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Abstract

Using rich data on hourly physical productivity and five thousand ownership changes from
US fossil fuel power plants, we study the effects of mergers and acquisitions on efficiency
and provide evidence on the mechanisms. We find that acquired plants experience an aver-
age of 4 percent efficiency increase five to eight months after acquisition. Three-quarters of
this efficiency gain is explained by increased productive efficiency; the rest comes from im-
proved capacity management at the plant level and allocative efficiency at the portfolio level.
Our findings suggest that acquisitions reallocate assets to more productive uses; we find that
high-productivity firms buy under-performing assets from low-productivity firms and make the
acquired assets almost as productive as their existing assets after acquisition. Finally, investi-
gating the mechanism, the evidence suggests that acquired plants achieve higher efficiency

through low-cost operational improvements rather than high-cost capital investments.
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1 Introduction

A fundamental issue in antitrust policy is the trade-off between the efficiency and market
power effects of mergers. The increase in market power raises prices for consumers; how-
ever, potential efficiency gains can counteract this effect, making the net effect of mergers
on welfare ambiguous (Williamson (1968)). While there is an extensive literature on the
price effects of mergers, we have limited evidence on how mergers affect efficiency. With
little guidance from empirical evidence, researchers analyzing the competitive effects of
prospective mergers often rely on hypothetical efficiency gains (Farrell and Shapiro (2010),
Nocke and Whinston (2022)).!

A major challenge in analyzing the efficiency effects of mergers is distinguishing true
efficiency gains from other factors, such as changes in market power, buyer power, and
product quality. Due to the limitations of production datasets, most research has studied
revenue-based productivity (TFPR), which is estimated from revenues and input expen-
ditures, rather than quantity-based measures (Foster et al. (2008), Atalay (2014)). Using
TFPR is particularly problematic in merger retrospectives because an increase in market
power, buyer power, or a decline in quality could raise TFPR even in the absence of any
efficiency gains. This makes it difficult to identify true efficiency gains of mergers.

In this paper, we provide a detailed and large-scale analysis on the efficiency effects of
mergers while tackling these issues. In particular, we ask: (i) Do mergers and acquisitions
improve efficiency? (ii) What are the mechanisms? (iii) How do mergers reallocate assets
between firms?

We focus on the mergers in US electricity generation industry between 2000 and 2020.
Four distinct features of this industry and available rich data allow us to overcome the
challenges of estimating the efficiency effects of mergers. First, we observe, at the hourly
frequency, the physical quantity of output and the physical quantity of the largest single
input (80% of variable cost), the consumption of fuel. With this high-frequency production
data, we construct an efficiency measure at the hourly level and analyze how it changes
around the time of acquisition. Second, electricity is a homogeneous product, ruling out
potential quality changes that could confound our analysis. Third, the efficiency measure
relies mainly on accurate input and output sensor measurements rather than survey re-

sponses, as in many other industries. Finally, and most importantly, the power generation

! As an example, consider these quotes from Nocke and Whinston (2022): “there is a clear need for much
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better evidence on the efficiency effects”; “we observe that the literature on efficiency effects of horizontal

mergers is extremely limited”; “our reading of the current (merger) evidence in the literature”; “there is
remarkably little solid empirical evidence on this point.”



industry experienced a significant number of mergers and acquisitions during the sam-
ple period. We identified 689 transactions with 4834 ownership changes between 2000
and 2020, corresponding to an average of 5 percent of industry capacity annually. These
ownership changes exhibit significant heterogeneity by transaction, firm, and plant char-
acteristics, which we use to study the mechanisms of efficiency gains.

Our analysis starts by employing a difference-in-differences estimator to compare the
efficiency of acquired plants to those not involved in an acquisition. Our first finding is
that the efficiency of the acquired plants increases by 4 percent on average after acquisi-
tion. The efficiency increase starts five months after acquisition, and it reaches the new
steady-state level after eight months, suggesting that it takes time for the new owner to
implement changes required for efficiency improvements. Our calculations suggest that
these efficiency improvements correspond to a total cost saving of 6 billion dollars, and
the total cumulative decline in CO; emissions between 2000 and 2020 is roughly 50 mil-
lion tons.

This evidence of efficiency gains from mergers is important. However, to inform merger
policy and generalize the lessons from this industry to other industries, it is crucial to un-
derstand the underlying mechanisms that generate efficiency gains in a power plant. Mo-
tivated by this, we investigate what observable acquisition characteristics are correlated
with efficiency gains and what potential mechanisms generate them.

We start by analyzing the characteristics of acquired plant, acquirer, and transaction
that are correlated with efficiency gains. For plant characteristics, we consider fuel type
(gas or coal), plant age, generation capacity, regulation status, and whether the plant is
infra-marginal. We find that the efficiency gain is higher if the plant is older, unregulated,
large, and infra-marginal. In these plants with higher efficiency gains, the acquirer has
more incentive to make efficiency gains, so the results are consistent with possible ex-ante
predictions based on firm incentives.” Regarding firm characteristics, we find that large
acquirers and serial acquirers lead to more efficiency gains, suggesting that experience,
both in plant operations and acquisitions, plays an important role in generating efficiency
gains. Finally, looking at transaction characteristics, efficiency gains are higher if the ac-
quired capacity is high and the acquirer’s capacity in the acquisition market is high.’

2There is more room for efficiency improvements in older plants due to degradation in performance over
time. In unregulated plants, any cost-savings will be retained as profit and in infra-marginal and larger
plants, production is higher conditional on capacity, so efficiency improvements would lead to a higher
return.

3The heterogeneity results from the acquirer’s capacity in the market suggest the potential role of syner-
gies in efficiency gains, which we investigate later in detail.



We next ask how mergers allocate assets between firms. There are two main theories on
the efficiency effects of asset allocations with mergers. The first theory suggests a “high-
buys-low” pattern (Jovanovic and Rousseau (2002)), in which acquisitions transfer assets
from low-productivity firms to high-productivity firms. The second theory assumes a
“like-buys-like” pattern (Rhodes-Kropf and Robinson (2008)), in which firms have no sys-
temic productivity differences, but there are complementaries between assets and firms.
According to this theory, assets are allocated to firms with a higher ability to utilize those
assets. Quantifying the role of these theories indicates whether mergers put assets to more
productive use and contribute to aggregate productivity growth.

Our findings suggest that acquisitions reallocate assets to more productive uses; we
tind that high-productivity firms buy under-performing assets from low-productivity firms and
make the acquired asset almost as productive as their existing assets after acquisition. Ac-
quirers are, on average, one percent more productive than the target firms, and the target
firms are selling their underperforming assets relative to their other assets. This finding
suggests that assets are allocated to firms with both relative and absolute advantages in
utilizing those assets. Thus, we find evidence for both “high-buys-low” and “like-buys-
like” hypotheses.

We then move to study the mechanisms that generate efficiency gains. A firm can im-
prove the overall efficiency of a power plant with three distinct mechanisms: (i) increasing
its productive efficiency, (ii) better allocating production dynamically, and (iii) allocating
production more efficiently across plants (portfolio efficiency). We develop predictions
for each of these mechanisms and test them empirically. The test for productive efficiency
involves comparing generator-specific cost curves separately for pre- and post-acquisition
periods. In dynamic efficiency, the production profile of acquired plants would be less
volatile, whereas portfolio effects would suggest that the acquirer’s existing plants in the
same markets see efficiency improvements. Testing these predictions in the data, we find
that productive efficiency explains 75-80 percent of the total efficiency gain. There is also
evidence for dynamic and portfolio efficiency, but they play a minor role in explaining the
total efficiency gain.

After establishing the role of productive efficiency, the next question is what firms do
to improve productive efficiency. There are two alternatives: (i) low-cost process improve-
ments, which involve adopting best practices and hiring more skilled personnel, and (ii)
high-cost capital investments, which involve equipment upgrades. Process improvements
indicate information transfers after acquisition (Atalay et al. (2014)); capital upgrades indi-

cate credit constraints of the former owner. To distinguish between these two mechanisms,



we augment the production data with two different datasets: (i) plant managers and man-
ager characteristics, and (ii) annual non-fuel costs, capital expenditures, and number of
employees for a subset of plants. Starting with the manager data, we find that 55 percent
of acquired power plants change managers within three months of acquisition. These
managers are 5 percentage points more likely to have a master’s degree and 4 percentage
points more likely to have a bachelor’s degree than non-merger manager changes. In con-
trast, we find no evidence of an increase in capital expenditures after acquisition. These
tindings suggest that the new owner of the power plant improves efficiency through op-
erational improvements rather than high-cost capital investment.

As in all retrospective merger analyses, an important concern in our paper is the endo-
geneity of mergers. We include three additional analyses to address this concern. First, we
run placebo tests by looking at the efficiency effects of minority acquisitions and company
name changes, finding no efficiency effects. Second, we run a battery of robustness tests
and show that our results are robust to empirical specification, acquisition definition, and
data frequency. Finally, we look at whether other important changes in the plant in the
absence of mergers generate similar efficiency effects. For example, we look at how man-
agement changes in the absence of mergers affect efficiency and find that management
change leads only to a 0.8 percent efficiency gain, in contrast to four percent caused by
mergers.

Although we believe our empirical setting is ideal for studying the efficiency effects of
mergers, there are important caveats worth mentioning. First, the production process in
electricity generation might be different from production in other industries in terms of
the role of labor and energy input. While we focus on a single industry to take advan-
tage of the available data and numerous acquisitions, we provide detailed evidence for
mechanisms to draw broader lessons from this study. Second, our efficiency measure is
fuel efficiency rather than total factor productivity (TFP), which is most commonly used
in the productivity literature. While it is possible to estimate TFP for power plants at the
annual frequency, analyzing fuel efficiency provides a richer analysis due to the availabil-
ity of a high-frequency efficiency measure. Nevertheless, to understand the potential role
of other inputs, we look at how non-fuel costs and the number of employees change after
acquisition, and find no significant change. Therefore, the increase in fuel efficiency does
not arise at the expense of other inputs.

We conclude the introduction by highlighting that our results do not give a conclusive
answer to the overall impact of mergers on consumer harm, as we identified only one

factor going into the welfare analysis. Moreover, the efficiency effects identified in this



paper may not be generalizable to other industries for merger analysis, especially those
with significantly different production techniques from electricity generation. Our view
is that more research is needed to understand the net effects of mergers from different
industries and we provide a detailed analysis of the efficiency effects from a large and
important industry.

1.1 Literature

This article contributes to several bodies of literature. The first is the literature studying
the effects of mergers and acquisitions on productivity. Since many merger retrospectives
focus on price effects, there are only a few papers that study productivity effects of mergers
(Braguinsky et al. (2015), Blonigen and Pierce (2016), Kulick (2017)). Blonigen and Pierce
(2016) use the methods of De Loecker and Warzynski (2012) to separately identify markup
power and productivity for manufacturing plants in the US and study how mergers affect
them. Their findings suggest significant effects of mergers on market power but no evi-
dence for a productivity effect. Kulick (2017) studies mergers in the ready-mix concrete
industry. He finds evidence for price increase due to a rise in market power post-merger
despite a 6 percent productivity increase in acquired plants.* This paper is most closely
related to Braguinsky et al. (2015), who study the Japanese cotton spinning industry at the
turn of the 20th century, which experienced a wave of acquisitions over 30 years. They
tind that acquirers were not more productive, but they were more profitable due to better
inventory management and higher capacity utilization. After the acquisition, the acquirer
improves capacity utilization in the acquired plant, raising the productivity level by al-
most 13 percent.’

This article also contributes to the literature studying efficiency in the power generation
industry. This literature has primarily focused on how restructuring that started in the
1990s affected efficiency (Knittel (2002), Bushnell and Wolfram (2005), Fabrizio et al. (2007),
Davis and Wolfram (2012)). These papers compare the performance of plants in states that
pursued restructuring against plants in states that did not. Overall, the results point to a
positive influence of restructuring on the operations of plants.®

“Evidence from other industries include meat product industries (Nguyen and Ollinger (2006)), rail-
roads (Bitzan and Wilson (2007)), electricity distribution (Clark and Samano (2020), Chen (2021)), banking
(Focarelli and Panetta (2003)), healthcare (Dranove and Lindrooth (2003), Harrison (2011), Schmitt (2017)).

>Other literature provides evidence on efficiency effects by analyzing a single merger. Some examples
are Molson and Coors merger (Grieco et al. (2018)), Miller and Coors merger (Ashenfelter et al. (2015)), and
Boeing-McDonnell Douglas merger (An and Zhao (2019)).

®A particularly related paper is by Bushnell and Wolfram (2005), who study whether ownership change
during deregulation provides additional efficiency gains and find no evidence. Differently from Bushnell



We contribute to the literature studying the allocative efficiency effects of mergers
(McGuckin and Nguyen (1995), Schoar (2002), Jovanovic and Rousseau (2002), Jovanovic
and Rousseau (2008), Rhodes-Kropf and Robinson (2008)). These papers study mergers
and acquisitions across a range of industries. They investigate the characteristics of buyers
and sellers, how acquisitions transfer assets between firms, and the effects of this on reallo-
cations of resources in the economy. We contribute to this literature by providing detailed
evidence from a single industry on how mergers allocate resources in the economy.

Finally, this paper is related to a recent wave of papers that use retrospective merger
analyses to understand how mergers affect firm behavior. The insights from this growing
literature advance the understanding of cross-market mergers (Lewis and Pflum (2017),
Dafny et al. (2019)), monopsony power (Prager and Schmitt (2021)), buyer power (Craig
et al. (2021)), quality (Eliason et al. (2020)), product availability (Atalay et al. (2020)), firm
entry (Fan and Yang (2020)), and the price effects of mergers (Luco and Marshall (2020),
Bhattacharya et al. (2022)). We complement this literature by studying how mergers affect

firm efficiency and providing evidence on the mechanisms.

2 Institutional Background and Plant Productivity

This section starts by providing an institutional background of the power generation sec-
tor and an overview of mergers and acquisitions in the industry. We then explain the

construction of efficiency measures for power plants.

2.1 Power Sector

The US electricity sector represents roughly 5 percent of the US GDP, with over 11,000
utility-scale power plants providing roughly 2.5 million jobs across the US (Bradley As-
sociates (2017)). Until the early 1990s, US electricity generation was overwhelmingly sup-
plied by regulated and vertically integrated investor-owned utilities (IOUs) or government-
owned utilities (municipal and state-owned)(US Energy Information Administration (2003)).
Typically, these entities served a specific territory and owned all components of the power
sector: generation, transmission, distribution, and retailing. The returns of these utility
services were regulated through rate-of-return on capital investments and cost-of-service
regulation. This highly regulated market structure left little incentive for efficiency im-

provements, generating significant inefficiencies (Fabrizio et al. (2007), Cicala (2015)).

and Wolfram (2005), we study mergers without deregulation in a later period, so our ownership change
sample and time period are different.



