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Abstract

We document six facts about the structure and dynamics of the LLM market using
API usage data from OpenRouter and Microsoft Azure. First, we show rapid growth
in the number of models, creators, and inference providers, driven by open-source en-
trants. Second, we show price declines and persistent price heterogeneity across and
within intelligence tiers, with open-source models being 90% cheaper than comparable
closed-source models of the same intelligence. Third, we document market dynamism,
with frequent turnover among leading models and creators. Fourth, we present evidence
of horizontal and vertical differentiation, with no single model dominating across use
cases, and demand for intelligence varying widely across applications. Fifth, we esti-
mate preliminary short-run price elasticities just above one, suggesting limited scope
for Jevons-Paradox effects. Finally, we show that although the share of firms that use
multiple models increased over time, most firms concentrate their use on a single model,
consistent with experimentation rather than persistent reliance on multiple models.
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1 Introduction

Artificial intelligence is a general-purpose technology that holds the promise of increasing
productivity, enabling new products, and transforming the economy. Given the importance
of this technology, it is critical for businesses, policymakers, and researchers to measure how
AI is spreading throughout the economy, as well as the market structure of AI. In this paper,
we document new facts about the supply, demand, and pricing of AI models by using data
from two of the largest marketplaces for AI APIs, OpenRouter and Microsoft Azure. Of
particular interest, we provide initial estimates of demand for tokens, showing that short-run
elasticities in the API market are unlikely to justify the Jevons Paradox, in which prices
falling cause total quantity demanded to increase.

We first document the rapid growth of LLMs, their creators, and companies providing
LLM inference for open-source models, such as DeepInfra, Fireworks, and Groq. The number
of distinct models available has grown from just over 253 to over 651 between January 2025
and December 2025. Simultaneously, the number of creators of models has almost doubled
from 43 at the beginning of the year to 85 by the beginning of December. Most of these
entrants specialize in open-source models, whereas the number of closed-source model creators
remains relatively stable. The number of inference providers, primarily serving open-source
models, has grown even more rapidly, increasing from 27 in early 2025 to 90 by late 2025.
This has led to increasing competition in the provision of open-source models, with some
models being served by more than 20 different providers. Concurrent with these trends is
the growth of OpenRouter itself, which has served over 100 trillion tokens this year.

Second, we document trends in LLM pricing by showing both a significant decline over
time and substantial heterogeneity across and within intelligence tiers. Models that were
state-of-the-art in 2023 have experienced a price decline of approximately 1000 times, with
similarly pronounced deflationary trends at other intelligence levels. The average price paid
per token has remained relatively constant, consistent with demand for superior intelligence.
At the same time, there is substantial variation in the prices of models that, according
to benchmarks, are similar in intelligence. Of particular note is that open-source models
are approximately 90% cheaper than closed-source models, conditional on the same level
of intelligence. Nonetheless, the share of tokens consumed from open-source models remains
consistently below 30%, suggesting meaningful differentiation between open and closed-source
models not captured by intelligence measures.

Third, we document substantial market dynamism, with frequent fluctuations in market
0Throughout the paper, we use the terms AI and LLMs interchangeably, recognizing that the architecture of
the models may change over time.
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shares across both models and creators. At the model level, the leading model typically
holds the top position for only a few months before being displaced, and the top 10 models
today accounted for just 20% of market share four months ago and did not even exist ten
months ago. Perhaps more importantly, we observe similar churn at the creator level: over
the course of the year, models from Anthropic, Google, and xAI each held the top market
share on OpenRouter at different points. Open-source models gained market share through
August 2025, but their overall market share has declined since then.

Fourth, we find indirect evidence of both horizontal and vertical differentiation between
models. No single model dominates across use cases (i.e., programming and marketing), and
models with comparable intelligence levels often serve as the top choice for different appli-
cations. Moreover, demand for intelligence varies substantially across use cases: categories
such as programming rely on models close to the frontier, whereas role-play and translation
are dominated by models with considerably lower intelligence. As a result, overall demand is
not concentrated on frontier models on both OpenRouter and Azure: tokens even at the 90th
percentile of the intelligence distribution remain well below the highest available intelligence
levels. This pattern has two implications. First, there is meaningful scope for competition
not only among the most capable models but also among mid-tier and lower-intelligence
models. Second, for many use cases, the incremental gains in intelligence offered by frontier
models do not appear to justify their higher prices.

As supporting evidence for the horizontal and vertical differentiation, we also examine how
demand responds to new model entries on OpenRouter and Azure and find that distinct model
entries yield divergent substitution patterns. Anthropic models, particularly in the Sonnet
family, primarily steal demand from previous Sonnet models but do not substantially affect
demand for other models on OpenRouter. This is consistent with horizontal differentiation
between Anthropic models and those of other providers, and with vertical differentiation
within Anthropic models. In contrast, models such as Google’s Gemini Flash 2.0 and xAI’s
Grok Code Fast 1 are successful but do not cause immediate substitution from other models.

Fifth, we examine the determinants of token demand. We first provide a simple frame-
work for thinking about token demand, distinguishing between the short run and the long run
and between models and within models. We then estimate regressions of tokens on prices,
performance metrics such as latency, and other model characteristics. The primary identi-
fication challenge in these regressions is price endogeneity, which we cannot fully eliminate.
Our most credible specification uses day-to-day variation in prices across providers within the
model. In our preferred estimates, we find price elasticities just above one for model–provider
combinations, suggesting that short-run Jevons’ Paradox is unlikely to operate at the market
level.
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Lastly, we examine the extent to which firms use multiple models simultaneously (mul-
tihoming). We find that, in any given month, more than 50% of firms rely on a single
model, though the share using multiple models has grown steadily over time—from about
25% to 50% between mid-2023 and mid-2025. However, when we focus on the intensive
margin among multi-homers, we find that most firms allocate more than 90% of their total
usage to a single model. This pattern suggests that, for most firms, multi-homing reflects
experimentation rather than persistent, task-specific reliance on multiple models.

