) (0.006) (0.006)

Notes: Regressionof an indicator variable forwhether amanager is replaced followinganacquisitiononobservable
unit/firm/acquisition characteristics. Each observation represents an acquired generator.
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F Robustness Checks Results

Table OA-13: Effects of Acquisitions on Generator Productivity (Robustness)

After
2010

Weighted
Regressions

Net
Generation

All
Acquisitions Matching Minority

(Placebo)
(1) (2) (3) (4) (5) (6)

Dependent Variable: Log of Efficiency

Pre-acquisition (1 Year) -0.002 -0.001 -0.004 -0.001 -0.002 -0.003
(0.005) (0.005) (0.005) (0.005) (0.002) (0.005)

Post-acquisition (1 Year) 0.002 0.016 0.009 0.013 0.021 -0.003
(0.007) (0.006) (0.006) (0.006) (0.004) (0.007)

Post-acquisition (2 Years) 0.021 0.039 0.028 0.027 0.036 -0.013
(0.011) (0.009) (0.008) (0.008) (0.006) (0.009)

Post-acquisition (3 Years) 0.037 0.05 0.033 0.033 0.047 -0.011
(0.015) (0.012) (0.01) (0.009) (0.007) (0.009)

Ambient Temp. & Humidity X X X X X
Unit & Week FE X X X X X
Unit Characteristic by Month FE X X X X X
Scrubber & Enviro. Prog. FE X X X X X

'2 0.769 0.763 0.667 0.77 - 0.783
# of Observations 1.387M 1.494M 1.491M 1.769M - 1.407M
# of Never-Treated Units 2311 2311 2308 2311 1089 2311
# of Treated Units 529 1089 1089 1541 1089 663

Note: This table presents the coefficient estimates of �1 , �2 , �3, and �4 from estimating Equation (2) with
various robustness checks, discussed in detail in Section C. Column (1) excludes acquisitions prior to 2010
that may have resulted from deregulation. Column (2) estimates the effect of acquisitions on efficiency
measured by total output net of any energy input. Column (3) includes event-study estimates for units
acquired multiple times during the sample period. Column (4) reports regression estimates weighed by
yearly unit capacity. Column (5) includes results from the matching estimation, in which treated units are
matched to controls in different ISOs based on fuel type, age, and capacity. Finally, Column (6) is a placebo
specification that considers changes in minority ownership as a treatment event. Unit characteristic fixed
effects include state, installation year, fuel type, technology type, and unit capacity bins. Standard errors are
clustered at the acquisition level.
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Table OA-14: Effects of Acquisitions on Generator Productivity (First and Subsequent
Acquisitions)

All
Acquisitions

Types

All
Acquisitions

Types

All
Acquisitions

Types

All
Acquisitions

Types

Subsidiary
or Parent
Changes

Only
Parent
Changes

(1) (2) (3) (4) (5) (6)

Dependent Variable: Log of Efficiency

Pre-acquisition (1 Year) 0 0 -0.002 -0.002 -0.001 -0.015
(0.004) (0.004) (0.004) (0.004) (0.005) (0.004)

Post-acquisition (1 Year) 0.01 0.01 0.006 0.005 0.013 -0.015
(0.004) (0.004) (0.004) (0.004) (0.006) (0.005)

Post-acquisition (2 Years) 0.019 0.02 0.012 0.012 0.027 -0.01
(0.005) (0.005) (0.005) (0.005) (0.008) (0.005)

Post-acquisition (3 Years) 0.022 0.022 0.011 0.011 0.033 -0.016
(0.006) (0.006) (0.006) (0.006) (0.009) (0.006)

Ambient Temp. & Humidity X X X X X X
Unit & Week FE X X X X X X
State by Month FE X X X X X
Unit Characteristic by Month FE X X X X
Scrubber & Enviro. Prog. FE X X X

'2 0.713 0.731 0.76 0.761 0.77 0.767
# of Observations 2.335M 2.335M 2.335M 2.335M 1.769M 1.795M
# of Never-Treated Units 2311 2311 2311 2311 2311 2311
# of Treated Units 3515 3515 3515 3515 1541 1449