After the 1990s, the industry went through significant deregulation. Electricity gener-
ation was decoupled from transmission and distribution, and most generators began to be
paid for through a market. This deregulation was accompanied by the creation of inde-
pendent system operators (ISOs) (US Energy Information Administration (2003)).” ISOs
organize the wholesale electricity market and meet electricity demand by running high-
frequency auctions where power plants bid their willingness to produce. In 2020, roughly
70 percent of US electricity demand was met through seven ISOs.”

The deregulation also led to a change in the electricity generation technology mix with
a significant amount of entries and exits. In the early 1980s, coal was the primary fuel
source for electricity generation. As the price of natural gas fell significantly with the
expansion of fracking in the early 2010s, gas-fired generation became competitive with
coal-fired plants, each providing roughly one-third of the market supply in 2015. Today,
gas-fired generation has reached roughly twice the size of coal-fired generation (US En-
ergy Information Administration (2020)).

2.2 Mergers and Acquisitions in Power Sector

Large utility companies are usually organized into several subsidiaries under a big parent
company, serving in different locations and segments of the power sector. The structure of
the subsidiaries tends to follow the boundaries of the legacy vertically integrated utilities.
Parent companies typically own assets in generation, transmission, and distribution in
the same region, with some parent companies having subsidiaries serving different parts
of the country. After the 1990s wave of deregulation, significant merger and acquisition
activity occurred between these entities. Moreover, financial firms, predominantly private
equities and bank funds, started to invest in the power generation sector.

Mergers and acquisitions in the power sector can be divided into three main groups:
(i) asset sales, (ii) subsidiary acquisitions (divestitures), and (iii) mergers. In asset sales,
a firm sells part of its power plant portfolio while maintaining its corporate structure. In
this case, the acquired assets fall under the ownership of a subsidiary of the acquirer. In
subsidiary acquisitions, a parent company acquires a subsidiary of another firm with all
its assets. The plant’s owner (subsidiary) remains the same in these cases, but the parent
owner changes. The third type is a merger between two firms, where two companies

"Throughout this paper, we will use ISO as an umbrella term for both ISOs and RTOs.

8The seven ISOs are California ISO (CAISO), New York ISO (NYISO), Electric Reliability Council of
Texas (ERCOT), Midcontinent ISO (MISO), ISO New England (ISO-NE), Southwest Power Pool (SPP), and
Pennsylvania-New Jersey-Maryland Interconnection (PJM).



merge and form a new company. Appendix Figure 25 provides a visual representation of
these merger types.

All proposed plant acquisitions in the US electricity sector must be reviewed by the
Federal Energy Regulatory Commission (FERC), the Department of Justice (DOJ), and
state Public Utility Commissions (PUC) (Niefer (2012)). The FERC reviews mergers under
Section 203 of the Federal Power Act, determining whether mergers are consistent with
the public interest. The DOJ’s review investigates the potential anticompetitive effects of
mergers.” If either the DOJ, FERC, or state PUC concludes that the merger harms com-
petition, they either block it or require assets divestiture.!’ Despite extensive reviews by
three government agencies, most proposed mergers in the US electricity sector have been
approved, with only a few challenged mergers in the last two decades."!

There are several merger motives in the electricity industry, and efficiency improve-
ment in power plants is one of them.'” Merging firms often argue that mergers will gen-
erate synergies between assets, citing enhanced financial flexibility, increased cash flow
benefits, and complementarities between different sectors, such as distribution and gener-
ation. As fuel represents roughly 80 percent of operational costs, fuel efficiency improve-
ments are often cited as an important source of cost savings post-merger.> As an example,
Appendix Figure 24 shows a slide from the investor presentation of the 2018 Dynergy and
Vista Energy merger, in which merging parties argue that heat rate improvements will
lead to 125 million dollars in cost savings.

9The FERC relies on the 1996 revision of the Horizontal Merger Guidelines (HMG) and puts more em-

phasis on market concentration levels (Niefer (2012)), whereas the DOJ’s review relies on the 2010 HMG.

To give some examples, in 2005, the Exelon-PSEG merger was not completed after failing to get approval
from state PUCs. In 2012, following the DOJ’s request, Exelon Corporation and Constellation divested three
generating plants in Maryland. The FERC concluded that the merger would not harm competition in both
cases.

"We went over a list of large mergers reviewed by FERC between 2000 and 2020, and found that only a
few of them were challenged.

12For most mergers in our sample, we have access to investor presentations and conference calls; therefore,
we can identify the motives precisely.

13Some other examples: (i) AES-DPL merger, which argues that their earlier merger IPL led to improve-
ments in management; (ii) NRG-GenOn merger, which cites measurable and actionable cost synergies of
$175 million per year; (iii) Mirant-RRI Energy reports $150 million in annual cost savings; (iv) Vistra-Dynergy
mentions geographic, fuel, market, and earnings diversification benefits. Other cited reasons are increasing
the consumer base, diversifying the portfolio across technologies and regions, and accelerating efforts to
meet potential future environmental regulations.



2.3 Electricity Production and Construction of the Efficiency Measure

A significant challenge when studying the efficiency effects of mergers is the lack of suit-
able data, as most industries do not have reliable measures of cost and physical productiv-
ity. The power generation industry is unusual in this respect because detailed and high-
frequency efficiency data is publicly available. This section describes the efficiency mea-
sures used in this study and explains production in power plants.

A power plant is an industrial facility that generates electricity. In 2020, there were
11,070 utility-scale electric power plants in the US (US Energy Information Administration
(2020)). A typical power plant includes multiple generators, which transform a form of en-
ergy (mainly heat, wind, or solar) into electricity using different production technologies.
Our research focuses on fossil fuel power plants, a type of thermal plant, because their ef-
ficiency is easy to measure. Fossil fuel power plants use the energy of heat obtained from
burning gas or coal to make electricity.'* In this process, the total input is measured as
the heat content of the fuel used in electricity generation. This leads to a natural efficiency
measure, called heat rate, which specifies how much heat input is used to produce a given
amount of electricity. Our primary measure of efficiency is the inverse of this measure,

defined as the ratio of energy output and input:

Energy Output (MWh)
Energy Input (MMBtu)

Fuel Efficiency (Inv. Heat Rate) = (2.1)
The heat rate characterizes how efficiently fuel is converted into electricity. It is ex-
pressed as the ratio of the fuel’s heat content, a million British thermal units (MMBtu),
and the plant’s electricity output, megawatt-hour (MWh). Heat rate is the most important
determinant of power plant efficiency since fuel is the major input, representing roughly
80 percent of operating costs (Fabrizio et al. (2007)). For this reason, heat rate is a standard
efficiency measure in the industry, widely used by regulatory agencies and firms.

Most importantly for this paper, fuel efficiency provides important advantages to study-
ing the effects of mergers and acquisitions on productivity. First, it is a quantity-based ef-
ficiency measure obtained from quantity input and output, not directly affected by buyer
or market power changes. Second, electricity is a homogeneous product, so there are no
potential quality changes or demand response after acquisition. Finally, the efficiency

measure relies mainly on accurate sensor measurements of input and output rather than

4n a typical thermal power plant, water is heated in a boiler to generate steam, which is then moved
through a turbine that is attached to a shaft. As the steam moves, it causes the shaft to spin. This spinning
shaft is connected to a generator, which produces electricity.

10



Figure 1: Heat Rate Curve
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Note: The green line represents the marginal cost of producing elec-
tricity at a given capacity without potential ramping costs. The blue
bars represent the distribution of actual production levels.

survey responses, as in many industries.

Several factors affect the heat rate in a power plant. Figure 1 displays a hypothetical
example of a heat rate curve, where the green line shows efficiency (inverse heat rate) and
the blue bars show the production distribution by percentage of capacity. First, a power
plant’s cost curve depends on the production level, which typically has an efficient scale
around 90 to 95 percent capacity. Second, the production profile is an important determi-
nant of efficiency. Since electricity cannot be stored at scale and demand is volatile, power
plants often need to adjust their production rapidly. The associated cost with this adjust-
ment is called ramp-up and ramp-down cost. Therefore, power plants whose production
varies a lot tend to produce electricity less efficiently. These determinants of the power
plant efficiency depend on the skills and expertise of power plant personnel who monitor
and control production (Bushnell and Wolfram (2009)). '

Although the electricity generation process seems relatively mechanical, there is con-
siderable heterogeneity in power plant productivity in the US. Figure 2 shows the dis-
tribution of yearly residual log efficiency of power plants in the US after controlling for

a rich set of observables that include production profile, plant age, fuel type, technology,

Finally, fuel type plays an important role. Coal-fired generators often have 10-12 MMBtu/MWh,
whereas natural gas-fired generators have 7-9 MMBtu/MWh. Even within a fuel type, there could be small
differences in efficiency depending on the processing of the fuel. For example, using different coal types can
lead to different efficiency levels due to factors like moisture content and pulverization procedures. Since
we observe fuel and quality (for coal), we can control for changes in fuel type.

11



Figure 2: Distribution of Residual Log Productivity
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Note: This figure shows the distribution of residual yearly log productivity of
fossil fuel plants in the US between 2000 and 2020 after controlling for plant age,
fuel type, technology, capacity, and other characteristics.

capacity, generator manufacturer, and generator model.'® The difference between the 10th
percentile and the 90th percentile is 0.32, indicating that plants in the top part of the pro-
ductivity distribution are more than twice as productive as plants in the bottom part of
the productivity distribution.'” This heterogeneity in productivity has also been observed
by others (Sargent & Lundy (2009), Staudt and Macedonia (2014)).'® The large dispersion
in productivity conditional on a large set of observables highlights the role of unobserved
heterogeneity in efficiency, indicating potential room for improvement in many power
plants.

Improving the heat rate curve of a power plant is a complex process that can be done
in two main ways: (i) low-cost operational improvements and (ii) costly capital upgrades.
Low-cost practices, such as process optimization, personnel training, and efficient main-

tenance, can significantly improve heat rate. Every year, power plant managers gather

16We explain this estimation in Appendix B.1.

This dispersion is slightly smaller than the dispersion identified in other manufacturing industries
(Syverson (2011)).

8For example, Sargent & Lundy (2009)’s report commissioned by the EPA found that coal-fired power
plants in the US require on average 10,400 British thermal units (Btu) to produce 1 kilowatt-hour (kWh) of
electrical energy, but range from heat rates of 5 MMBtu/MWh to 32.7 MMBtu/MWHh. Staudt and Macedo-
nia (2014) examine factors that contributed to heat rate using data from US EPA’s National Electric Energy
Database (NEEDS), including facility size, capacity factor, emission controls, steam cycle (supercritical ver-
sus subcritical), and coal type. They determined that each factor was essential to the generator’s heat rate.
However, they also determined that there was much unexplained variability in the data.

12



at the Heat Rate Improvement Conference to discuss these practices (EPRI (2022))."” An
important determinant of operational practices is labor input.?

As documented in detail in Bushnell and Wolfram (2009), individual skills of key per-
sonnel could make a significant difference in the performance of generating plants. A
second way to improve plant efficiency is by upgrading critical equipment, such as boil-
ers, fuel feeders, and cooling systems, as old equipment degrades and new technology
becomes available.

Improving the efficiency of a plant is also important for environmental considerations.
The more efficiently a plant operates, the less fuel it requires, emitting lower local pollu-
tants and GHG emissions. As a result, improving plant efficiency can be an effective tool
to decrease pollution, which policymakers have recognized in the US. In the 2016 Clean
Power Plan Act introduced by the Obama administration, improving the heat rate of exist-
ing power plants was proposed as the first building block to reduce the carbon intensity

of electricity generation (EPA (2018)).%'

3 Data

Our primary goal is to construct an hourly measure of generator efficiency and the uni-
verse of ownership changes to examine the efficiency of acquisitions. An attractive feature
of the power sector is that it has richer data on production and ownership than most in-
dustries. We take advantage of this attribute and create a unique dataset on ownership
and production.

We combine several datasets from the FERC, EPA, Department of Energy’s Energy In-
formation Administration (EIA), S&P Global, Velocity Suite, and S&P Capital IQ Pro at the
firm, plant, and generator level for all coal- and gas-fired power plants in the US between
2000 and 2020. This section briefly describes the data sources. We provide a more de-
tailed description of the data sources, construction of variables, and descriptive statistics

in Appendix A.
Plant-Level Characteristics We use Velocity Suite, S&P Global, and EIA Forms 860 and 923

Y Appendix Figure 25 highlights a few case studies of low-cost improvements.

20As an example, Bushnell and Wolfram (2009) highlighted an operators impact by saying, “The act of
balancing all of these input parameters was described by one manager as playing the piano and one star
operator was considered a virtuoso on the instrument.”

21 An analysis conducted by National Energy Technology Laboratory (NETL) supported this conclusion.
Under a scenario where generation from coal is constant at the 2008 level, increasing average efficiency from
32.5 to 36 percent reduces US GHG by 175 million metric tons per year, or 2.5 percent of total US GHG
emissions in 2008. Moreover, NETL notes that ”if each plant achieved their maximum efficiency each year,
5 percent reduction in CO; could result” (Campbell (2013)).

13



to construct detailed data on generator-level and plant-level characteristics for all power
plants in the US. For generators, we assemble information on fuel type, capacity, boiler
model, and boiler manufacturer. For plants, we construct data on plant age, regulation
status, location, ISO, and FERC region. For roughly half of the plants in the sample, we
also have annual information on the number of employees, non-fuel costs, and capital
expenditures between 2008 and 2020.%

Production and Efficiency We utilize the EPA’s Continuous Emissions Monitoring Sys-
tems (CEMS) for hourly generation and input data. The CEMS program monitors power
plant emissions to implement environmental control policies. It provides hourly power
output, power input, emission, and heat rate for almost every fossil fuel power plant in
the US.” We merge this dataset with the unit characteristics data from other datasets us-
ing plant and generator names.** We restrict the sample to all US fossil-fuel generators
that comply with the CEMS program, except those in Alaska and Hawaii.

Mergers and Acquisitions We construct data on the universe of fossil fuel power plant
ownership changes from two separate ownership and transaction datasets obtained from
S&P Global. The ownership data includes the ownership structure of all power plants at
the subsidiary and parent company levels for all shareholders. The transaction data pro-
vides detailed information about the transferred assets and transactions, such as acquired
power plants, deal size, buyer, seller, announcement and close dates, conference call tran-
scripts, and deal descriptions. Since regulatory authorities must review all transactions,
this data is available for the universe of transactions during the sample period. Owner-
ship datasets often suffer from falsely identified ownership changes because firm name
changes and company restructuring sometimes appear as ownership changes. We iden-
tify false ownership changes by cross-matching the transaction data with the ownership
data. We also use corporate structure data to identify changes that are merely restructur-
ing within the same parent company. We use those false ownership changes for placebo
tests. We also identify ownership changes that are divestitures due to deregulation in the

early 2000s and exclude them from the sample.

22The data source for this information is FERC Form 1, which is available only for investor-owned utilities.

ZEvery power plant in the US with more than 25 MW capacity that ignites fossil fuel must comply with
the EPA CEMS program. This sample represents approximately 95 percent of the US fossil fuel generating
capacity.