Our analysis is primarily based on a scraped dataset from OpenRouter. We also con-
firm many of the findings using aggregated firm-level API usage data from Microsoft Azure.
OpenRouter provides an API that enables app developers and other users to manage in-
teractions with a variety of LLMs, including tools for routing API calls across models and
providers based on price and latency. As a marketplace, OpenRouter provides an excellent
setting for studying changes in demand for LLMs by app developers and their end users. Our
OpenRouter data allows us to observe the tokens called by the model, date, and, in some
cases, the application and category of use. In addition, we observe data on model providers.
We augment the above data with data on model benchmarks from Artificial Analysis.

1.1 Related Literature

The academic literature on AI has primarily focused on three aspects of LLMs: (i) analyses of
occupational exposure to AI (Brynjolfsson et al., 2018; Felten et al., 2018, 2021, 2023; Eloun-
dou et al., 2024; Handa et al., 2025; Shao et al., 2025; Hampole et al., 2025; Demirer et al.,
2025); (ii) macroeconomic modeling of AI (Acemoglu and Restrepo, 2018, 2019; Acemoglu,
2024; Autor and Thompson, 2025); and (iii) empirical evaluations of AI’s productivity effects
(Dell’Acqua et al., 2023; Noy and Zhang, 2023; Peng et al., 2023; Brynjolfsson et al., 2025;
Cui et al., 2025). The exposure literature examines actual LLM prompts or task character-
istics to quantify the extent to which occupations are affected by AI. The macroeconomic
literature incorporates AI into economic models to assess its aggregate impacts. Finally,
the productivity literature relies on experiments or observational data to measure how AI
adoption influences productivity within specific occupations or tasks.

Our paper differs from the existing literature by focusing directly on the LLM market
itself and the enterprise use of LLMs. It supercedes a preliminary analysis in Fradkin (2025).
To the best of our knowledge, there is no comprehensive academic work on the structure and
dynamics of the LLM market. Nagle and Yue (2025), in simultaneous work, investigates the
role of open-source models, and Aubakirova and Midha (2025) provides an industry-oriented
report using OpenRouter data. Additional existing evidence has largely come from industry
trackers such as Artificial Analysis and EpochAI, which provide pricing and performance
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comparisons across models. On the enterprise side, prior research has relied almost exclusively
on survey evidence, both in the academic literature on AI adoption (Bick et al., 2024; Humlum
and Vestergaard, 2025) and in industry reports (Deloitte, 2024; McKinsey, 2024; Eurostat,
2025; Stanford Institute for Human-Centered Artificial Intelligence, 2025). A smaller set
of sources further analyzes demand for LLM models, again based on surveys (Kong Inc.,
2024; Andreessen Horowitz, 2025; Menlo Ventures, 2025). We contribute to this literature
by providing the first comprehensive, non-survey-based dataset on LLM demand.

One advantage of our analysis is that we examine a broad set of models sourced from
multiple providers. Most AI labs produce research based solely on their own proprietary
datasets (e.g., OpenAI and Anthropic; see Chatterji et al. 2025, OpenAI 2025, and Handa
et al. 2025), which makes it difficult to systematically compare models across providers. We
circumvent this limitation by drawing on two distinct sources—OpenRouter and Microsoft
Azure. Moreover, leveraging a large aggregator such as OpenRouter allows us to compare
and evaluate models from numerous providers within a unified empirical framework.

2 The Market for LLMs

We consider the market for LLM inference sold via APIs, measured in metered token usage.
This market is structured in a vertical supply chain, with some players occupying multiple
positions. First, there are LLM creators such as Anthropic, OpenAI, and Google, who train
models, or in some cases modify open-source models. Second, there are inference providers,
such as Azure, Cerebras, Google Cloud, and Together AI. These companies operate compute
clusters that serve a subset of models to their users. Importantly, the same LLM may be
served by multiple inference providers. Lastly, there are aggregators such as OpenRouter
that operate a marketplace for tokens across providers and models.1

Our focus is on LLM usage for business purposes rather than direct consumer demand via
messaging interfaces such as ChatGPT. This is a substantial subset of the broader AI market.
Enterprises can use AI services in a variety of ways, including training or fine-tuning models,
purchasing software on a seat-based license, procuring consulting services, or making API
calls to an existing model, either directly or through an Integrated Development Environment
such as Cline or Cursor. We focus only on API access, since it is by far the most accessible
and the most common mode of adoption for enterprises.2

API access enables a firm’s internal systems to send text or multi-modal requests to a
model hosted by a provider. The request, often called a “prompt,” is transmitted over the

1As far as we know, OpenRouter is the only aggregator with substantial enterprise traction. In the consumer
market, apps such as LMSys, Poe, and Yupp allow users to try a variety of LLMs.

2Menlo Ventures estimates that total enterprise spending on API access for Generative AI increased from $3.5
billion at the start of 2025 to $8.4 billion by mid-year.
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internet through a standardized interface, and the model returns a generated response that
the firm can directly integrate into its own applications.3 This design treats the model as
infrastructure rather than a standalone product: firms do not need to manage training or
deployment themselves, but instead rent intelligence on demand, scaling their usage up or
down depending on their needs.

We now describe each type of actor in this market in greater detail.

2.1 LLM Creators

Creators are the entities that develop and train LLMs. Their main contribution is the design
of the model architecture, the assembly of large-scale training datasets, and the execution
of computationally intensive training runs. Many creators keep their models closed-source,
meaning that access is only possible through commercial arrangements with providers. In
some cases, creators also act as their own providers—for example, Google and Microsoft
develop models internally and offer them directly only through their cloud platform.