Note: This table presents the coefficient estimates of �1 , �2 , �3 , and �4 from estimating Equation (2) using
all acquisitions. Unit characteristic fixed effects include installation year, fuel type, technology type, and
unit capacity bins. The acquisition sample is described in Section C.1. Standard errors are clustered at the
acquisition level.
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Table OA-15: Effects of Acquisitions on Generator Productivity (Weighted Regressions)

All
Acquisitions

Types

All
Acquisitions

Types

All
Acquisitions

Types

All
Acquisitions

Types

Subsidiary
or Parent
Changes

Only
Parent
Changes

(1) (2) (3) (4) (5) (6)

Dependent Variable: Log of Efficiency

Pre-acquisition (1 Year) -0.003 -0.006 -0.008 -0.008 -0.001 -0.014
(0.005) (0.004) (0.004) (0.004) (0.005) (0.004)

Post-acquisition (1 Year) 0.013 0.009 0.001 0.001 0.016 -0.016
(0.007) (0.006) (0.005) (0.005) (0.006) (0.006)

Post-acquisition (2 Years) 0.03 0.028 0.015 0.015 0.039 -0.009
(0.009) (0.008) (0.007) (0.007) (0.009) (0.007)

Post-acquisition (3 Years) 0.034 0.031 0.015 0.015 0.05 -0.014
(0.011) (0.011) (0.009) (0.009) (0.012) (0.008)

Ambient Temp. & Humidity X X X X X X
Unit & Week FE X X X X X X
State by Month FE X X X X X
Unit Characteristic by Month FE X X X X
Scrubber & Enviro. Prog. FE X X X

'2 0.707 0.726 0.752 0.753 0.763 0.764
# of Observations 1.838M 1.838M 1.838M 1.838M 1.494M 1.575M
# of Never-Treated Units 2311 2311 2311 2311 2311 2311
# of Treated Units 2046 2046 2046 2046 1089 1142

Note: This table presents the coefficient estimates of �1 , �2 , �3 , and�4 from estimating Equation (2) by weight-
ing observations by capacity as described in Section C.5. Unit characteristic fixed effects include installation
year, fuel, technology, and unit capacity bins. Standard errors are clustered at the acquisition level.
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Table OA-16: Effects of Acquisitions on Generator Productivity (Acquisitions After 2010)

All
Acquisitions

Types

All
Acquisitions

Types

All
Acquisitions

Types

All
Acquisitions

Types

Subsidiary
or Parent
Changes

Only
Parent
Changes

(1) (2) (3) (4) (5) (6)

Dependent Variable: Log of Efficiency

Pre-acquisition (1 Year) 0.002 -0.001 -0.005 -0.006 -0.002 -0.008
(0.004) (0.004) (0.004) (0.004) (0.005) (0.004)

Post-acquisition (1 Year) 0.006 0.004 -0.006 -0.006 0.002 -0.014
(0.007) (0.007) (0.006) (0.006) (0.007) (0.007)

Post-acquisition (2 Years) 0.015 0.017 0.004 0.004 0.021 -0.01
(0.01) (0.009) (0.008) (0.008) (0.011) (0.007)

Post-acquisition (3 Years) 0.021 0.023 0.01 0.01 0.037 -0.013
(0.012) (0.013) (0.01) (0.01) (0.015) (0.009)

Ambient Temp. & Humidity X X X X X X
Unit & Week FE X X X X X X
State by Month FE X X X X X
Unit Characteristic by Month FE X X X X
Scrubber & Enviro. Prog. FE X X X

'2 0.72 0.74 0.764 0.764 0.769 0.768
# of Observations 1.657M 1.657M 1.657M 1.657M 1.387M 1.507M
# of Never-Treated Units 2311 2311 2311 2311 2311 2311
# of Treated Units 1170 1170 1170 1170 529 819

Note: This table presents the coefficient estimates of �1 , �2 , �3 , and�4 from estimating Equation (2) for acqui-
sitions occurring after 2010. Unit characteristic fixed effects include installation year, fuel type, technology
type, and unit capacity bins. Standard errors are clustered at the acquisition level.
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Table OA-17: Effects of Acquisitions on Generator Productivity (Net Generation)

All
Acquisitions

Types

All
Acquisitions

Types

All
Acquisitions

Types

All
Acquisitions

Types

Subsidiary
or Parent
Changes

Only
Parent
Changes

(1) (2) (3) (4) (5) (6)