4In some cases, generator names in the EIA dataset and CEMS do not match because the EPA uses boiler
names as a unit, whereas EIA uses generator names. For most cases, we rely on the EPA’s Power Sector
Data Crosswalk. Finally, we manually match the retired and unmatched power plants using the principles
described in Appendix A.

14



Personnel Since plant personnel is an important determinant of efficiency, we assemble
panel data on plant personnel from the EPA. The EPA has this information because each
power plant that complies with an EPA program must submit a plant representative to the
EPA. This data includes the representative’s name, start and end date of their tenure, and
contact information. To obtain more information about the personnel, we match roughly
70 percent of them to their LinkedIn profiles, obtaining their title, education, and employ-
ment history. From LinkedIn data, we confirm that 80 percent of the reported personnel
are plant managers, and the rest are mostly environmental compliance personnel. There-

fore, we treat the personnel information as plant managers for the rest of the study.

Other Datasets We gather hourly data for solar and wind power generation from FERC
and S&P Global for each Balancing Authority Area (BAA) and ISO Zone. We also ob-
tain information about firm characteristics, such as asset size, market cap, and industry

information, from S&P Capital IQ Pro.

4 Descriptive Statistics on M&A in the US Power Industry

This section presents descriptive statistics about mergers and acquisitions of fossil fuel
power plants in the US. We demonstrate that the industry experienced a significant num-
ber of acquisitions with large heterogeneity in terms of transaction size, acquirer and target
tirm types, and plant characteristics. These facts allow us to study several aspects of how
acquisitions affect efficiency, and they are essential to keep in mind when we conduct the
empirical analysis.

95 percent of Industry Capacity Changed Ownership between 2000 and 2020. There has
been a large number of mergers and acquisitions in the US fossil fuel power generation
industry between 2000 and 2020. Figure 3 shows the percentage of fossil fuel electricity
generation capacity that changed ownership from 2000 to 2020. An average of 5 percent
capacity changed ownership annually, with some fluctuations year-to-year.”” Cumula-
tively, this corresponds to 95 percent of industry capacity during the sample period.?
This is also reflected in the large number of power plants that changed ownership. Table

1 presents summary statistics on plants, firms, and deal characteristics. The data include

We define acquisition as an ownership change if a different firm owns the majority of the plant’s shares
after the acquisition. For a small number of plants, no firm owns more than 50 percent of shares. For those
plants, an acquisition is defined as change of the largest shareholder.

%This is cumulative capacity, so it double-counts the capacity of generators that have changed owner-
ship multiple times. We observe that 2,200 generators change ownership at least once, corresponding to 50
percent of the industry’s total capacity.
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Figure 3: Share of Capacity with Majority Owner Change
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Note: This figure shows the change in percentage cumulative ownership of
fossil fuel plants in the US between 2000 and 2020.

690 transactions involving 4,834 generation units and 1,567 plants. About 80 percent of
these transactions involve a generator whose majority owner changes, resulting in 4,030
generators with majority acquisitions. Finally, looking at the firm characteristics, there are
267 unique acquirer firms and 266 target firms in the data.

Despite many acquisitions in the study period, there has been no significant change in
market concentration in the US. Appendix Figure 26 reports the national market shares of
the largest 5, 10, 20, and 30 firms in terms of capacity owned. The concentration fluctuates
over time; however, it is broadly stable in the sample period.?” This is because there is a
considerable firm turnover in the industry, as suggested by the large number of acquirers
and targets in Table 1.7

To show the composition of firms in the industry over time, Figure 4a displays the evo-
lution of ownership by the primary activity of the parent company (utilities, industries,
financials), and Figure 4b displays the evolution of ownership by company type. Figure
4a indicates an increasing presence of financial firms between 2000 and 2020 in the in-
dustry. The share of total capacity owned by financial firms increases from 3 percent in

2000 to 20 percent in 2020, suggesting substantial asset allocations from utilities to finan-

#Note that these concentration ratios are not informative about the changes in market power due to the
local nature of wholesale electricity markets. We report these changes at the national level to see whether
large firms increase their dominance in this industry in the US through acquisitions.

2Some examples can be seen in Appendix Figures 17 and 18, where we report firms with the largest
capacity increase and decrease between 2010 and 2020.
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Figure 4: Market Share by Firm Type
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Note: This figure show the change in the market share of industry and owner types of fossil fuel plants in
the US between 2000 and 2020.

cial firms. Figure 4b highlights that public firms own half of industry capacity, and their
share remains stable over time. Finally, government institutions own 12 percent of in-
dustry capacity. Except for the federally run Tennessee Valley Authority, these are local
governments in primarily rural areas that operate power plants.

Most Acquisitions Reallocate Assets between Incumbent Firms. Most acquisitions are
partial asset sales between two incumbent firms, but there are also transactions where
the target exits or the acquirer enters the industry. Columns 2 and 3 of Table 1 report
the summary statistics separately for transactions where acquirer enters and target exits.
In 19 percent of the transactions, the acquirer firm enters the market; in 21 percent of
transactions, the target firm exits the market. The rest of the transactions occur between
incumbent firms, which have a presence in the industry pre- and post-acquisition. Overall,
these summary statistics suggest a significant asset reallocation between firms, which we
use to test important hypotheses about the allocative efficiency effects of acquisitions.

Transaction Sizes Exhibit Large Heterogeneity. In Figure 5, we report the distribution
of capacity that changed ownership across 689 transactions. While most transactions in-
volve a few plants, we have some moderate-size transactions with an ownership change
of 5,000-10,000 MWh capacity, as well as mega-mergers involving more than 10,000 MWh
capacity.”” Observing this heterogeneity is helpful because it indicates that our results do

not come from a small number of large mergers, and we can test the heterogeneity of the

PTable 5 lists the largest 25 mergers during the sample period.
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Table 1: M&A Summary Statistics

1) (2) 3) (4)
All Acquirer Firm  Target Firm Change in
Enters Market Exits Market Majority Owner
Unit Characteristics
# of Units 4834 701 1692 4030
# of Plants 1567 268 482 1264
# of Unique Units 2365 585 1355 2198
# of Unique Plants 735 222 393 674
# of Acquirer Firms 267 126 107 234
# of Target Firms 266 99 148 229
% Gas 0.81 0.89 0.74 0.81
% Coal 0.13 0.09 0.18 0.13
% Oil 0.06 0.02 0.08 0.06
% Becomes Unregulated 0.04 0.06 0.03 0.04
% in Regulated State 0.24 0.25 0.39 0.24
% in ISO 0.77 0.76 0.71 0.76
Firm Characteristics
. 35.03 0.00 25.56 32.50
# of Units Target Owns g g, (0.00) (39.54) (46.15)
. . 44.60 35.22 11.92 44.05
# of Units Acquirer Owns ) g, (47.16) (22.16) (52.02)
Acquirer Firm Capacit 5459 0 4189 5055
9 Pacly’ (8765) (0) (6883) (8049)
Tareet Firm Capacit 7025 5312 1738 6912
& pactty (9655) (8314) (3588) (9453)
Transaction Characteristics
# of Deals 689 132 147 532
. , 7.0 5.3 11.5 7.6
Deal Size in # of Units (14.7) (8.9) (21.8) (16.0)
. , 1233 986 1922 1298
Deal Size in Capacity (2640) (1981) (3798) (2813)

Note: This table includes M&A activities that include fossil fuel-generating units in the US be-
tween 2000 and 2020. Each column reports the data’s counts and characteristics at varying sam-
ple restriction levels. Column (1) reports data from all acquisitions. Column (2) and Column
(3) present data from transactions where the acquirer firm enters, and the target firm exits the
market, respectively. Column (4) reports data from the majority acquisitions only.
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Figure 5: Heterogeneity in Merger Size
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Note: This figure shows the differences in the size of deals that include fossil
fuel plants in the US between 2000 and 2020.

effect by transaction size.

Ownership Changes Occur at Different Levels of Corporate Structure. Ownership changes
can occur at two levels in a corporate structure: (i) the owner (subsidiary) level and (ii) the
parent company level. Typically, a subsidiary of a parent company is the legal entity that
owns the power plant, and the parent company owns that subsidiary. When a parent com-
pany acquires a subsidiary from another parent company, the subsidiary owner remains
the same, but the parent owner changes. On the other hand, if a subsidiary acquires a
power plant in a partial asset sale, both the owner and parent owner change. Figure 6
shows ownership changes at the owner and parent company levels separately. The left
panel shows that, in around 1,700 acquisitions, the owner remains the same and the parent
company changes. We will use this variation to study the efficiency effects of ownership
changes at different levels of corporate structures. Moreover, the right panel shows that
there are many minority acquisitions where the buyer acquires less than 50 percent of a
power plant. We use these minority acquisitions as placebo tests, as one should expect no
change in efficiency after a minority acquisition.

Some states regulate power plants’ returns from power generation. One might be con-
cerned about the role of regulations, as they might change the incentives to improve pro-
ductivity after an acquisition. To investigate this, Table 1 shows the fraction of acquisitions
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Figure 6: Ownership Change Types
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Note: This figure shows the differences in the ownership level of deals that in-
cludes fossil fuel plants in the US between 2000 and 2020.

that occur in regulated vs. deregulated markets. Most ownership changes (76 percent)
occur in deregulated markets, which is also reflected in the geographic variation of acqui-
sitions (Appendix Figure 23). Another concern could be that ownership changes coincide
with divestitures due to deregulation (Fabrizio et al. (2007)). Even though most state re-
structuring took place in the 1990s, some state restructuring overlaps with our sample
period. For this reason, we look at how many ownership changes were due to forced di-
vestitures. Table 1 reports that only 4 percent of acquisitions coincide with deregulation
after 2000, which we exclude from the sample.

5 Empirical Results

Our empirical strategy aims to identify the causal effect of acquisitions on power plant
efficiency and study potential mechanisms. To do this, we compare productivity trends
at acquired generators to those that are never acquired during the sample period (2,882
generators). We refer to these generators as “control generators.” In most estimations,
each observation is a combination of generator and week, with variables containing pro-
ductivity, ownership, and several generator characteristics. The main advantage of our
empirical setting is the availability of a high-frequency measure of generator efficiency,
which allows us to track productivity immediately before and after acquisition in a short
time frame. As a result, we can treat acquisitions as discrete events.

Before estimating the model, we make several additional sample restrictions. First, we
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30 Second, we

eliminate generators that are inactive more than 90 percent of their lifetime.
drop acquisition events that correspond to divestitures due to deregulation. Third, we
require that target generators have at least one year of data before and after acquisition
so that all in-sample acquired plants contribute to identifying variation in both the pre-
merger and post-merger effect coefficients. Fourth, we focus only on the first acquisitions
if a unit is acquired multiple times (half of all treated units). We remove the observations
of units after the post-treatment period if they are acquired multiple times so that other
acquisitions are not included in the sample. Fifth, we remove all treated units if they are
acquired again within a year of the first acquisition. We provide several robustness checks
for these sample restrictions in Section 8.

We find that acquisitions increase the productivity of power plants by 4 percent, but
only when ownership changes both at the parent company and owner level. In contrast,
ownership changes only at the parent company level do not lead to a significant productiv-
ity increase. The productivity increase starts five months after the acquisition and reaches
the new steady-state level after eight months. We conclude the section by studying the
heterogeneity of the effects. To facilitate the exposition, we defer the detailed examination

of mechanisms to Section 7.

5.1 Mergers and Efficiency

This section presents the main difference-in-differences results from estimating the effects
of mergers on efficiency. To do this, we follow Braguinsky et al. (2015) and estimate a

regression of the following form:
log(y;¢) = 0:1late_pre,, + Oyearly_post,, + Oslate_post,, + X + p1 + a; + €51, (5.1)

where y;, is the efficiency of generator i at week ¢ (measured as inverse heat rate given in
Equation (2.1)); the controls, X;;, include state-month fixed effects, time-varying generator
characteristics such as age and fuel type (for coal), capacity, and indicators for whether the
unit is connected to the grid and whether it is an internal generator. «; is the generator
and y, is week fixed effects. By controlling for the state-month fixed effect, we flexibly
account for changes in demand and the supply of non-fossil fuel electricity generators
(mainly entry of renewables) at the state level. Although it happens rarely, generators can
change their capacity and fuel type; we include fuel type and capacity to control for these

cases. Including generator and week fixed effects implies that merger effects are identified

3Lifetime is defined as the period between the first and last time of production observed in the data.
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Table 2: Balance Table

Acquired Never Acquired

Coal Unit 0.18 0.26
Gas Unit 0.74 0.67
Oil 0.08 0.07
Capacity 179 176
Install Year 1987 1985
Unit in ISO 0.75 0.58

Note: This figure shows the differences between
acquired and never acquired fossil fuel plants in
the US between 2000 and 2020.

within generator changes following a acquisition event.

The regression includes three variables of interest: (i) late_pre, an indicator variable for
1 to 5 months pre-treatment, (ii) early_post, an indicator variable for 1 to 5 months post-
treatment, and (iii) late_post, an indicator variable for 6 to 10 months post-treatment. By
including early and late post-acquisition treatment indicators, we aim to capture the dy-
namic effects of mergers and identify when efficiency changes occur. We include late_pre
to check whether there are any productivity effects of the acquisition before the acquisi-
tion. This could happen due to anticipation effects or disruption in the production process,
as most acquisitions are announced months in advance. Finally, we cluster all standard
errors at the plant level.

It is important to highlight that the unit of analysis is a generator rather than a plant.
While the same firm typically own all generators in a plant, generators might have different
production profiles and maintenance schedules, which would affect efficiency estimates if
inputs and production are aggregated at the plant level. Therefore, we think the generator
is the proper level of analysis, and it is maintained throughout the paper.

Before moving to the results, Table 2 reports the average characteristics of acquired
power plants and power plants that have never been acquired. Treated and control groups
look similar in terms of capacity and installation year. There are some differences in fuel
type: acquired plants are more likely to be gas-fired than the control group. This difference
is anticipated since there is substantial policy uncertainty about the future of coal-fired
power plants, which deters potential buyers. Finally, acquired plants are more likely to
operate in an ISO.

Table 3 shows the results from estimating Equation (5.1) for the outcome variable of
log productivity. It does so for the entire sample of acquisitions (all M&A), as well as for
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Table 3: Regression Results

All Owner/Parent  Only Parent Minority Name
M&A Company Company Owner Changes  Changes
Changes Changes (Placebo) (Placebo)
(i) (ii) (ii) (iv) v)
Late pre- 0.002 -0.003 -0.003 -0.004 -0.007
acquisition (0.005) (0.007) (0.007) (0.008) (0.006)
Early post- 0 0.005 -0.002 -0.008 -0.004
acquisition (0.005) (0.007) (0.007) (0.020) (0.043)
Late post- 0.014 0.039 -0.006 0.001 0.007
acquisition (0.006) (0.012) (0.007) (0.01) (0.01)
Adj. R? 0.622 0.635 0.622 0.652 0.635
# of Obs. 1.79M 1.38M 1.4M 1.12M 1.22M
# of Acq. 1760 897 921 405 456
Unit FE X X X X X
State by Month FE X X X X X
Week FE X X X X X

Note: This table presents the coefficient estimates from estimating Equation (5.1). Standard errors are clus-
tered at the plant level.

different acquisition events: (i) both the parent company and owner firm change; (ii) the
parent company changes and the owner remains the same; (iii) minority acquisitions; and
(iv) owner name changes. Estimates from (iii) and (iv) provide placebo tests, as discussed
later. The results in the first numerical column of Table 3 indicate that efficiency rises after
the acquisition. The efficiency change in the early acquisition period is zero, underscoring
that there is no considerable change in efficiency immediately after acquisition. However,
in the late post-acquisition period, 6 to 10 months after acquisition, the efficiency increases
by 1.4 percent above the pre-acquisition level. Thus, acquired generators’ efficiency levels
improve following acquisition, though it takes time to fully manifest.