At other times, creators distribute their models through multiple providers, making them
accessible across different cloud ecosystems. For instance, Anthropic develops the Claude
family of models and makes them available through Microsoft Azure, Google Cloud, Amazon
Web Services, and on its own platform. This multi-provider strategy expands reach and
adoption while still allowing the creator to control access terms and pricing.

For closed-source models, competition among creators is limited by the data, compu-
tational resources, and expertise required to train frontier-scale LLMs. This concentration
gives creators significant influence over the market’s trajectory and shapes the bargaining
relationships among creators, providers, and downstream enterprises.

Some firms train models but release them under an open-source license. This has, to
date, been the strategy of Meta with its Llama model family, as well as DeepSeek, Moonshot
AI, and others. In the summer of 2025, OpenAI released its first open-source LLM. An
interesting phenomenon regarding open-source models is that they can be modified by others.
For example, models can be fine-tuned to perform better at certain tasks. They can also be
‘distilled’, which means that a smaller model can be made to emulate the outputs of a larger
model. We observe both types of models being used in the market.

2.2 LLM Inference Providers

Inference occurs when models return completion tokens in response to a prompt. Given the
large size of these models, specialized large-scale compute systems are needed, and inference
providers design and offer these systems. To serve the inference market, companies require

3LLMs differ in their context window, which is the size of the prompt that they are able to ingest.
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computing resources, model weights, and orchestration software, often developed in-house.
The available compute is determined by the processors an inference firm has and the en-
ergy required to run them. There is ongoing innovation in optimizing compute systems for
inference.

Inference services are provided by a variety of firms. The three major cloud platforms—
Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP)—offer
inference via API. These companies serve a variety of models, and also have special re-
lationships with certain model creators, which allow them to serve closed-source models.
Specifically, AWS and GCP serve Anthropic’s models, while Azure serves OpenAI’s models.4

Model creators such as Anthropic and OpenAI also operate their own API endpoints.
These endpoints likely use compute from the major cloud platforms but are managed by the
model creators directly rather than by the cloud platforms.5

Lastly, inference is also provided by companies specializing in AI compute services, such
as Together AI, Cerebras, and Groq. These firms typically serve only open-source models and
compete by optimizing software and hardware to enhance speed and reliability. For example,
Cerebras claims to have “The Fastest AI Infrastructure”.6

There are a variety of inference providers that serve the same model. These providers
differ in pricing, context length, completion length, latency, and throughput. In addition,
providers occasionally experience outages during which the service is unavailable, and users
may consider uptime an important factor when choosing providers.

2.3 LLM API Pricing

Inference providers mainly meter usage along four primitives: prompt tokens (the prompt a
firm sends), completion tokens (the text the model generates), reasoning tokens (additional
internal deliberation steps in “reasoning mode”), and cache tokens (prompt tokens, such as
system prompts, that are reused across API calls and are cheaper to serve). Providers quote
price-per-million-token rates and add the metered components to determine the charge for a
call. Cache pricing amortizes fixed prefix costs over repeated calls and turns a long prompt
into a quasi-fixed prompt. Reasoning tokens are only present for models or modes that expose
an explicit reasoning budget; standard decoding does not meter them separately.

Per token prices typically follow a clear hierarchy driven by marginal resource intensity.
4After the sample period covered in this paper, Azure began offering Anthropic models.
5For example, in addition to an $8 billion investment from Amazon, Anthropic announced AWS as its “primary
training partner," which entails using AWS chips and compute resources to build, train, and deploy its models.
See Tech Crunch.

6Cerebras holds the record for fastest AI inference using its computing power. As of September 2025, the
company was valued at $8.1 billion. See Business Wire.
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Reasoning tokens incur the highest unit cost because they require additional compute and
memory beyond standard decoding. Completion tokens are next, as autoregressive generation
is stepwise and scheduler-intensive. Prompt tokens are cheaper because encoding a prefix is
a single pass. Cache writes are usually priced near the prompt price, reflecting a one-time
encoding and storage operation. In contrast, cache reads are deeply discounted—often at the
lowest price point—because they bypass recomputation and exploit locality.

Pricing also reflects competitive dynamics in the provision of inference for open-source
models. Since open-source weights are freely available, multiple providers can host the same
model and differentiate themselves on cost, latency, throughput, reliability, or value-added
services. This often results in downward pricing pressure, with some providers offering sub-
stantially discounted rates or even free tiers for widely used open-source models. In contrast,
closed-source models, in which only the creator controls access, tend to maintain higher, more
stable prices.

2.4 LLM Aggregators and OpenRouter

LLM aggregators are platforms that sit between users and model providers, offering a single
interface through which users can access many different models. Without an aggregator,
users must integrate with multiple APIs separately, track heterogeneous pricing structures,
and manage variability in latency, throughput, and uptime. Rather than requiring users to
integrate separately with each provider’s API, aggregators standardize access, often adding
features such as usage analytics, routing across multiple providers, and pricing transparency.
By lowering switching costs, aggregators play an important role in increasing competition
among providers while also simplifying adoption for enterprises and individual developers.

OpenRouter is the leading LLM aggregator and describes itself as “the unified interface
for LLMs,” with “better prices, better uptime, no subscription.” In practice, this means that
OpenRouter provides a standardized API for invoking any of hundreds of models. This offers
a range of advantages for developers, in addition to its simplicity. One advantage is that, for
models offered by multiple providers (e.g., GPT-4o on Azure versus OpenAI), OpenRouter
can dynamically route API calls based on latency, cost, or throughput. OpenRouter also
allows developers to specify fallback models under defined conditions.