Dependent Variable: Log of Efficiency

Pre-acquisition (1 Year) -0.004 -0.005 -0.008 -0.008 -0.004 -0.009
(0.005) (0.004) (0.004) (0.004) (0.005) (0.005)

Post-acquisition (1 Year) 0.003 0.004 -0.005 -0.005 0.009 -0.016
(0.008) (0.006) (0.005) (0.005) (0.006) (0.008)

Post-acquisition (2 Years) 0.018 0.022 0.008 0.008 0.028 -0.007
(0.009) (0.007) (0.006) (0.006) (0.008) (0.007)

Post-acquisition (3 Years) 0.023 0.024 0.008 0.008 0.033 -0.009
(0.01) (0.009) (0.007) (0.007) (0.01) (0.008)

Ambient Temp. & Humidity X X X X X X
Unit & Week FE X X X X X X
State by Month FE X X X X X
Unit Characteristic by Month FE X X X X
Scrubber & Enviro. Prog. FE X X X

'2 0.599 0.621 0.65 0.651 0.667 0.661
# of Observations 1.834M 1.834M 1.834M 1.834M 1.491M 1.572M
# of Never-Treated Units 2308 2308 2308 2308 2308 2308
# of Treated Units 2046 2046 2046 2046 1089 1142

Note: This table presents the coefficient estimates of �1 , �2 , �3 , and�4 from estimating Equation (2) using
net generation to calculate productivity. Unit characteristic fixed effects include installation year, fuel type,
technology type, and unit capacity bins. Standard errors are clustered at the acquisition level.
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Figure OA-18: Dynamic Effects of Acquisitions on Productivity (Daily)
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Note: This figure presents the coefficient estimates of �̂B where B ∈ (−36, 36) from Equation (3) along with
standard errors. The dependent variable is the logarithm of the inverse daily heat rate, as discussed in
Section 7. Error bars show 95% confidence intervals. Standard errors are clustered at the acquisition level.

Figure OA-19: Dynamic Effects of Acquisitions on Productivity (Net
Generation)
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Note: This figure presents the coefficient estimates of �̂B where B ∈ (−36, 36) from Equation (3) along with
standard errors. The dependent variable is the logarithm of the inverse weekly heat rate, calculated using
net generation as opposed to gross generation as discussed in Section 7. Error bars show 95% confidence
intervals. Standard errors are clustered at the acquisition level.
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Figure OA-20: Dynamic Effects of Acquisitions on Productivity (All
Acquisitions)
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Note: This figure presents the coefficient estimates of �̂B where B ∈ (−36, 36) from Equation (3) along with
standard errors, using all acquisitions. The acquisition sample is described in Section C.1. The dependent
variable is the logarithm of the inverse weekly heat rate. Error bars show 95% confidence intervals. Standard
errors are clustered at the acquisition level.

Figure OA-21: Dynamic Effects of Acquisitions on Productivity (Staggered
Difference-in-Differences)
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Note: This figure presents the coefficient estimates of �̂B where B ∈ (−36, 36) from Equation (3) along with
standard errors, using the method of Callaway and Sant’Anna (2021). The details are provided in Section
C.3. The dependent variable is the logarithm of the inverse weekly heat rate. Standard errors are clustered
at the acquisition level. This specification does not include unit characteristics and time trends due to
computational complexity. Error bars show 95% confidence intervals.
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Figure OA-22: Dynamic Effects of Acquisitions on Productivity (Matching
Estimator)
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Note: This figure presents the coefficient estimates of �̂B where B ∈ (−36, 36) from Equation (3) along
with standard errors, using the matching method described in Section C.4. The dependent variable is the
logarithm of the inverse weekly heat rate. Error bars show 95% confidence intervals.

Figure OA-23: Dynamic Effects of Acquisitions on Productivity (Weighted
By Capacity)

−0.10

−0.05

0.00

0.05

0.10

−36 −30 −24 −18 −12 −6 0 6 12 18 24 30 36

 Months from Acquisition

 %
 C

ha
ng

e 
in

 P
ro

du
ct

iv
ity

Note: This figure presents the coefficient estimates of �̂B where B ∈ (−36, 36) from Equation (3) along with
standard errors, weighting observations by capacity as described in Section C.5. The dependent variable is
the logarithm of the inverse weekly heat rate. Error bars show 95% confidence intervals. Standard errors are
clustered at the acquisition level.
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