Columns (ii) and (iii) of Table 3 test whether the type of ownership change affects ef-
ficiency differently. Column (ii) estimates a difference-in-differences specification, where
treatment is defined as ownership change both at the parent company and owner (sub-
sidiary) levels. In contrast, in Column (iii), a plant is treated when the parent owner
changes, but the owner firm remains the same after acquisition. One might expect the
efficiency effects of an acquisition to be different in these two cases because the owner
tirm typically has direct control over the operation and personnel of the power plant. In
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contrast, the parent company controls the power plant indirectly.” Comparing these two
columns reveals considerable heterogeneity in the efficiency effect. There is no signifi-
cant effect when the owner company remains the same, whereas it is 4 percent if both the
owner and parent company change. These results confirm that the direct owner plays a
more important role than the parent for operational changes to occur in a power plant.

The last two columns of the table serve as placebo tests. For the first placebo test, we use
the 512 minority acquisitions in the data. These are the transactions where the majority
owner remains the same after acquisition. For the second placebo test, we identify 612
changes due to corporate restructuring or name changes, but the generator is not involved
in an acquisition. These are “false” ownership changes that would have been classified
as “acquisitions” from the ownership data, but cross-checking with the transaction data
reveals no actual ownership change. We use these two types of events as placebo tests
because these events would be unlikely to affect power plant efficiency. The results confirm
our expectation that there is no significant change in power plant efficiency after these
events. These placebo tests give us confidence that confounders do not drive the main
results.

To interpret the results from the specification in Equation (5.1) as causal, we rely on the
assumption that an acquisition creates a discontinuous change in power plant behavior.
In contrast, any efficiency trends that might lead to selection would be gradual enough to
be distinguished from the more discrete direct effect. This assumption is likely to hold in
our setting as we observe production at short intervals and include a rich set of control
variables and month-state fixed effects that account for potential efficiency trends in the
industry.” Still, mergers are of course not random and unobservable factors could change
efficiency in the absence of mergers. If those factors are observed by the acquirers, they
can lead to selection, violating the assumptions for causality. For example, the acquirer
might observe that the target plant’s manager will retire soon and decide to buy the plant,
anticipating that the new manager will improve efficiency. To address such a concern, we
estimate the effects of manager changes on efficiency in the absence of mergers and find
that the efficiency increase is only 0.6 percent (Appendix Figure 19). Finally, we do a bat-
tery of robustness checks, presented in Section 8, including matching estimators, Callaway
and SantAnna (2021) estimator, and estimation with daily and hourly data, to show that

$Moreover, ownership changes at the parent level tend to be financial acquisitions, in which the motive
is to achieve diversification or safe returns.

32The 4 percent efficiency gain that is realized in 3-4 month period is not easily explained by other mecha-
nisms. The average annual within-power plant efficiency gain in the industry is only 0.3 percent, with very
little fluctuation fluctuation in efficiency.
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Figure 7: Impact of Merger on Productivity
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Note: The dynamic effects of acquisitions estimated from Equation (5.2).
Standard errors are clustered at the plant level.

the results are robust to several specification choices.*

After showing the significant impact of acquisitions on efficiency, we turn to the dy-
namic effects to more precisely identify when efficiency change occurs and whether there
are any differences in pre-trends. For this purpose, we estimate the efficiency change dur-

ing the time around acquisition using the following regression specification:

log(yir) = Y 0aDis) + Xt + e + 0 + €, (5.2)
s€(—16,16)

where D;;_,) is an indicator variable that equals 1 for generator i if the generator is ac-
quired at time ¢ and zero otherwise. We include the same control variables as in Equation
(5.1). Since we found efficiency effects for ownership changes at the owner and parent
company levels, we restrict our attention to those acquisitions hereafter.

The results from the dynamic effect regression in Figure 7 suggest no significant evi-
dence of differential pre-treatment trends. The coefficients on s € (—16,0) are small and

not significant, suggesting that acquired plants do not have a different efficiency trend be-

33We also want to point out that our estimates report the average effects on treated, i.e, the efficiency effects
of the proposed and approved mergers. These mergers clearly are not random and we will show later that
target firms sell their assets strategically. However, the average treatment effects of treated is the policy-
relevant object of interest because we aim to identify the efficiency effects of the proposed acquisitions, as
merging firms randomly is not a viable policy.
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fore acquisition than those not acquired. The difference remains close to zero until five
months post-acquisition. After that, the efficiency of acquired and control units diverges,
leading to a cumulative efficiency increase of 4 percent. The fact that plants experience
efficiency gain five months after acquisition suggests that it takes time for the new owner

to improve efficiency.*

5.2 Discussion

How significant is the average 4 percent efficiency gain after acquisition, and what are
the corresponding cost savings? To answer these questions, it is helpful to compare our
estimates to average within-plant productivity growth. In the power generation industry,
within-plant productivity growth is small, only 0.3 percent annually, as most aggregate
productivity growth comes from plant entry and exit.”> This small within-plant produc-
tivity growth makes the efficiency gain after acquisitions more even striking.

Next, we quantify the cost saving due to the efficiency increase after an acquisition.
We calculate this number under three simplifying assumptions: (i) acquired plants will
keep the efficiency level after the acquisition; (ii) acquired plants will maintain the same
production level that we observed pre-acquisition; and (iii) there is no redistribution of

production across plants.*

Under these simplifying assumptions, we find that the to-
tal cost-saving amounts to 6 billion dollars. Given this finding, an important question is
whether these cost savings would be passed to consumers. The answer to this question is
complicated, as it depends on whether the acquired plants are marginal or infra-marginal
and how much market power they have. Though this is an important question, it is beyond
the scope of this paper.

Finally, we also estimate the social gains due to CO, emissions resulting from a decline
in fuel usage in electricity generation. Under the assumptions detailed in Appendix B.3,
the total cumulative decline in CO, emissions due to acquisitions between 2000 and 2020 is
roughly 50 million tons. This corresponds to emission reduction from replacing 110 TWh

electricity generation gas-fired power plant with renewables.

34This finding is suggestive of how the efficiency gain occurs. Our interviews with power plant managers
indicated that five months is insufficient to make costly capital investments and upgrades. This suggests
that efficiency improvements occur primarily due to operational changes and adopting best practices rather
than costly capital investments. We will return to this question later for a more formal analysis.

%We show this in Appendix Figure 22, which plots the average year-to-year within-plant productivity
growth for the plants that were not involved in an acquisition. The within-plant productivity growth fluc-
tuates around 0, with an average 0.3 percent annual increase over the sample period.

%Details are provided in Appendix B.3.
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5.3 What Predicts Efficiency Gains: Heterogeneity Analysis

Estimating the average effects of past mergers is important to understand the overall im-
pacts of mergers. However, to draw broader lessons from this industry and guide merger
policy, it is crucial to learn the underlying mechanisms that lead to post-merger changes
and understand what merger and firm characteristics predict them. Thus, the next set of
analyses examines what merger characteristics predict efficiency effects.

Our rich data and a large number of ownership changes allow us to study the relation-
ship between efficiency gains and several plant, firm, and transaction characteristics. For

this purpose, we estimate the following regressions:
log(yit) = 01Dt + 02Dy X Ziy + Xt + pe + o + €3z, (5.3)

where D, is an indicator variable for treatment and Z;; is a plant, firm, or transaction
characteristic. We separately estimate this equation for many plant, firm, and transaction
characteristics and report the estimates of 0. The details of the estimation procedure for
this analysis and how sub-samples are constructed are provided in Appendix B.

We begin by considering five plant characteristics: fuel type (natural gas or coal), age,
regulation status, capacity, and whether the plant is infra-marginal or marginal. Because
only a small number of coal-fired power plants were acquired during the sample period,
heterogeneity result by fuel type is noisy, with no significant heterogeneity effect. How-
ever, there is a significant heterogeneity based on other power plant characteristics. The
efficiency impact of mergers is higher in older power plants, which makes sense because
there is more room for efficiency improvements in older plants due to degradation in per-
formance over time. The efficiency improvements are also higher if the plant is unregu-
lated, larger, and infra-marginal. In all of these cases, the new owner has more incentive to
improve power plant efficiency. This is because, in unregulated plants, any cost-savings
will be retained as profit. In infra-marginal and larger plants, production is higher, so
efficiency improvements would lead to a higher return.

Next, we look at which firm characteristics predict efficiency gains. We focus on trans-
actions where the target firm exits the market, the acquirer enters the market, the acquirer
is a financial firm, the acquirer is large (above or below median), and it is a serial acquirer.
In this specification, we do not detect significant heterogeneity when the target firm exits,
the acquirer firm enters, and the acquirer is a financial firm. However, efficiency improve-
ment is 2 percent higher when the acquirer is large (in total fossil-fuel capacity) and is 5

percent larger when the acquirer is a serial acquirer. These results are consistent with the
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Figure 8: Heterogeneity of the Merger Effects on Productivity
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Note: Estimates of 05 from Equation (5.3) along with the 95 percent of confidence intervals. Stan-
dard errors are clustered at the plant level. Details about the heterogeneity variables are provided
in Appendix B.4. The corresponding coefficient estimates and standard errors can be found in
Appendix Tables 7-9.

interpretation that a firm’s experience in plant operations and acquisitions is an important
predictor of efficiency increase after acquisition.

Finally, we study five transaction characteristics: deal value (which includes non-generation
assets), transaction year (after 2010), the acquirer’s existing capacity in the market, transac-
tion size (acquired fossil fuel capacity), and whether the transaction is a leveraged buyout
(LBO). First, larger transactions by deal size and LBO deals do not lead to a higher effi-
ciency increase. Transactions after 2010 lead to slightly higher efficiency, suggesting that

the results are not specific to acquisitions that occur in a particular time frame.” The ac-

%One alternative explanation for the efficiency gains could be industry-wide improvements in efficiency
after the deregulation wave in the late 1990s and early 2000s. Even though we exclude forced divestitures
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quirer’s total capacity in the US and the capacity in the market are correlated with higher
efficiency improvements.

The analysis in this section suggests that the magnitude of efficiency gains are cor-
related with many plant, firm, and deal characteristics. Even though these findings are
not necessarily causal (the true driver of heterogeneity could be other factors), we still
believe they are valuable for merger policy. Predicting the efficiency effects of mergers
through counterfactual simulations is particularly difficult as most merger simulations fo-
cus on predicting price effects. Therefore, evidence on the efficiency effects of mergers
conditional on a merger’s attributes provides valuable information to assess which merg-
ers could lead to efficiency gains ex-ante.

6 Do Mergers Allocate Resources Efficiently?

Mergers and acquisitions represent a significant source of reallocation in the economy and
account for vast flows of resources between firms. This reallocation can generate allocative
efficiency gains if the assets are allocated from less productive firms to more productive
firms or if acquirers utilize the acquired assets more productively.*® Our empirical setting
provides an opportunity to study the allocative efficiency effects of mergers as we observe
hundreds of asset reallocations between incumbent firms. Motivated by this, this section
investigates whether (i) acquirers are more productive than target firms and (ii) acquirers
have a comparative advantage in utilizing the acquired assets over target firms.

There are two main theories on how acquisitions raise productivity through resource
reallocation. The first, the Q theory of mergers (Jovanovic and Rousseau (2002)), posits
that there are inherent productivity differences between firms and acquisitions transfer
resources from low- to high-productivity firms. This implies a “high-buys-low” pattern.
According to the second theory, proposed by Rhodes-Kropf and Robinson (2008), there
are no systemic productivity differences between firms, but assets and firms could be com-
plementary. Therefore, firms could have different levels of ability to operate different as-
sets. This implies a “like-buys-like” pattern, indicating mergers between complementary
assets. A body of literature has tested these theories of merger gains (Maksimovic and
Phillips (2001), Jovanovic and Rousseau (2008)) without conclusive empirical evidence.

The answers to these questions are also an important input to merger analysis. In

merger simulations of firms with different marginal costs, what researchers should as-

from acquisition events, this result provides evidence that the effect is not due to deregulation.
38 Another view of the literature suggests that most acquisitions are undertaken for other motives, such as
empire-building and managerial hubris (Roll (1986), Jensen (1986)).
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Figure 9: Efficiency of Acquirer and Target’s Plants
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Note: Regression estimates from Equation (6.1). Error bars indicate 95 per-
cent confidence intervals. Standard errors are clustered at the plant level.

sume for the post-merger marginal cost is unclear (Farrell and Shapiro (1990)). In other
words, one needs to know whether efficiency is transferable from one firm to another. It is
well known that organizational challenges for integrating merged firms and dis-economies
of scale at the senior management level could prevent firms from transferring best prac-
tices that improve productivity (Weber and Camerer (2003), Malmendier et al. (2018)). In
our empirical analysis, we also provide evidence for this question.

To understand how mergers allocate resources in the economy, we estimate a difference-
in-differences specification where we analyze the efficiency of three different types of as-
sets: (i) acquired plants, (ii) the acquirer’s existing plants not involved in the transaction,
and (iii) the target’s existing plants not involved in the transaction. In particular, we esti-
mate the following specification:

log(yit) = Z (H{early,pregt + 63late prel, + f%early post/, + Hilate,postgt) + Xt + e + €. (6.1)

J

This regression aims to estimate the level and change of efficiency separately for the tar-
get’s assets, acquirer’s assets, and acquired assets around the time of acquisition. With
these estimates, one can compare the efficiency of the target and the acquirer’s existing as-

sets and identify how they perform relative to acquired plants. Note that this regression
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does not include generator fixed effects because we are interested in estimating level dif-
ferences, not only changes. We deal with potential endogeneity concerns due to the lack
of generator fixed effects by including a rich set of controls, including age, boiler type, fuel
type, boiler model, boiler manufacturer, and generator capacity. We restrict the acquisition
sample to those where the acquirer and target firms own plants not involved in the trans-
action pre- and post-acquisition, which corresponds to 64 percent of all acquisitions. We
drop other acquisitions from the sample, so they are not included in the control group.
We also normalize the efficiency of acquirers” assets to zero in the early pre-acquisition
period, so all other coefficients are estimated relative to 6;.