OpenRouter primarily derives revenue by charging a percentage fee on the value of each
API call. This is done in one of several ways. If using an OpenRouter key, users must
purchase credits and are charged 5.5% on the purchase price. If users bring their own key,
for example, for the OpenAI API, they are charged 5% of what the API call would cost
on OpenRouter. OpenRouter also partners with model developers to trial beta versions of
models or to offer discounts.
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On its website, OpenRouter provides influential rankings of the top models by token
usage over time. Each model has a page that includes pertinent information such as price,
uptime statistics, and top apps using the model per week (including tokens used). Apps and
developers receive a 1% discount for allowing their API calls to be used for ranking.7

3 Data

In this section, we present an overview of the data.

3.1 OpenRouter Data

We obtained OpenRouter data through the Internet Archive and web scraping. The dataset
can be divided into three main components.

The first component is model-level data, collected from each model’s page on the Open-
Router website. This page reports, for each provider hosting the model, key features such
as price, quality characteristics (latency and throughput), and additional attributes such as
data retention policies. The model page also provides usage statistics, including total prompt
and completion tokens over the last 90 days, the number of requests, and information on the
model’s creator and release date. In addition to total model usage, we also observe the
number of tokens processed by each provider within a model for the top ten providers.

The second component is category-level data. OpenRouter samples and classifies a ran-
dom sample of queries into use case categories, including legal, health, finance, academia,
marketing, programming, trivia, translation, science, SEO, technology, and roleplay. For
each category, the data report the total number of sampled API requests, the total number
of prompt and completion tokens across these requests, and the distribution of those tokens
across models.

The third component is user-level data. For each model, the platform publishes the top
20 users ranked by the number of tokens consumed. If a user appears among the top 20 users
for any model, its usage across all models is reported on a separate page.

Our OpenRouter sample begins in July 2023. Between July 2023 and January 2025,
the dataset contains gaps, after which a balanced daily panel becomes available. Because
usage volumes are low before January 2025, all analyses of token usage restrict the sample to
begin in January 2025. In contrast, the pricing and intelligence analyses use data starting in
July 2023. Finally, pricing and token-usage information disaggregated at the provider level
becomes available only after April 2025; before this point, we observe only the price of the
advertised provider associated with each model on OpenRouter and each model’s total token
usage. We provide more information about data collection and processing in Appendix C.

7See https://openrouter.ai/docs/faq for Open Router’s pricing and discount information.
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Figure 1: Popularity of LLM Use Cases Over Time

Notes: This figure shows the weekly token share by use case category over time. Each line represents a different
use case category, showing how usage patterns have evolved across different application domains. The x-axis is
calendar time, and the y-axis reports the share of total tokens.

Figure 1 shows the share of usage categories in terms of total tokens used over time.
The top category is programming, accounting for nearly 50% of recent usage. The second-
and third-largest categories are roleplay and technology, each accounting for roughly 15%
of total processed tokens. The remaining categories have substantially smaller shares. This
composition of use cases likely does not reflect the overall distribution of AI use in the
broader economy; our sample is disproportionately weighted toward technology firms and
programming applications. This is important to keep in mind when interpreting some of our
results.

Lastly, there are three nuances worth noting about the OpenRouter data. First, some
companies trial masked versions of their models prior to an official release. For example,
“Optimus Alpha” was actually OpenAI’s GPT-4.1. These requests are included in our token
counts but are treated as separate models throughout our analysis. Second, providers offer
free access to certain models, often with rate or capacity limits. Where appropriate, we
exclude free requests from our analysis, but note that there may be some measurement error.
Third, model names in the raw data required substantial manual cleaning and aggregation
(See Table OA-7 for examples). We discuss this cleaning procedure and other data processing
steps in Appendix D.

3.2 Microsoft Azure Data

The Microsoft Azure data come from its AI Foundry service, which is Azure’s commercial
offering that allows customers to access individual models through an API in a "model-
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as-a-service" paradigm. Unlike OpenRouter, which routes users to LLMs hosted by third-
party providers, Microsoft directly hosts these models, and not all models are available on
the platform. The primary closed-source models are those developed by OpenAI and xAI,
whereas the open-source offerings include models from Meta, DeepSeek, and other open-
source providers. Publicly available sources indicate that Azure AI Foundry processed 100
trillion tokens in the second quarter of 2025.8

The Azure dataset records, at the firm-day level, usage across several dimensions: the
number of prompts, completions, cache, and, where available, reasoning tokens consumed
for each model. In addition, it contains information on customer industry classifications and
model prices. The data are available from July 2023 through June 2025, enabling analysis of
LLM usage patterns in a long panel that begins near the commercial introduction of large
language models. A limitation of this dataset is that it reflects only a restricted set of models
used by a selected group of Azure customers.

3.3 Pricing Data

We collect pricing information from OpenRouter. OpenRouter reports the price of each
model separately for prompt and completion tokens on its model page. These prices are
identical to those charged by the inference providers, as OpenRouter retrieves them directly
from the providers’ APIs.9 This allows us to construct a pricing dataset covering several
hundred models over the past two years, constructing the most comprehensive data on prices
to the best of our knowledge. The pricing data start in July 2023 and are available with
some gaps until November 2024. From this point onward, we observe prices daily.

Some limitations of the pricing data are worth noting. First, OpenRouter has only recently
begun reporting cache pricing, which has become increasingly common. As a result, we do
not have historical cache prices across models. Second, for certain providers—particularly
cloud platforms—prices may vary across regions. In these cases, we observe only the price
from the region selected by OpenRouter.

3.4 Benchmark Data

Benchmarks are commonly used to evaluate model capabilities, with different benchmarks
targeting distinct dimensions, such as coding, mathematics, and general reasoning. While
they have been highly useful in standardizing evaluation and enabling systematic comparisons
across models, many existing benchmarks are beginning to show signs of saturation, making
it harder to distinguish incremental improvements. In addition, there are challenges, such

8Source: Azure Blog Post.
9See OpenRouter Provider Documentation.
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as potential arbitrariness in design and the possibility of question spillover, whereby models
may have prior exposure to related data.

Nevertheless, models differ substantially in their capabilities, and it is helpful to quantify
these differences systematically. To avoid relying on any single arbitrary benchmark, we
draw on benchmark indices from Artificial Analysis, a widely used benchmark provider.
Artificial Analysis reports results across 13 benchmark measures—including MMLU Pro,
GPQA, HLE, LiveCodeBench, and SciCode—and aggregates eight of them into a composite
measure called the Artificial Analysis Intelligence Index (hereafter, the Intelligence Index).10

While the Intelligence Index captures overall intelligence rather than distinct dimensions,
the underlying benchmark indices are highly correlated (see Figure OA-2), suggesting that
the choice of benchmark is unlikely to materially affect our results. We match this metric
to both of our datasets, achieving coverage of 48.9% of models and 87.2% of tokens in the
OpenRouter data.

3.5 Discussion and Limitations of Datasets

While we believe our paper draws on the most comprehensive data available on firms’ use of
LLMs, it is important to acknowledge and discuss the limitations of our data sources. The
main strength of the OpenRouter data is its breadth of model coverage, as it provides access
to nearly every model on the market for API use. This enables us to combine usage data
across models from different providers—something that would otherwise not be possible.

The main limitation of this dataset is that usage data are available primarily at the ag-
gregate level. Another important limitation concerns the selection of users across platforms.
OpenRouter’s primary customer base comprises app developers who create AI-based appli-
cations for mobile platforms and websites, resulting in a user base that is disproportionately
young and startup-oriented. We mitigate these limitations by using firm-level usage data
from Microsoft Azure, which reflects a different composition of firms, likely including more
established, enterprise-level customers.

A word of caution is also warranted when interpreting the Intelligence Index and other
benchmarks. There is no guarantee that such indices are cardinally scaled in an economically
meaningful way. In particular, a one-unit increase from 20 to 21 may represent a different
improvement in difficulty or utility than an increase from 60 to 61.

4 Supply: Models, Creators, and Inference Providers

This section examines the supply side of LLMs. We begin by analyzing the number of models,
creators, and providers over time, and then turn to changes in model capabilities. Our goal is

10See OA-3 for an overview of each of the 13 benchmarks and which ones are included in the Intelligence Index.
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to document the supply of models that are readily accessible via API—rather than all trained
models or wrapper variants. Because OpenRouter captures nearly the whole universe of such
API-accessible models, the models listed on OpenRouter provide a useful measure for this
purpose.

4.1 Models and Creators

Figure 2(a) shows the cumulative number of models over time that were available in Open-
Router, separated into closed- and open-source categories. Since the introduction of GPT-3.5
in late 2022, the number of models has grown exponentially, exceeding 600 by late-2025. Much
of this growth occurred in the last year and a half, with the total rising from about 60 in early
2024 to more than 650 by December 2025. The expansion is driven primarily by open-source
models, which proliferated after July 2023 and quickly surpassed closed-source models. As
of December 2025, there are 434 open-source models compared to 217 closed-source models
ever observed in OpenRouter.11

Figure 2(b) reports the cumulative number of model creators, again separated by open-
and closed-source. As of December 2025, there are 85 unique creators in the dataset, the
majority of which are open source. The number of open-source creators increased sharply
after July 2023 and quickly exceeded that of closed-source creators. By December 2025, there
are 75 open-source creators compared to 10 closed-source creators, suggesting that the surge
in open-source models reflects not just a few prolific creators but also a broader dispersion
of contributors entering the ecosystem.12 It is also worth noting that the number of closed-
source model creators remained at 10 since April 2025, indicating a maturing market where
new closed-source entrants appear to face diminishing returns.

In Appendix Figure OA-3, we report the cumulative number of models created over time
by different creators. The figure highlights the rapid scaling of several leading model creators.
Early growth was driven by OpenAI, Anthropic, and Mistral, but from mid-2024 onward,
we observe a sharp increase in contributions from other providers, such as Google, Qwen,
and DeepSeek. By mid-2025, Qwen and Google surpass all other creators in the number of
released models, each exceeding 50.13

11Some of these models have been deprecated over time and are no longer available, though the deprecation
rate is lower than one might expect.

12The number of open-source model creators is, of course, a significant underestimate, as there are hundreds of
thousands of open-source models from thousands of creators on Hugging Face. Our focus here is on models
that are ready to use via an API, a capability more relevant to enterprise AI adoption.

13Figure OA-4 reports the availability of model families over time, and Figure OA-6 reports the availability of
individual models over time for the top 10 creators.
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Figure 2: Cumulative Growth of LLMs and Creators

(a) Number of Models Created, by Type (b) Number of Creators, by Model Type

Notes: Subfigure 2(a) shows the cumulative number of models and Subfigure 2(b) shows the cumulative number
of creators, labeled for every 3 months from October 2022 through December 2025

4.2 Inference Providers

We next turn to inference providers. As described in Section 2, LLM inference can be offered
by multiple providers beyond the original model creator. The left panel of Figure 3 shows
the cumulative number of inference providers ever observed in the OpenRouter data. In
November 2024, there were 27 providers. This number increased steadily through 2025,
reaching 39 by February, 48 by April, and 90 by December. The rapid growth in providers
is driven primarily by entrants offering inference for open-source models.

How does the entry of inference providers affect competition in model provision? Fig-
ure 3(b) reports the distribution of models by the number of providers offering them, sep-
arately for open- and closed-source models. Most closed-source models are offered by a
single provider, typically the original creator—for example, Gemini models are available only
through Google. Thirty closed-source models are distributed by two providers; most are
OpenAI models offered on both OpenAI’s platform and Microsoft Azure. A smaller set of
models is available through three to five providers. These include Anthropic’s models, hosted
by third-party providers such as Google, Amazon, and Microsoft, and xAI’s models, which
are accessible via Azure and Amazon, as well as via xAI itself.