Figure 9 reports the estimates of three sets of coefficients. The red, blue, and black col-
ors, respectively, indicate the efficiency of the existing assets of the acquirer, the existing
assets of the target, and the acquired assets. Comparing the efficiency levels of the acquirer
and the target’s assets reveals two interesting findings. First, the productivity levels of the
target and the acquirer’s existing plants are roughly constant around the acquisition time.
Second, the acquirer is 1 percent more efficient than the target firm. These estimates sug-
gest that assets are allocated from high-productivity to low-productivity firms; however,
the productivity differences are small.

We next compare the efficiency level of acquired assets with the other asset types. The
first observation is the assets sold by the target firm are underperforming relative to other
assets in the target’s portfolio by 4 percent. This suggests target firms sell their under-
performing plants in their portfolio. What happens to these underperforming assets after
acquisition? The efficiency of these assets improves after acquisition by 4 percent, and
they become almost as efficient as the acquired firm’s other assets.”

Overall, the empirical findings in this section suggest high-productivity firms buy un-
derperforming assets of low-productivity firms and make the acquired asset almost as pro-
ductive as its existing assets after acquisition. These results provide clear evidence for
the two merger efficiency gain hypotheses discussed above. In particular, we find evi-
dence for the high-buys-low pattern, as the acquirers are more efficient than the targets.
We also find evidence for complementary asset theory, in that acquirer firms can improve
the productivity of the underperforming assets of the target firm. Because the acquired
assets are underutilized under the target’s ownership and improve performance under
the acquirer’s ownership, acquisitions contribute to aggregate productivity in the power

generation sector.

%This effect is similar to what we found in the previous section; however, it is estimated less precisely due
to the decline in sample size.
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Figure 10: Productive Efficiency
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Note: Illustration of different efficiency gain mechanisms introduced in Section 7.
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7 Mechanisms

The results so far show large improvements in the efficiency of acquired plants after acqui-
sition. This section investigates the potential mechanisms of efficiency gains and provides
two major findings: (i) most efficiency gains come from improvement in productive ef-
ticiency within a generator and (ii) firms achieve these efficiency gains with operational

improvements rather than costly capital investments.

7.1 Mechanisms of Efficiency Improvements

We propose three mechanisms that could generate the estimated efficiency gain: (i) pro-
ductive efficiency, (ii) dynamic efficiency, and (iii) portfolio (allocative) efficiency. We first
explain these mechanisms and then develop a prediction for each mechanism that can be
tested in the data.

Increase in Productive Efficiency. The first mechanism that could generate efficiency
change is productive efficiency. Productive efficiency arises when the plant’s new owner
adopts operational processes that lower production costs or invest in new equipment. This
mechanism does not rely on synergies with other plants or changes in production profile;
it arises because the new owner operates the plant more efficiently. An implication of pro-
ductive efficiency is the decline in the cost curve at every production level, illustrated in

Figure 10. Based on this implication, a prediction of this mechanism is:

Prediction 1: If acquirers improve productive efficiency, the cost curve of production shifts

down.

Dynamic Efficiency. The second mechanism is dynamic efficiency, which arises due to
better production allocation over time. As discussed in Section 2.3, an important feature
of power generation is that efficiency depends on both the level of production and the
change in production. Plants with large production shifts incur ramp-up and ramp-down
costs, which reduces overall efficiency. Since the demand is stochastic and not predictable,
balancing production by considering ramp-up and ramp-down costs and the shape of the
cost curve is not straightforward. For example, it requires coordination between the trad-
ing desk personnel, who choose a bidding strategy, and plant personnel, who observe
marginal cost and decide on production. Optimizing these margins allows a firm to pro-
duce more with less input by adjusting the production profile even if the cost curve re-
mains identical pre- and post-acquisition. Figure 11 demonstrates this effect where pro-

duction is more concentrated around the efficient scale post-acquisition, implying less
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ramp-up and ramp-down. A prediction of this mechanism is:

Prediction 2: If acquirers improve dynamic efficiency, the standard deviation of heat rate

goes down.

Portfolio (Allocative) Efficiency. The third mechanism to improve efficiency is portfolio
effects. Plant owners solve complex optimization problems with thousands of parameters
as they face stochastic demand and time-varying transmission constraints. Having multi-
ple power plants with different production costs in the same market can give firms more
flexibility and improve efficiency by allocating production optimally across power plants.
This effect is illustrated in Figure 12. Since this mechanism is present only if firms have

other plants in the same market, a prediction for portfolio efficiency is:

Prediction 3: The efficiency of the existing plants of the acquirer firm in the same market

improves.

7.2 Quantifying Mechanisms of Efficiency Gains

We start by testing for productive efficiency using an empirical strategy guided by Pre-
diction 1. In particular, we estimate the cost curves as a function of production level and
ramp (change in production):

Yit = fiT(Qita Tit), (7-1)

where y;, is heat rate, (), is production level as a percentage of the total capacity of gener-
ator i at time ¢, r;; is the ramp defined as the percentage change in production relative to
t—1,and 7 equals 1 in post-merger periods and 0 otherwise. We estimate the cost function
for each generator separately using data one year prior to and one year after acquisition.*’
As a result, f;y corresponds to the cost curve before the acquisition, and f;; corresponds
to the cost curve after the acquisition.*!

It is worth highlighting two critical features of this exercise. First, the estimated cost
function is generator-specific, as indicated by the index i. Estimating the cost curve at
the generator level is important to capture heterogeneity in production technology across

4Since we find that efficiency increase starts a few months after acquisition, we exclude the first three
months post-acquisition from the sample.

#'We estimate these functions for generators that are operating more than 20 percent of the time in the
window one year pre- and post-acquisition to improve precision in unit-specific cost curves. This excludes
some generators that produce only during peak demand and others that are not active before acquisition.
The results are robust to this sample restriction. The details of the estimation procedure are provided in
Appendix B.2.

34



Figure 13: Estimated Cost Curves
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Note: This figure shows estimates of average costs curves one year before acquisition and one year after
acquisition. Panel (a) shows this for the treated group, and panel (b) is for the control group.

generators. Second, different from our main specification, we estimate this regression
using hourly data to control for a ramp. In addition, hourly level data makes it possi-
ble to estimate generator-specific cost functions, since the hourly data include thousands
of observations for each generator pre- and post-acquisition in a one-year window. This
estimation highlights the advantage of the data-rich environment, as the traditional pro-
duction function literature typically imposes a functional form at the industry level due
to data limitations.

We estimate f;y and f;; for every generator acquired during the sample period and
ask how the cost curve changes after acquisition controlling for a ramp. In particular, we

quantify the productive efficiency gain in the following way:

1 Nacq 1 Nacq

AC(Q) = Cpost(Q) - Cpre(Q) = N Z fil(Qa O) - N Z in(Qa 0)7

where N, is the number of acquired generators, @ € (0,100), cpost(Q) is the average
cost at production level @) after acquisition, and c,,.(Q) is the average cost at production
level () before acquisition. The difference between these two functions gives us changes
in productive efficiency at every production level.

Figure 13a displays c,,.(Q) and c¢,o. (@) for the acquired generators, and Figure 13b dis-
plays the same curves for the control generators.*” Comparing the pre- and post-acquisition

#2Details of how the control units are constructed are given in Appendix B.2. We also provide the boot-
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Figure 14: Change in Variation of Heat Rate
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Note: Coefficient estimates from a regression of standard devi-
ation of heat rate on treatment dummies. Error bars show 95
percent confidence intervals.

cost curves demonstrates that the average cost curve shifts down at every production level
for the treated plants, but it does not change for the control plants. The difference between
the cost curves for the treated group is slightly larger at production levels close to the effi-
cient scale, but it is not statistically significant. These results provide direct evidence that
acquirers improve the productive efficiency of the acquired plants.

This analysis also allows us to quantify the role of productive efficiency. To see this,

we integrate the difference between the cost curves:

Nacq

1 Z/(fil(@ao)_fi0<Q,0))dFi(Q),

A —
Nacq

where dF;(Q) is the distribution of production level of generator i before acquisition. This
calculation yields an efficiency gain of 3.3 percent, corresponding to roughly 75-80 percent
of the total efficiency gain identified in the previous section. Therefore, we conclude that
most efficiency gains come from productive efficiency.

Next, we move to dynamic efficiency. According to Prediction 2, an increase in dy-
namic efficiency should reduce the standard deviation of heat rate after acquisition. To
test this hypothesis, we estimate the same specification as in Equation (5.1), but use the

weekly standard deviation of heat rate as the outcome variable. This regression includes

strapped standard errors for the difference between the two cost curves in Appendix Figure 21.
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Figure 15: Impact of Merger on Other Plants

0.050 0.050
0.025 - T 0.025
2 T 1 2
< o < 1 o
£ 0000+------ -tz = - - - - E 0000-----------4+---"J----------~ & -~ -
k7 (] k7 p
w w . —_—
-0.025 -0.025
-0.050 -0.050
Pre Month 1-5 Post Month 1-5 Post Month 6-10 Pre Month 1-5 Post Month 1-5 Post Month 6-10
Time Time
(a) Same Market (b) Different Market

Note: Panel (a) shows coefficient estimates from a regression of log efficiency on treatment dummies where
existing units of the acquirer in the acquisition market are treated. Panel (b) shows the results from the same
regression, except that existing units of the acquirer in the different markets are treated. Error bars show 95
percent confidence intervals. Standard errors are clustered at the plant level.

acquisitions in which the acquirer does not have any existing plant in the same market to
rule out portfolio efficiency. Figure 14 shows the results from this estimation. We find that
the average standard deviation of the heat rate goes down after acquisition, but unlike the
efficiency gain, the decline in the volatility of heat rate is realized more rapidly. There-
fore, the acquirers not only improve production efficiency but also dynamically allocate
production more efficiently over time to reduce ramp-up and ramp-down costs.*’

Finally, we test the portfolio efficiency effects of acquisitions. According to Prediction
3, portfolio efficiency occurs only if the acquirer owns other plants in the same market,
and plants in other markets should not be affected by portfolio efficiency. To test this pre-
diction, we estimate Equation (5.1) twice, one where we treat the acquirer’s generators
in the acquisition market and the other where we treat the acquirer’s generators in dif-
ferent markets.** Figure 15 presents results for these regressions. Figure 15a shows the
efficiency change of the generators owned by the acquirer and located in the same market
as the acquired plant. Figure 15b shows the efficiency change of the generators owned
by the acquirer but located in different markets. We find that acquirers” power plants in
the same market exhibit efficiency improvements by 1.3 percent, whereas acquirers’ power
plants in different markets show no change in efficiency. This result indicates an efficiency

1t is important to point out that the dynamic efficiency channel might not be mutually exclusive from
the predictive efficiency channel. A marginal generator whose efficiency increases after acquisition will be
infra-marginal more often and, therefore, experience less ramp.

#We assume power plants are in the same market if they are located in the same balancing authority.

37



increase for acquirers’ existing power plants, but only if they are in the same market, con-
sistent with the portfolio efficiency mechanism. Moreover, we observe that the efficiency
improvement of the acquirer’s plants is much lower than the efficiency improvements of
the acquired plants, 1.3 percent vs. 4 percent, suggesting that the scope for improvement
through productive efficiency is larger than the scope of improvements through allocative
efficiency.

To summarize this section, we find evidence for all three mechanisms we identified:
(i) productive efficiency, (ii) dynamic efficiency, and (iii) allocative efficiency. The mech-
anism with the largest effect is productive efficiency, explaining about 75 percent of the
total efficiency gain. The rest is explained by the combination of dynamic and allocative

efficiency.

7.3 How Do Firms Improve Productive Efficiency?

So far, we have provided evidence of an efficiency increase after ownership changes, and
this efficiency increase primarily comes from an increase in productive efficiency. The next
natural question is how firms achieve this efficiency gain. In this section, we investigate
this question.

In Section 2.3, we posited two potential ways to improve productive efficiency of a
plant. The first is that acquirers make operational improvements in the acquired plants.
This mechanism would indicate knowledge transfer from the acquirer to the acquired gen-
erator. The second is large-cost capital investments, where acquirers upgrade the capital.
If efficiency improvements occur this way, it would suggest that the previous owner has
credit constraints or does not have incentives to make efficiency-improving capital invest-
ments. Disentangling these two sources of efficiency gains is important for antitrust policy
because efficiency gains must be merger-specific to be considered cognizable.* Efficiency
increases due to relaxing capital constraints are not merger-specific, as they can be accom-
plished without a merger, such as subsidizing capital investment. However, knowledge
transfer is merger-specific since organizational knowledge is transferred between merging
entities and is unlikely to be accomplished without a merger.

We disentangle the sources of productive efficiency improvements with additional
datasets on manager changes and capital expenditures. In particular, we ask whether

power plants experience personnel changes after acquisition and whether there is any

52010 Horizontal Merger Guidelines define cognizable efficiencies as follows: “Cognizable efficiencies
are merger-specific efficiencies that have been verified and do not arise from anticompetitive reductions in
output or service.”
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Figure 16: Probability of Management Change
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significant change in capital expenditures. Personnel changes would provide suggestive
evidence for significant operational changes after the acquisition, and changes in capital
expenditures would provide direct evidence for the role of capital investment. Note that
the capital expenditure information is available only for investor-owned utilities between
2008 and 2020 because it is sourced from FERC Form 1.

We estimate the dynamic difference-in-differences specification given in Equation (5.2)
to study whether power plant managers change after an acquisition. The outcome is an in-
dicator variable that equals 1 if the power plant manager is replaced in a given month and
0 otherwise. We include the same control variables as before but estimate the regression at
the monthly level. Results in Figure 16, show that the probability of management change
jumps with the acquisition, with 15 percent of acquired power plants changing their man-
agers within 1 month and 30 percent changing their managers within 2 months. The cu-
mulative change is 55 percent within 12 months after acquisition.* These results suggest
that acquired firms make operational changes through new management, potentially af-
tecting efficiency. The potential role of management changes in explaining productivity
differences is consistent with the findings in the literature. Macchiavello and Morjaria
(2022) find that foreign acquirers improve the performance of coffee mills in Rwanda by

implementing management changes and Bloom and Van Reenen (2010) show that produc-

% Note that the unconditional probability of management change in a given year is only 10 percent.
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Table 4: Effects of Mergers on Non-fuel Costs

Non-fuel Cost Number of Employees Capital Expenditures
() (i) (i)

Post-Merger x Treat -0.068 -0.054 -0.020
(0.053) (0.031) (0.032)
#of Acq 655 584 678
# of Obs 29325 26866 29418
R? 0.62 0.92 0.86
Unit FE X X X
Year FE X X X

Note: This table presents the coefficient estimates from estimating the effects of mergers on non-fuel cost,
number of employees and capital expenditures with annual data. Standard errors are clustered at the plant
level.

tivity measures correlate with various management practices.

We also investigate whether the characteristics of new managers after mergers differ
from those of new managers without mergers. For a subset of managers, we observe
whether the manager has a master’s degree or a bachelor’s degree. We find that these
managers are 5 percentage points more likely to have a master’s degree and 4 percent-
age points more likely to have a bachelor’s degree compared manager changes without
mergers.

Next, we turn to results from capital expenditures reported in Table 4. Since this vari-
able is at the annual level, we estimate the difference-in-differences specification with
yearly data. The coefficient estimate is negative and not significant, providing evidence
that efficiency improvements do not occur due to increased capital expenditure. The tim-
ing of the efficiency effects also provides indirect evidence against the capital expenditure
hypothesis. Large capital expenditures often take a long time to implement; therefore, it
is not consistent with our findings that efficiency starts to increase five months after ac-
quisition. Overall, the evidence in this section suggests that firms achieve productive ef-
ficiency through operational improvements rather than costly capital expenditures. This
is consistent with the findings of Atalay et al. (2014), which finds evidence for transfers of

¥ Another important question is whether mergers with manager changes explain the efficiency gain en-
tirely. For this, we look at whether mergers with manager changes lead to larger efficiency gains. The results
suggest that the effect is 2 percentage points larger, but it is not statistically significant.

8 Another interesting analysis would be to estimate manager fixed effects using the managers that move
between power plants to quantify their productivity. In our manager data, we do not observe too many
managers moving between power plants, so we do not have power for such an analysis.
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intangible inputs rather than physical inputs in vertical mergers.

Finally, we turn to non-fuel variable inputs. In this paper, we measure the efficiency of
a generator using fuel efficiency by ignoring other potential variable inputs such as labor,
water, and chemicals. A potential concern could be that plants substitute fuel for other
variable inputs, improving fuel efficiency but reducing the efficiency of other inputs. Even
though this is unlikely in power generation because inputs are generally not substitutable,
itis stillimportant to address. For this purpose, we also investigate how other inputs, labor
and non-fuel cost, change after acquisition. The results, reported in Columns (i) and (ii),
indicate no significant increase in the usage of other inputs following an acquisition.

A natural question that follows our findings is why do not the previous owners im-
plement these operational improvements. Since our study is an industry-level analysis
rather than a case study, we cannot give an exact answer to this question. However, we
want to emphasize that this result is not surprising considering the large evidence of per-
sistent productivity differences across firms in many industries (Syverson (2011), Gibbons
and Henderson (2012)). Our reading of the evidence provided in this paper is that some
tirms develop intangible capital over time to operate power plants more efficiently, and this
within-organization knowledge is transferable only through ownership changes. There-
fore, mergers and acquisitions provide a channel for the intangible capital to spread across

plants, which is unlikely to happen in other ways.

8 Robustness Checks

In this section, we investigate the robustness of our results to alternative specifications.
All robustness check results are reported in Appendix E.

8.1 All Acquisitions

In our estimations, we only use the first acquisitions of generators if they are acquired
multiple times (about 25 percent of all plants). We take this approach because it is unclear
how to correctly estimate the event study with generators acquired more than once. In
this robustness check, we repeat our estimation procedure by including all acquisitions
of generators if they are acquired more than once in our sample period. The results are

broadly similar to our main results.
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8.2 Estimation with Daily and Hourly Data

Our main specification estimates the effects of acquisitions with data at the weekly level.
Aggregation at the weekly level decreases computation time and reduces noise in the
hourly data. To understand how robust our results are to this choice, we repeat the es-
timation with daily and hourly data. The results are robust to estimation frequency, with
some increase in standard errors.

8.3 Staggered Difference-in-Differences

Recent literature in econometrics has shown that the difference-in-differences method
could yield a weighted average of all possible permutations of pairwise difference-in-
differences estimators, where a pair is either the never-treated control group compared
with the cohort treated at time ¢, or a cohort treated at time ¢ compared with a cohort
treated later (De Chaisemartin and dHaultfoeuille (2020), Goodman-Bacon (2021), Call-
away and SantAnna (2021)). To address this point, we estimate cohort-specific treatment

effects using the Callaway and SantAnna (2021) method and find similar results.

8.4 Matching Difference-in-Differences

Our main specification uses standard difference-in-differences estimation estimated with
two-way fixed effects. As a robustness check, we also consider a matching estimator.
The matching estimator matches acquired generators to a similar generator and calculate
generator-specific treatment effects by comparing them to match plants. We implement
this estimation by identifying the three nearest neighbors from our sample pool of about
2,882 control (never-treated) units. We match on capacity, age, fuel type and the heat rate
at the time of the acquisition using a least-squares metric to calculate the distances be-
tween generation units, with weights inversely proportional to the standard deviation of
each variable. We use our distance measure to select the three nearest neighbors for each
acquired unit, allowing control units to be matched to multiple acquired plants. We ex-
clude the generators in the same market from the pool of potential control plants due to
potential spillover effects. Matching on pre-acquisition heat rate provides a robustness

check against mean reversion hypothesis.

8.5 Weighted Difference-in-Differences

In our main specification, we estimate average treatment effects without considering the

different capacity sizes of acquired plants. An alternative estimation would be weight-
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ing observations by their production level or capacity, which would be a more accurate
measure of total cost savings. The results from this specification suggest slightly higher
efficiency effects.

9 Concluding Remarks

By allocating resources between firms, mergers and acquisitions affect a significant por-
tion of the economy. Despite this importance, there is limited systematic evidence of their
effects on productivity. This study provides detailed empirical analyses of the efficiency
effects of mergers by examining a large sample of power plant mergers and acquisitions
between 2000 and 2020. Our empirical results can be summarized into three principal
findings. First, we find that acquired plants experience an average of 4 percent efficiency
increase in five to eight months after acquisition, and most of this productivity increase is
explained by improvements in productive efficiency. Second, our findings suggest that ac-
quisitions reallocate assets to more productive uses: we find that high-productivity firms
buy underperforming assets from low-productivity firms and make the acquired asset al-
most as productive as their existing assets after acquisition. Finally, we find that the new
owners improve productivity by changing operational processes rather than bymaking
costly capital investments.

The underlying source of our findings is using a large number of acquisitions in the
power generation industry and taking advantage of high-frequency physical productivity
measures obtained from physical input and output quantities. With physical measures
and studying a homogeneous product, we can disentangle the productivity effects from
other potential merger effects, such as market power, buyer power, and changes in quality.
With high-frequency data, we can treat mergers as discrete events and compare firm pro-
ductivity immediately before and after the acquisition. Finally, by aggregating evidence
from a large number of mergers and acquisitions, we have statistical power to uncover
many interesting mechanisms that could generate efficiency gains.

Our findings have important policy implications, as they can be a direct input to eval-
uating the trade-off between market power and efficiency due to mergers. However, we
want to emphasize that our results do not give a conclusive answer to the overall impact
of mergers on consumer harm, as we identified only one factor going into the welfare
analysis. Moreover, our efficiency results can not be generalizable to industries where the
production process differs significantly from electricity generation, such as service indus-

tries. Beyond antitrust, our results have important implications for the role of mergers on
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aggregate productivity growth. Our finding that mergers reallocate assets to more pro-
ductive firms suggests that mergers contribute to aggregate productivity growth in the
power sector.

We believe that the availability of this high-frequency and high-quality data on power
plant production can be useful for understanding other important issues for antitrust and
productivity, such as quantifying total welfare effects by estimating price effects of mergers
together with efficiency and studying how strategic firm behavior changes after a merger.

These various issues various could be fruitful areas for future research.
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A Data Appendix

A.1 Unit Level Data
We use EIA Forms 860 and 923, EPA’s Continuous Emissions Monitoring Systems (CEMS),

S&P Global, and Velocity Suite to construct a dataset for generator characteristics and pro-
duction. The EIA forms and CEMS data sources are public, whereas S&P Global and
Velocity Suite are private data providers for energy markets. The EIA Forms cover the
universe of generators in the US, whereas the CEMS data include generators with a ca-
pacity above 25 MWh that are subject to environmental regulations. The data providers
S&P Global and Velocity Suite compile unit- and plant-level information from various
resources, including EIA, EPA, FERC, and proprietary sources. We merge these datasets
based on generator and plant names that are available in all datasets. The merged data is a
monthly panel data that include information on plants and generators. These include reg-
ulation status, technology type, install year, fuel type, coal type, boiler type, boiler model,
boiler manufacturer, capacity, fuel cost, prime mover category, dispatch type, whether
a unit is connected to the grid, internal generator, marginal or infra-marginal, and can

switch fuel. We provide more details about some of the variables below.

Generation Most fossil fuel power plants are required under the EPA regulations for
continual compliance determinations of environmental regulation. For this purpose, EPA
collects boiler-level hourly production data (heat rate, input, and output) from power
plants and makes this data publicly available. The coverage of this data corresponds to
roughly 95 percent of fossil-powered generation in the US. While this data is available
starting in 1995, the data quality is poor before 2000. For this reason, we restrict the study
period from 2000 to 2020. We also eliminate generators that are not active for more than
10 percent of their lifetime based on weekly operations. With these restrictions, the final
data includes all US fossil-fuel generators that comply with the CEMS program, except
those in Alaska and Hawaii and those that are active less than 10 percent of their lifetime.
This procedure results in an hourly unit-level dataset on generation fuel input and heat
rate between 2000 and 2020. We aggregate this data to daily to weekly levels in some of
the analyses employed in the paper.

Heat rate observation is calculated by dividing the total heat input by the total electric-
ity output for an hour. If there are significant changes in the production within the hour,
the heat rate could be very high or very low. This sometimes generates noise in hourly

heat rates, especially at small production levels. To account for this, we winsorize heat
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rates above 16 or below 6 MMBtu per MWh. This winsorization affects less than 1 percent
of all observations.

We match unit-level generation data from CEMS to unit-level data from other data
sources mentioned above. While most units are easily matched using the unit name, some
do not match as EPA uses boilers as a unit, whereas EIA uses generator names. For those
cases, we rely on the EPA’s Power Sector Data Crosswalk available on the EPA’s website.*
This crosswalk does not include units that retired before 2020. We manually match those
retired and other unmatched units based on capacity, installment year, and retirement year

information.

Gross vs. Net Generation The generation and heat rate provided by the EPA are based
on gross generation, including the ancillary services and other non-market products and
consumption at the unit, such as scrubbers. For our study, gross generation is the relevant
variable for understanding the overall efficiency of power plants since we study how fuel

is transformed into electricity, not revenue obtained from net generation.

Capacity EPA data does not provide capacity data. Therefore, we need to assign a ca-
pacity for those units that do not exactly match the EIA and CEMS data. We infer yearly
capacity from their generation using the following algorithm for these units. For each year,
we keep generators that operate cumulatively for more than two weeks each year. Then,
we obtain the annual hourly generation distribution and use the 99th percentile of the gen-
eration as the capacity for the unit every year. This algorithm yields generator capacity
that is stable over time for most units. However, for some units, there is a significant vari-
ation year-to-year with no apparent capacity change at the EIA plant-level data. We take
the unit’s maximum capacity for consecutive years in these cases. To check the accuracy
of this algorithm, we run it for the units that have a perfect match in the EPA and EIA, for
which we have the true capacity information. We find that capacity generated from the
EPA data align with those provided by the EIA.

A.2 Plant-Level Data

We use EIA Forms 860 and 923 and Velocity Suite to construct data for plant-level charac-
teristics. From these data sources, we obtain information on location, ISO, NERC region,
regulation status, and other important plant-level information. We also obtain data on

non-fuel input from Velocity Suites, such as capital expenditures, number of personnel,

Yhttps://www.epa.gov/airmarkets/power-sector-data-crosswalk.
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and non-fuel costs. Velocity Suite compiles this data from the annual FERC Form 1, a
comprehensive financial and operating report submitted for Electric Rate regulation and
financial audits. It is mandatory for investor-owned utilities; therefore, the coverage for

these variables is lower than the coverage of other variables.

Regulation To identify ownership changes due to deregulation, we use Cicala (2022)’s
deregulation list from 2000 to 2012. After 2012, we rely on EIA 860’s regulation status for
plants. Using this dataset, we flag ownership changes that coincide with a change in the
regulation status, and we exclude those from the merger sample. This results in a total of
181 plants between 2000 and 2020 that we remove from the merger sample.

A.3 Load Data and Market Definition

We collect data on hourly demand and market definition. Market definition in electricity
markets is more complex than in other industries due to nodal pricing and time-varying
congestion. An accurate time-varying market definition is particularly important for mar-
ket power considerations (Mercadal (2022)). Since we do not study the market power ef-
tects of mergers and need market definition only for accounting for potential synergies,
we define ISO as market and rely on Velocity Suite for plants” corresponding ISOs. This
simple market definition could potentially understate any evidence of the portfolio effects
of mergers, so our estimate will be conservative.

Hourly data on electricity usage (load) is obtained from S&P Global either at the Bal-
ancing Authority Areas (BAA) or ISO Zone level, depending on data availability. We also
use FERC Form 714 to obtain data on the fuel composition of total generation. FERC Form
714 treats Power Control Areas (PCA) as markets; the PCA market definition overlaps with
our ISO market definitions for the deregulated plants and gives further granularity to reg-
ulated plants. Before 2006, data from FERC 714 was incomplete, so we assembled data on
load after 2006. We rely on the EIA’s market definitions to match load data with plants,
resulting in data on load for roughly 70 percent of the plants.

A.4 Personnel Data

Each power plant subject to at least one EPA program must submit a representative to the
EPA. This representative information is essential for the EPA, as potential problems like
leakage need to be addressed quickly, and responsible parties should be accountable. This
data includes the representative’s name, start and end date, and contact information. We

use this data on plant representatives from the EPA between 2000 and 2020 to construct
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personnel data. Even though this data is during our sample period, it does not include
some key information, such as job titles. To obtain this information, we matched represen-
tative names to their LinkedIn profiles and found about 70 percent of representatives on
LinkedIn. The match rate improves over time, reaching 80-90 percent in later years. We
obtain a history of job titles, employment, and education from LinkedIn profiles. The job
title suggests that about 70-80 percent of submitted representatives are plant managers
and the rest are engineers or regulatory compliance managers. Considering that most
of these representatives are plant managers, we treat the representative personnel as the
plant manager in this study.

This procedure results in monthly plant-level panel data on plant managers. In this
data, we know the manager’s start and end date of tenure, employment history, and edu-

cation history.

A.5 Ownership Data

Every acquisition that involves a power plant should be notified to the corresponding state
or federal agency for approval. For this reason, the power generation industry has com-
prehensive data on the universe of power plant mergers and acquisitions. To construct
this dataset, we use two separate datasets from S&P Global: ownership and transaction
datasets.

The first dataset includes all shareholders (name and company ID) of a generator, the
percent of shares owned by each shareholder, and the date of the ownership change. This
dataset is updated for a given generator when there is a change in the generator’s owners.
In particular, for every ownership change, we observe previous and new shareholders.
We turned this data into a month-generator panel dataset and included the largest three
shareholders of every generator in this panel. This panel data includes the ownership
history of each generator between the installment date and the retirement date (if any).
Another advantage of this dataset is that it provides information on the subsidiary that
owns the generator and the parent company that owns the subsidiary. Therefore, we can
see the corporate structure of the owner of this power plant. S&P Global backfills any
company name change, so firm name changes do not affect the ownership structure sig-
nificantly over time. To summarize, this procedure results in a month-generator panel
data with the following information: the largest three shareholders of the generator, the
parent company of each shareholder, and the percentage of the power plant owned by
each shareholder.