By contrast, open-source models are far more widely distributed: 137 are hosted by a
single provider, 32 by two providers, and several are hosted by three to ten or more providers.
Notably, 14 open-source models are available from at least ten providers. This reflects the
fundamental difference in competition between closed- and open-source models. Closed-
source models are available only through contractual arrangements with their creators. In

13



Figure 3: Cumulative Growth of Inference Providers and Multi-Hosted Models

(a) Number of Inference Providers (b) Number of Providers per Model, by Type

Notes: Subfigure 3(a) shows the cumulative number of providers, labeled every 3 months from November 2024
through December 2025, and Subfigure 3(b) shows provider distribution by model type for the last 30 days
(November 7, 2025 through December 6, 2025).

Figure 4: Distribution of Provider Performance Metrics for Open-Source Models

(a) Context Window Ratios (b) Latency Ratios (c) Throughput Ratios

Notes: Distributions include open-source models with more than two providers, and ratios are winsorized at 5.
The ratio is normalized relative to the value of the minimum provider offering the same model on that dataset.
The distribution is at the date–provider level and covers March 2025 to December 2025.

contrast, any firm with sufficient GPU capacity can download the weights of an open-source
model and offer inference services. These results suggest that entry rapidly leads to multiple
providers offering identical open-source LLMs.

While providers of open-source models offer the same underlying weights, they can differ
across many dimensions—primarily price (which we analyze in the next section), quality
metrics such as latency, and other characteristics, including the provider’s nationality and
its data-use policies. Figure 4 examines differentiation across these quality metrics. For each
model-provider-date, we calculate a performance ratio by dividing each provider’s value by
the minimum value for that model-date, thereby measuring performance relative to the best
performer (for latency) or the worst performer (for throughput and context window). We
then plot the distribution of these ratios across all model-provider-dates.
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Figure 5: The Improving Intelligence of New Models

Notes: This figure shows the distribution of Artificial Analysis’s Intelligence Index for models created within 6
months of each plotted date, starting from October 2022. The red line is the median, the dark shaded area is
the 25th-75th percentile range, and the light shaded area is the 10th-90th percentile range.

The plots reveal substantial differentiation across providers in latency and throughput,
and comparatively less in context window. For throughput, around 29% of providers are
within 50% of the lowest-throughput provider, while 14% achieve throughput more than
five times higher. Differentiation is similar for latency: about 25% of providers fall within
50% of the lowest-latency provider, while 14% exhibit latencies more than five times higher.
By contrast, context window sizes show less variation, with approximately 44% of providers
offering identical context windows for a given model. These results suggest that price is not
the only factor differentiating open-source model providers; other technical capabilities also
play an important role in shaping competition among providers. In the next section, when
we analyze pricing, we examine how these characteristics influence demand.

4.3 Changes in Model Capabilities

We next analyze how the capabilities of newly launched models have changed over time.
Figure 5 shows the distribution of model capabilities for models released within the past
six months of the date shown on the x-axis, based on the Intelligence Index. The red line
reports the median, while the dark and light gray shaded areas indicate the 25th–75th and
10th–90th percentile ranges, respectively. The results suggest a clear upward trend in the
median model Intelligence Index over time, with the median capability increasing from ap-
proximately 0.1 when GPT-3.5 was launched to over 0.4 today. The widening distribution
further reflects gains at the frontier: today’s top-performing models achieve roughly six times
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Figure 6: Most Intelligent Models Over Time

Notes: This figure displays the maximum of Artificial Analysis’s Intelligence Index each day from October 2022
through December 2025. The vertical lines show when a new model becomes the top performer.

the performance of the earliest models in the sample, and there are now multiple models at
this level. At the lower end of the distribution, however, we continue to observe the launch
of relatively weaker models. This indicates that, even as overall performance improves, the
supply of models is diversifying to meet different capability requirements.

Figure 6 plots the performance of the top model over time, with the frontier model anno-
tated by name. In the early period, GPT-3.5 Turbo and GPT-4 each maintain state-of-the-art
performance for roughly a year, with index scores of 0.08 and 0.24, respectively, illustrating
OpenAI’s early leadership. Beginning around April 2024, other providers briefly take the
lead—first Claude 3.5, followed shortly by Gemini 1.5 Pro—both representing incremental
gains.

A subsequent phase is marked by the emergence of “reasoning” models. The introduction
of o1 produces a discrete jump in the index, comparable in magnitude to the step from GPT-
3.5 Turbo to GPT-4. Several additional reasoning models follow, delivering further—though
smaller—improvements. Overall, Figure 6 highlights OpenAI’s early dominance, the rapid
catch-up by competitors, and, more recently, a pattern of more frequent leadership changes
accompanied by incremental advances at the frontier. This suggests both the industry’s
dynamism and the presence of several firms operating at high levels of intelligence.
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5 Pricing

In this section, we document pricing patterns in the market for LLMs and examine how
prices have evolved over time both within and across models. We show that substantial and
persistent price differences exist even among models with similar benchmark performance. A
key explanatory factor is whether a model is open- or closed-source, with open-source models
priced substantially lower per unit of measured intelligence. Lastly, we analyze market entry
and the resulting price competition among providers that host open-source models.

5.1 Evolution of Pricing

Figure 7 shows the distribution of prompt and completion prices over time. Following a
sharp decline between mid-2023 and early 2024, the cross-sectional distribution of prices has
remained relatively stable even as newer, more capable models entered the market. This
pattern suggests that quality-adjusted prices have continued to decline, a point we analyze in
greater detail below. The figure also reveals substantial price dispersion across models: at any
given point in time, models in the bottom decile are between 50 and 150 times less expensive
than those in the top decile. Such heterogeneity reflects not only vertical differentiation in
model quality but also other factors, including whether a model is open- or closed-source and
inference-related attributes such as latency and throughput.