The second dataset is mergers and acquisition data. This dataset provides detailed
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information for every transaction, such as buyers, sellers, transaction type (divestitures,
cash deal, LBO), and deal value. This dataset includes a transaction ID and transaction
description. Around 80-85 percent of transactions include transaction descriptions where
one can see acquired assets, acquisition motives, and other important information. The
rest of the transactions do not have a description. For these transactions, we manually
search for companies involved and classify whether these are true ownership changes.
This search revealed that almost all transactions with no description are false acquisitions
due to corporate restructuring or name changes. For this reason, we decided to exclude
acquisitions with no description and corresponding ownership changes from our sample.

Next, we merge the two datasets using transaction ID and company names, which gives
us a complete picture of ownership changes, including new and previous owners and im-
portant merger characteristics. After merging these datasets, we removed the ownership
changes we identified as false ownership changes from the transaction data. This gave us

the final sample of data on ownership changes.

A.6 Firm Data

Even though the transaction data provides useful information about buyers and sellers,
we used Capital IQ to obtain more information about companies involved in transactions.
For this purpose, we merge company balance sheet data from Capital IQ with the own-
ership data from S&P Global. This data merge is straightforward for about 80 percent of
the companies since S&P Global and Capital IQ use the same company ID for them. For
the rest of the companies, we manually searched for company names in Capital IQ and
matched those to the ownership data. We could match all company names except for a
few companies that went bankrupt or were company funds. This firm data provides infor-

mation such as industry, year founded, asset size, and various balance sheet information.

A.7 Sample Restrictions

Before employing the empirical analysis, we made some other sample restrictions. This
section describes those restrictions. We first take month-unit level ownership data for
fossil fuel generators from S&P Global between 2000 and 2020, which rely on EIA data
for unit definitions. We remove a few power plants with missing ownership data for the
entire study period.

Since S&P Global uses the EIA definition of units and our production data is based
on the CEMS definition of units, we need to match the ownership data to CEMS data.
This match is mostly straightforward because all generators operating in a power plant
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are typically owned by the same companies. We rarely observe that different units in a
plant are owned by different companies. For those cases, we use the matching procedure
described above. After the match, we remove units in S&P Global that are missing in
CEMS data. Some units in CEMS data produce only steam. Moreover, some units still
need production data in our observation period. We remove these units from our sample

in both cases.
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B Estimation Details

In this section, we provide the details of various estimation procedures employed in the

main text.

B.1 Estimation of Residual Productivity

This section explains how we estimate the annual residual log-productivity. Our goal is
to account for the observable factors that can affect plant productivity and document that
there is large heterogeneity in residual plant productivity over time and across firms.

We estimate regressions with a rich set of observables and fixed effects to obtain resid-
ual productivity. In particular, in the first step, we use weekly heat rate data aggregated
from hourly data and regress the logarithm of the inverse heat rate on time-varying ob-
served plant characteristics and unit-year indicators. These time-varying variables include
week fixed effects, state-month fixed effects, regulation status, total load, the number of
idle hours, the standard deviation of heat rate, and the number of times the production
increases by more than 2% and 5% in that week. By controlling for these factors, we ac-
count for the potential effects of production profiles on efficiency. In the second step, we
take the estimated unit-year fixed effects and regress them on time-invariant unit charac-
teristics that include capacity, fuel type, boiler manufacturer, and generator model.” The
second regression accounts for productivity differences that are explained by observable
generator characteristics. We use the estimated residuals from this second regression and
plot them in Figure 2. The time-varying observables in the first-step regression explain
45% of the variation in weekly heat rate, and the time-invariant observables explain 42%

of the remaining variation in the second step.

B.2 Cost Curve Estimation

We estimate the generator-specific cost curves using hourly data before and after the merger
by controlling for productivity level (percent of capacity) and ramp-up and ramp-down.
We define ramp as the absolute change in production compared to the previous hour.

We estimate the cost curves for treated and control groups separately. We use the sam-
ple of acquired generators used to estimate in Equation (5.2) for the treated group. Then,

we take the production profile of these generators one year preceding the merger and one

Generator model and characteristics are missing for about 20% of generators. For those, we include a
missing dummy variable.
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year following the merger. We remove generators from the sample if a generator is inac-
tive more than 80 of the time, either during the pre-period or post-period. The results are
robust to this restriction, but they are unstable because, for rarely active generators, the
cost curve is noisy. With this sample, we non-parametrically estimate the cost curve using
Local Polynomial Regression Fitting in R. In particular, we use the loess function in R with
the default tuning parameters.

To construct the control group, we match each treated generator to a never-treated
generator. For the matching procedure, we follow what is described in Section C.4 except
that we match each generator to only one rather than three. After constructing the control
sample, we estimate pre- and post-acquisition cost curves as if these control generators are
acquired at the same as the matched acquired generators.

We estimate the confidence band for the difference between pre-and post-acquisition
cost curves for the treated generators using a bootstrap procedure. We re-sample the
treated generators with replacement and estimate the cost curve for the sample. We repeat
this 200 times and report the 0.025 and 0.975 percentile of the bootstrap distribution.

B.3 Calculation of Fuel and CO; Emission Savings

To quantify the impact of the efficiency gains resulting from the mergers, we calculate the
changes in fuel usage and CO, emissions. First, we assume that after the merger, genera-
tors would produce 10 percent more (Estimated impact of the merger on production) elec-
tricity than they would have if they had not been acquired. Second, we assume that CO,
emissions are linearly increasing with heat rate and CO, emissions a roughly 0.4 tons per
MWh for gas-fired power plants, and 1 ton per MWh for coal-fired power plants. Lastly,
for natural gas, we assume 3% per MMBtu, and for coal 50% per ton; both are conservative
estimations of average fuel prices in the US.

Given the set of assumptions, we first calculate the fuel saving for acquired power
plants. We calculate the total MMBtu in natural gas and ton in coal fuel saving separately.
We find a cumulative 6 billion dollars in saving in fuel costs. For the CO, calculation,
we first calculate the fuel saving for the acquired units, ignoring the potential extra emis-
sion savings due to ramp up and ramp down. For the 10 percent change in production,
we conservatively assume that the production would have been replaced by natural gas
generators rather than coal-fired power plants. With this set of assumptions, the total cu-
mulative decline in CO, emission between 2000 and 2020 is roughly 50 million tons. This
corresponds to emission reduction from replacing 110 TWh generation from fossil plants

with renewables, assuming 80 percent of the saving came from natural gas and the rest
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from coal-fired power plants. With the assumption of a 30 percent utilization rate of wind
power plants, this is roughly equal to 2 GW capacity investment in wind power plants
from 2000 to 2020.

B.4 Heterogeneity Analysis

This section provides the estimation details for the heterogeneity analysis that are pre-
sented in Section 5.3.

To increase the power in detecting heterogeneity, we consider a standard event study
setting where we include a post-treatment dummy variable and interact with the variable
for which we want to understand heterogeneity. In particular, we estimate the following
specification:

10g<yzt) = HlDit + HgTreatitDit X Zz’t -+ Xit + ot + o + €5,

where y;; is the efficiency of generator i at week ¢ (measured as inverse heat rate given in
Equation (2.1), the controls, X;;, include state-month fixed effects, time-varying generator
characteristics such as age and fuel type (for coal), capacity, indicators for whether the unit
is connected to the grid and whether it is an internal generator. «; is generator fixed effect
and 4, is week fixed effect. Z;; is a plant, firm, or transaction characteristic we would like

to test heterogeneity. The results report the estimates of 5.

B.4.1 Plant Characteristics

e Gas Plant: An indicator variable that equals one if the acquired unit is powered by
natural gas and zero otherwise. Since most of the acquired natural gas-fired power

plants, this variable equals 1 for 90 percent of transactions.

e Plant Age > Median An indicator variable that equals one if the age of the acquired
unit is larger than the median. We consider all the units in our main specification to
calculate the median age and find the median value.

e Unregulated Plant: An indicator variable that is one if the plant is unregulated and
zero otherwise.

e Unit Capacity > Median: An indicator variable that equals one if the age of the ac-
quired unit is larger than the median. To calculate the median capacity, we consider

all the units in our main specification and find the median capacity.
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¢ infra-marginal Plant: An indicator variable that equals one if the acquired plant is
infra-marginal and zero otherwise. This categorization is provided by Velocity Suite,
which classifies plants as base load or peaker units.

B.4.2 Firm Characteristics

o Target Exits: An indicator variable that equals one if the target firm owns no fossil
fuel power plants post-transaction and zero otherwise.

e Acquirer Enters An indicator variable that equals one if the acquirer firm owns no

fossil fuel power plants pre-transaction and zero otherwise.

¢ Financial Aquirer: An indicator variable that equals one if the acquirer is a financial

tirm and zero otherwise. The firm classification is obtained from Capital IQ Pro.

e Acquirer Size > Median: An indicator variable that equals one if the total capacity
of the acquirer pre-transaction is larger than the median capacity of firms that have
been involved in a transaction between 2000 and 2020.

e Serial Acquirer: An indicator variable that equals one if the total capacity acquired
by the acquirer between 2000 and 2020 is larger than the median of the total capacity
acquired by firms between 2000 and 2020.

B.4.3 Deal Characteristics

e Deal Value > Median: An indicator variable that equals one if the total transaction

value (including assets other than power plants) and zero otherwise.

e Year>2010 An indicator variable that equals one if the acquisition occurs later after
2010 and zero otherwise.

e Acquirer’s Capacity in the Market>Median: An indicator variable that equals one
if the acquirer’s capacity in the ISO where the plant is located is greater than the
median capacity.

e Acquired Capacity > Median: Anindicator variable that equals one if the total fossil
tuel plant acquired capacity in the transaction is larger than the median.

e LBO Deal: An indicator variable that equals one if the transaction is a leveraged

buyout.
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C Robustness Checks

In this section, we provide the details of the robustness checks we employ in this paper.

C.1 Acquisition Sample

Since our sample covers 20 years of plant production, many generators are acquired multi-
ple times. Of the 2365 units that have been ever acquired, around half of them experiences
multiple ownership changes during the study period. In our main specification, we con-
sidered only the first acquisition of each generator because, with multiple acquisitions, the
post period of the first acquisition overlaps with future acquisitions. For those generators,
it is unclear how to estimate a proper event study. In this section, we investigate the ro-
bustness of our results to this sample restriction by estimating event studies that include
all acquisitions and units acquired only once.

The first robustness check includes all acquisitions except those within 32 months of
each other. We drop these acquisitions because the post and pre-acquisition periods over-
lap. Using this sample, we estimate Equation (5.1) with the following differences. First, for
each event, we include post-treatment indicator variables 16 months following the acqui-
sition, and we include pre-treatment indicator variables 16 months before the acquisition.
The treatment variables are set to zero for 16 months after acquisition and 16 months be-
fore the next acquisition. Therefore, we assume that treated plants follow the same trend
as the control group between the two acquisitions. The results from this estimation pro-
cedure are reported in Appendix Figure 30 and Table 14. The estimates are similar to the
results from our main specification.

In the second robustness check, we include generators acquired only once during the
sample period. This specification significantly reduces the number of acquisitions because
most generators are acquired multiple times. The results from this estimation are reported

in Table 12, which shows efficiency gains after acquisition in this sub-sample.

C.2 Data Frequency

We estimated our main specification with weekly data, where efficiency is defined as total
electricity output divided by total heat input that week. We made this choice because
estimation with weekly frequency reduces the computational burden and reduces noise
due to the aggregation of hourly data. In this section, we analyze whether our results are
robust to data frequency by considering hourly and daily data.
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Estimation with daily data follows the same steps as the estimation in weekly data. We
aggregate fuel input and electricity output to a daily level and define daily efficiency as
total daily electricity input divided by total daily fuel input. The treatment variables are
monthly indicator variables for each month 16 months before and 16 months after acqui-
sition. We estimate the same specification as in Equation (5.1), but include the day of the
week as an additional control variable. Since the day of the week is a strong determinant
of electricity demand, estimation with daily data controls for demand fluctuations more
accurately. The results from this estimation are reported in Appendix Table 10 and Figure
27. The effect of ownership changes on efficiency is similar to what we found with the
weekly data.

In the estimation with hourly data, we use the raw data obtained from CEMS, hourly
electricity output, and fuel input without any processing. We consider the same specifi-
cation as weekly and daily data, but the hour of the day as an additional control. Since
the hour of the day is a strong determinant of electricity demand, the hourly specification
controls for electricity demand much more precisely than daily and hourly data. The re-
sults from this estimation are reported in Appendix Table 11 and Figure 28. The effect of
mergers on efficiency is similar to the results with weekly data. However, estimates are
less precise since hourly data is noisier than weekly and daily data.

Overall, these robustness checks suggest that our results are robust to aggregation of
input and output at the weekly levels.

C.3 Observation Weights

In our regressions, we weighted units equally. A natural alternative to this is to weigh
them by generator capacity, which would be robust to a potential concern that all efficiency
gains come from small units. Moreover, it would be more informative about the total
production affected by efficiency gains. To investigate this, we estimate Equations (5.1) and
(5.2) by weighting units by their capacity in that year. The results from this estimation are
reported in Appendix Table 13 and Figure 31. We find that the efficiency effect is slightly
larger when we weigh units by capacity, which is consistent with the findings reported in
Figure 8 that the efficiency effect is larger for larger units. This finding also indicates that

acquisitions of small units do not drive our main results.

C.4 Matching Estimator

Our main specification uses standard difference-in-differences estimation estimated with
two-way fixed effects. In this section, we also consider a difference-in-differences matching
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estimator as a robustness check.

We match each of our 2,365 acquired units to the three nearest neighbors from the
pool of 2,882 control units that have never been acquired during our sample period. For
each treated unit, we first find the never-treated active units during the acquisition time
with the same fuel type and in a different ISO (to prevent spillovers). This never-treated
sample constitutes the pool of candidate control units for that unit. Then, we find the
nearest neighbor units on capacity and age using a least-squares metric to calculate the
distances between generation units. The weights in the metric are inversely proportional
to the standard deviation of the corresponding variable. We allow control units to be
matched to multiple acquired plants. Using these nearest neighbors, we calculate the unit-
specific treatment effect as follows:

AYjy = Yi(1) — Yy (1), (C1)
where SA/it(l) is the average heat rate of the control units that are matched to ¢ and scaled
such that the average outcome of the control at the time of acquisition is the same as the
outcome of the treated unit. By indexing the levels to a baseline period, we obtain a unit-
specific “difference-in-differences” estimate for any outcome of interest. We take the av-
erage of the unit-specific treatment effects to obtain the final estimates.