Figures OA-8 to OA-10 in the Appendix plot the price trajectories of Anthropic, Google,
and OpenAI models over time. A clear pattern emerges: closed-source models exhibit stable
pricing, with most variants maintaining their launch price throughout their lifecycle. When
new versions are released, they often enter at prices comparable to those of their predecessors.
For example, Claude 3.7 Sonnet and Claude 4 Sonnet were introduced at nearly identical
prices, consistent with Anthropic’s broader pricing strategy. By contrast, open-source models
show considerably more volatility, with frequent price adjustments and downward revisions
over time.

This pattern is further confirmed in Figure 8(a), which reports the probability that a
model experiences a price change within a week by model type. Across all models, open-source
models change prices in 5.5% of provider-model-week observations, more than double the
rate of closed-source models at 1.8%. When weighting by usage, the difference is even more
stark: open-source token prices change in 10.5% of provider-model-token-week observations,
compared to 0.9% for closed-source models. Together, these figures highlight a systematic
difference in pricing dynamics: closed-source providers maintain rigid, stable pricing across
model generations, whereas open-source models are subject to active competition among
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Figure 7: Distribution of Token Pricing Over Time

(a) Prompt Token Pricing

(b) Completion Token Pricing

Notes: Distribution of (unweighted) token prices over time on a log scale. The sample includes models available
on OpenRouter on the date shown on the x-axis and excludes free models. Subfigure 7(a) plots prompt token
prices per million tokens; Subfigure 7(b) plots completion token prices per million tokens. The red line shows
the median, the dark shaded band shows the 25th–75th percentile range, and the light shaded band shows the
10th–90th percentile range.
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Figure 8: Probability of Price Change and Token-Weighted Prices Over Time

(a) Probability of Weekly Price Change by
Model Type

(b) Token-Weighted Average Prompt and
Completion Prices Over Time

Notes: Subfigure 8(a) shows the probability that a provider-model combination changes price within a week,
reported separately for open-source and closed-source models. Both unweighted and token-weighted probabilities
are displayed. Subfigure 8(b) reports token-weighted average prompt and completion prices for 2025, computed
using 14-day rolling window averages. Completion prices are weighted by completion tokens, whereas prompt
prices are weighted by prompt tokens.

providers, leading to greater price fluctuations and lower average prices.14

Although the price distribution across models remains relatively stable, the effective prices
developers pay may differ when usage patterns are accounted for. To measure this, we com-
pute a token-weighted average price.15 Figure 8(b) shows the resulting series for 2025. Com-
pletion prices exhibit noticeable cyclical variation, while prompt prices are consistently lower
and more stable. On average, prompt token prices remain close to $1, whereas completion
token prices fluctuate between about $2 and $4 over the year.

5.2 Price of Intelligence

In the previous section, we showed that average prices paid are fairly stable over time. That
said, the intelligence of models has increased drastically over our sample period. In this
section, we document trends in the price of intelligence.

As previously mentioned, Artificial Analysis generates indices of model capabilities by
aggregating results across a variety of benchmarks. The Intelligence Index incorporates per-
formance across eight benchmarks: MMLU-Pro (massive multitask language understanding),

14See Table OA-1 for regression results supporting these findings. Figure OA-7 plots the price trajectories of
the top 5 most popular open (dashed) and closed-source (solid) models on OpenRouter. The prices of closed-
source models remain constant throughout their lifetimes, and new models enter at prices similar to those of
previous models. For example, Claude 3.7 Sonnet and Claude 4 Sonnet have identical pricing. In contrast,
open-source models exhibit substantial price fluctuations, with negative price trajectories on average.

15To calculate this number, we sum price times token quantity and divide by the total number of tokens. We
do not observe cached tokens from OpenRouter, so any caching discounts are excluded from this calculation.
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Figure 9: Prompt Price vs. Intelligence

Notes: Scatter plot of prompt price (log scale) against the AI Intelligence Index. Point size is proportional to
total usage; colors indicate closed- vs. open-source models. The red line shows a fitted linear trend. The date
of this snapshot is December, 6, 2025.

GPQA Diamond (graduate-level scientific reasoning), Humanity’s Last Exam (comprehen-
sive academic assessment), LiveCodeBench (real-time coding evaluation), SciCode (scientific
programming), AIME (mathematical problem-solving), IFBench (instruction following), and
AA-LCR (long-context logical and commonsense reasoning). These benchmarks collectively
assess models’ capabilities across diverse domains, from mathematical reasoning and scien-
tific knowledge to coding proficiency and instruction comprehension. The Coding Index is
based solely on LiveCodeBench and SciCode. Figure OA-1 illustrates the trends in the In-
telligence Index and Coding Index of tokens generated in 2025. We see a steady increase in
the intelligence and coding ability of tokens generated in this period.

Figure 9 displays a scatter plot of price versus intelligence per model as of December 2025,
with the y-axis shown on a logarithmic scale. Each point corresponds to a model, where color
denotes whether the model is open- or closed-source, and point size reflects total usage.