To construct the confidence intervals, we employ a bootstrap procedure, where we
resample without replacement the treated generators and follow the same matching pro-
cedure described above. We repeat this procedure 100 times and obtain a distribution of
efficiency gain from bootstrap samples. To construct the confidence bands, we take the 2.5
and 97.5 percentile of the bootstrap distribution to construct the confidence intervals.

The results from this estimation are reported in Appendix Figure 29. We find that
results are qualitatively similar to our main specification

C.5 Staggered Difference-in-Differences

Before estimating the Callaway and SantAnna (2021) method, we do some modification.
Our main specification includes weekly heat rate data, but the treatment coefficients are
included at the monthly level to include the precision. Since the staggared treatment effect
estimation requires data frequency to be the same as treatment frequency, we aggregate
our data to monthly level by taking the average of weekly heat rates in a give month. So
staggered difference-in-differences is estimated at the monthly level. We use never-treated

group as the control group and control for generator age and capacity in the cohort specific
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treatment effect estimation.

To implement the procedure, we use the R package DiDforBigData (Setzler (2022)),
which provides a big-data-friendly and memory-efficient difference-in-differences esti-
mator for staggered treatment contexts. The results, which are similar to our main set
of estimates, are reported in Appendix Figure 32.
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D Additional Tables and Figures

Table 5: Largest 25 Acqusitions

Acquirer Target Year Cap. (MWh) # of units
Vistra Energy Corp. Dynegy Inc. 2018 27198 99
NRG Energy, Inc. GenOn Energy, Inc. 2012 26174 139
Volt Parent, Lp Calpine Corporation 2018 22991 127
RRI Energy, Inc. Mirant Corporation 2000 22748 140
Duke Energy Corporation Progress Energy, Inc. 2012 19048 134
Duke Energy Corporation Cinergy Corp. 2006 14923 70
GC Power Acquisition LLC CenterPoint Energy, Inc. 2004 13204 43
NRG Energy, Inc. Texas Genco Inc. 2006 13017 42
Westar Energy, Inc. Great Plains Energy 2018 12237 66
Vistra Corp. TXU Corp. 2007 11116 45
Exelon Corporation Constellation Energy Group 2012 10790 66
PPL Corporation E.ON AG 2010 10035 44
NRG Energy, Inc. Edison Mission Energy 2014 9052 30
FirstEnergy Corp. Allegheny Energy, Inc. 2011 8631 36
NextEra Energy, Inc. Engie SA 2017 8604 39
Dynegy Inc. Duke Energy Corporation 2015 8387 26
Reliant Resources, Inc. Orion Power Holdings, Inc. 2002 8247 85
AES Corporation DPL Inc. 2006 7879 33
Carolina Power & Light Company Florida Progress Corporation 2000 7721 63
Powergen PLC LG&E Energy Corp. 2000 7445 31
ArcLight Capital Partners, LLC Tenaska Energy Inc. 2015 7398 79
Dynegy Inc. Energy Capital Partners LLC 2015 7334 28
Mid American Energy Holdings NV Energy, Inc. 2013 7149 52
Astoria Generating Co. EBG Holdings LLC 2007 7143 66
Riverstone Holdings LLC Talen Energy Corporation 2016 6941 12

Note: Largest 20 acquisitions in the fossil fuel power generation industry between 2000 and 2020. The
columns indicate the year the transaction occured, total production capacity involved in the transaction,
and the total number of units that changed ownership.
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Table 6: Regression Results for Identifying Mechanisms of Efficiency Gains

.O.W ners .O.wner S Standard Deviation of
Existing Assets Existing Assets Heat Rate
in the Same Market in Different Market
) (i) (iid)
Late-Pre 0.004 0 0.08
(0.006) (0.003) (0.061)
Early-Post -0.004 -0.002 -0.113
(0.005) (0.003) (0.057)
Late-Post 0.015 0.001 -0.161
(0.006) (0.004) (0.105)
R2 0.628 0.625 0.514
# of Obs 1.4M 1.68M 1.22M
# of Acq 897 897 583
Unit FE X X X
State by Month FE X X X
Week FE X X X

Note: This table presents the coefficient estimates from estimating Equation (5.1). Standard errors are clus-
tered at the plant level. This regression in Column (iii) includes acquisitions in which the acquirer does not
have any existing plant in the same market.
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Table 7: Plant Characteristics Heterogeneity Coefficients

Gas  Plant Capacity Unregulated Plant Age Infra-marginal

Plant > Median Plant > Median Plant
Post x Treat 0.007 -0.017 -0.023 0.015 -0.01

(0.022) (0.007) (0.016) (0.009) (0.007)
Post x Treat x Z 0.026 0.079 0.064 0.034 0.085

(0.022) (0.012) (0.018) (0.015) (0.013)
# of Acquired Units 897 897 897 897 897
# of Units with (Z = 1) 809 448 777 416 297
# of Obs (M) 1.19 1.19 1.19 1.19 1.19
Adj. R2 0.638 0.638 0.638 0.638 0.638
Unit FE X X X X X
State by Month FE X X X X X
Week FE X X X X X

Note: Estimates of 6, from Equation (5.3) for plant characteristics. Standard errors are clustered at the plant
level.

Table 8: Firm Characteristics Heterogeneity Coefficients

Financial Serial Target Acquirer Acquirer Size
Acquirer  Acquirer Exits Enters > Median
Post x Treat 0.029 0.011 0.039 0.037 0.016
(0.009) (0.008) (0.01) (0.009) (0.007)
Post x Treat x Z 0.014 0.053 -0.017 -0.019 0.028
(0.015) (0.015) (0.014) (0.013) (0.013)
# of Acquired Units 897 897 897 897 897
# of Units with (Z = 1) 199 430 393 236 421
# of Obs (M) 1.19 1.19 1.19 1.19 1.19
Adj. R2 0.638 0.638 0.638 0.638 0.638
Unit FE X X X X X
State by Month FE X X X X X
Week FE X X X X X

Note: Estimates of 03 from Equation (5.3) for firm characteristics. Standard errors are clustered at the plant
level.
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Table 9: Transaction Characteristics Heterogeneity Coefficients

Acquired Acquirer’s Capacity LBO

Capacity in the Market Year Trans. Value

Deal >2010 > Median

> Median > Median

Post x Treat 0.009 -0.001 0.031 0.016 0.023

(0.008) (0.008) (0.008) (0.009) (0.007)
Post x Treat x Z 0.056 0.058 0.005  0.026 0.034

(0.015) (0.015) (0.014) (0.013) (0.013)
# of Acquired Units 897 897 897 897 897
# of Units with (Z = 1) 448 407 60 374 193
# of Obs (M) 1.19 1.19 1.19 1.19 1.19
Adj. R2 0.638 0.638 0.639  0.638 0.638
Unit FE X X X X X
State by Month FE X X X X X
Week FE X X X X X

Note: Estimates of 6, from Equation (5.3) for transactions characteristics. Standard errors are clustered at the
plant level.
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Figure 17: Firms with Largest Capacity Increase, 2010-2020
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Note: This figure shows firms with the largest capacity increase in fossil fuel
plants in the US between 2000 and 2020.

Figure 18: Firms with Largest Capacity Decrease, 2010-2020

Firms with Largest Capacity Decrease: 2020-2010
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Note: This figure shows firms with the largest capacity decrease in fossil fuel
plants in the US between 2000 and 2020.
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Figure 19: Effects of Manager Change without Mergers on Ef-
ficiency
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Note: This figure shows effects of manager change on efficiency estimated
using the specification given in Equation (5.1).

Figure 20: Case Studies of Heat Rate Improvement
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Note: These pictures demonstrate some methods that were implemented in
power plants to improve heat rate.
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Figure 21: Confidence Band for Cost Curve Differences
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Note: This figure shows average year-to-year within-plant productivity
growth for the plants that were not involved in an acquisition.

Figure 22: Average Within-Plant Annual Productivity Change
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Note: This figure shows average year-to-year within-plant productivity
growth for the plants that were not involved in an acquisition.
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Figure 23: Change of Percentage of Fossil Fuel Generation Capacity
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Note: Geographical distribution of power plant acquisitions by capacity. The diamond indicates
the regulated states.

Figure 24: Heat Rate Improvement Claims From Merging
Firms
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Note: This figure is from the conference call of acquisition of Dynergy by
Vista Energy (2018, $1.74 billion deal).
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Figure 25: Ownership Change Types
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Market Share (% Capacity)

Figure 26: Change in Market Concentration
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Note: This figures show change of concentration ratios in the overall US fos-
sil fuel power plant market between 2000 and 2020.
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E Robustness Checks Results

Table 10: Impact of Merger on Productivity (Daily Data)

Owner/Parent  Only Parent Minority Name
All
M&A Company Company  Owner Changes  Changes
Changes Changes (Placebo) (Placebo)
Late pre- 0.001 -0.003 -0.004 -0.005 -0.006
acquisition (0.005) (0.007) (0.006) (0.007) (0.009)
Early post- 0 0.005 -0.003 -0.01 -0.003
acquisition (0.005) (0.007) (0.006) (0.007) (0.006)
Late post- 0.012 0.034 -0.004 -0.007 0.006
acquisition (0.006) (0.012) (0.006) (0.01) (0.01)
Adj. R? 0.645 0.652 0.642 0.663 0.655
# of Obs. 8.3M 6.26M 6.48M 5.12M 5.77M
# of Acq. 1760 897 921 405 456
Unit FE X X X X X
State by Month FE X X X X X
Week FE X X X X X

Note: This table presents the coefficient estimates from estimating Equation (5.1) using daily data as de-
scribed in Section C.2. Standard errors are clustered at the plant level.
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Table 11: Impact of Merger on Productivity (Hourly Data)

Owner/Parent  Only Parent Minority Name
All
M&A Company Company Owner Changes  Changes
Changes Changes (Placebo) (Placebo)
Late pre- 0.001 0 -0.008 -0.01 -0.003
acquisition (0.005) (0.008) (0.006) (0.011) (0.011)
Early post- -0.004 0.005 -0.008 -0.023 -0.001
acquisition (0.006) (0.008) (0.008) (0.011) (0.008)
Late post- 0.02 0.042 0.001 -0.021 0.005
acquisition (0.008) (0.017) (0.007) (0.013) (0.012)
Adj. R? 0.353 0.365 0.348 0.358 0.373
# of Obs. 146.06M 111.61M 122.03M 99.15M 109M
# of Acq. 1760 897 921 405 456
Unit FE X X X X X
State by Month FE X X X X X
Week FE X X X X X

Note: This table presents the coefficient estimates from estimating Equation (5.1) using hourly data as de-
scribed in Section C.2. Standard errors are clustered at the plant level.

Table 12: Impact of Merger on Productivity (Single Acquisition Units)

Owner/Parent  Only Parent Minority Name
All
M&A Company Company Owner Changes  Changes
Changes Changes (Placebo) (Placebo)
Late pre- 0.001 0.003 -0.005 0.006 -0.028
acquisition (0.007) (0.012) (0.009) (0.018) (0.014)
Early post- -0.001 -0.007 0.002 0.012 -0.013
acquisition (0.006) (0.009) (0.008) (0.016) (0.012)
Late post- -0.002 0.025 -0.017 0.001 0.002
acquisition (0.008) (0.016) (0.01) (0.019) (0.022)
Adj. R? 0.632 0.646 0.631 0.646 0.65
# of Obs. 1.21M 1.03M 1.13M 1.02M 1.03M
# of Acq. 489 133 311 139 112
Unit FE X X X X X
State by Month FE X X X X X
Week FE X X X X X

Note: This table presents the coefficient estimates from estimating Equation (5.1). Standard errors are clus-

tered at the plant level.
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Table 13: Impact of Merger on Productivity Weighted Regressions

Owner/Parent  Only Parent Minority Name
All
M&A Company Company  Owner Changes  Changes
Changes Changes (Placebo) (Placebo)
Late pre- 0.001 0.002 -0.009 -0.007 -0.012
acquisition (0.005) (0.008) (0.007) (0.008) (0.009)
Early post- 0.002 0.01 -0.006 -0.015 -0.003
acquisition (0.005) (0.009) (0.006) (0.009) (0.007)
Late post- 0.014 0.045 -0.01 0.001 0.012
acquisition (0.007) (0.013) (0.008) (0.01) (0.01)
Adj. R? 0.599 0.62 0.599 0.631 0.613
# of Obs. 1.79 1.38 1.4 1.12 1.22
# of Acq. 1760 897 921 405 456
Unit FE X X X X X
State by Month FE X X X X X
Week FE X X X X X

Note: This table presents the coefficient estimates from estimating Equation (5.1) by weighting observations
by capacity as described in Section C.3. Standard errors are clustered at the plant level.

Table 14: Impact of Merger on Productivity All Acquisitions

Owner/Parent  Only Parent Minority Name
All
Me&A Company Company Owner Changes = Changes
Changes Changes (Placebo) (Placebo)
Late pre- 0.002 0.003 -0.003 -0.005 -0.011
acquisition (0.004) (0.007) (0.006) (0.008) (0.008)
Early post- 0.002 0.007 0.002 -0.009 0
acquisition (0.004) (0.007) (0.006) (0.007) (0.005)
Late post- 0.016 0.036 0.003 0.001 0.011
acquisition (0.01) (0.009) (0.01) (0.008)
Adj. R? 0.622 0.635 0.622 0.652 0.635
# of Obs. 1.79 1.38 1.4 1.12 1.22
# of Acq. 2913 1202 1198 430 677
Unit FE X X X X X
State by Month FE X X X X X
Week FE X X X X X

Note: This table presents the coefficient estimates from estimating Equation (5.1) using all acquisitions. The
acquisition sample is described in Section C.1. Standard errors are clustered at the plant level.
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Change in Efficiency

Change in Efficiency

Figure 27: Impact of Merger on Productivity (Daily Data)
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Note: The dynamic effects of acquisitions estimated from Equation (5.2) us-
ing daily data as described in Section C.2. Standard errors are clustered at
the plant level.

Figure 28: Impact of Merger on Productivity (Hourly Data)
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Note: The dynamic effects of acquisitions estimated from Equation (5.2) us-
ing hourly data as described in Section C.2. Standard errors are clustered at
the plant level.
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Change in Efficiency
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Figure 29: Impact of Merger on Productivity (Matching Esti-
mator)
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Note: The dynamic effects of acquisitions estimated using the matching
method described in Section C.4

Figure 30: Impact of Merger on Productivity (All Acquisitions)
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Note: The dynamic effects of acquisitions estimated from Equation (5.2) us-
ing all acquisitions. The acquisition sample is described in Section C.1. Stan-
dard errors are clustered at the plant level.
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Figure 31: Impact of Merger on Productivity (Weighted By Ca-
pacity)
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Note: The dynamic effects of acquisitions estimated from Equation (5.2) by
weighting observations by capacity as described in Section C.3. Standard
errors are clustered at the plant level.

79



Figure 32: Impact of Merger on Productivity (Staggered
Difference-in-Differences)
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Note: The dynamic effects of acquisitions using the method of Callaway and
SantAnna (2021) method. The details are provided in Section C.5. Standard
errors are clustered at the plant level.
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