Two patterns emerge. First, the relationship between cost and intelligence is linear in
logs, implying a nonlinear relationship in levels: incremental improvements in intelligence
are associated with disproportionately higher costs at the upper end of the distribution.
Second, there is substantial price dispersion conditional on intelligence. For nearly any given
intelligence score, prices vary by up to two orders of magnitude, and several high-priced
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Table 1: Price-Intelligence Regression Results

Log Price per Million Prompt Tokens
(1) (2) (3) (4) (5)

Intelligence Index 0.039∗∗∗ 0.029∗∗∗ 0.040∗∗∗ 0.052∗∗∗ 0.047∗∗∗

(0.009) (0.010) (0.011) (0.014) (0.017)
Open Source -2.46∗∗∗ -2.17∗∗∗ -2.00∗∗∗ -1.91∗∗∗

(0.266) (0.267) (0.458) (0.440)
Supports Reasoning -0.107 0.132 -0.146 0.097

(0.307) (0.315) (0.367) (0.371)
Log Context Length -0.347∗∗ -0.260∗∗ -0.273∗ -0.323∗∗

(0.134) (0.130) (0.154) (0.149)
Intelligence Index × Model Age 120–360 Days -0.004

(0.019)
Intelligence Index × Model Age 360+ Days 0.085∗∗∗

(0.025)

R2 0.101 0.420 0.457 0.587 0.615
Observations 152 152 152 152 152

Model Age Bin fixed effects ✓ ✓ ✓
Creator fixed effects ✓ ✓

Notes: This table reports regression results examining the relationship between model prices and intelligence
scores. The dependent variable is the log of prompt token price (per million tokens). The main independent
variable is the Intelligence Index from Artificial Analysis. Controls include model characteristics (open source
indicator, context window size), temporal effects (days since model creation), and creator fixed effects. Standard
errors clustered at the model level are reported in parentheses.

models remain in use. An important determinant of this dispersion is whether a model is
open- or closed-source. Closed-source models systematically lie above the fitted trend line,
suggesting that they command a significant premium relative to open-source models with
comparable intelligence levels.

To investigate these patterns further, we conduct regression analyses of price on intel-
ligence and other factors. Table 1 presents the results of regressing log price per million
prompt tokens on intelligence and other model characteristics. Column (1) shows a simple
regression of price on the Intelligence Index, while the remaining columns add controls for
open-source status, reasoning capabilities, context length, and creator fixed effects, as well
as interaction terms.

The regression results confirm that more intelligent models command higher prices: a
one-point increase in the Intelligence Index is associated with a 3.9% increase in price. In
column (2), covariates for the model’s open-source status, reasoning capabilities, and context
length account for 32% of the variation in prices. Adding creator and model-age fixed effects
further increases the explanatory power, and the full specification explains roughly 61% of
the variation in prices.
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Figure 10: Minimum Price of Models of a Given Level of Intelligence

Notes: This figure shows the minimum price for models at each level of intelligence over time. Each line
represents a distinct bin of intelligence scores. The y-axis uses a log scale to display prompt price per million
tokens, and the x-axis shows calendar time.

Another important finding from Table 1 concerns the pricing of open-source models.
Conditional on intelligence levels, open-source models are 87% cheaper than closed-source
models (1− exp(−2)). As shown in Figure 9, despite these lower prices, the market share of
open-source models remains substantially below that of closed-source alternatives. There are
two potential explanations for this gap. First, the Intelligence Index may not fully capture
important differences in model capabilities. Second, users may systematically discount the
value of open-source models—either because of actual or perceived differences such as weaker
brand reputation, privacy concerns, or less extensive customer support.

Next, in Figure 10, we plot the minimum price for a given level of intelligence and how
it has evolved over time. We observe steep declines in pricing across all levels of intelligence.
Perhaps most impressively, the price for a GPT-4 class model has fallen by a factor of
1000 over the course of 2 years. For more recent state-of-the-art reasoning models, such as
OpenAI’s o1, the price drops are, if anything, more rapid.

Not all models released in a given time period are state-of-the-art in terms of intelligence.
In Figure 11, we plot the distribution of the price-to-intelligence ratio for models released
within 6 months of each date. For this figure, we are implicitly assuming that unit increases
in the Intelligence Index are comparable to each other. Although this is surely not exactly
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Figure 11: Distribution of Price-to-Intelligence Ratio Over Time

Notes: The figure reports the distribution of the price-to-intelligence ratio (14-day rolling average), constructed
from all models available on OpenRouter on the corresponding date on the x-axis. The red line represents the
median, the dark shaded area the 25th–75th percentile, and the light shaded area the 10th–90th percentile.

true, it allows us to compare the price distribution of models over time. As in the prior
figure, this figure shows a dramatic decline in the cost of intelligence over time. The figure
also reveals two distinct downward phases. The first occurs with the release of GPT-4, which
was priced lower than GPT-3.5 despite achieving over twice the intelligence score. After a
period of relative stability through much of 2024, prices resume their steady decline with the
introduction of reasoning models.

Figure 11 also shows that prices are increasingly heterogeneous over time. As of December
2025, the price per unit of intelligence ranges from 0.01 to 20. This dispersion reflects at least
two important factors. First, the relationship between price and intelligence is nonlinear: the
cost of additional intelligence tends to increase with model capability. Second, providers
and users may value dimensions other than price, such as latency, throughput, or model
accessibility. We analyze the pricing–intelligence relationship in the remainder of this section
and turn to these additional factors in the next section.

5.3 Pricing of Open-Source Models and Variation Across Providers

So far, we have analyzed overall pricing trends across different LLM models. Another impor-
tant source of variation lies within the models offered by multiple providers. As discussed in
the previous section, many models—particularly open-source models—are hosted by multi-
ple providers. Understanding how competition among these providers translates into pricing
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Figure 12: Coefficient of Variation of Same Model Prices Across Providers

(a) Closed-Source Models (b) Open-Source Models

Notes: Histograms of the coefficient of variation (CV = standard deviation divided by mean) of token prices
across providers for the same model. Subfigure 12(a) shows closed-source models; Subfigure 12(b) shows open-
source models. The x-axis is the CV of provider prices; the y-axis is the count of model observations. Included
models are those with more than one provider on a given day. The sample period is from March 2025 to
December 2025. The unit of observation is model-date.

differences is, therefore, an important question.

Figure 12 reports the distribution of price variation within models across providers, sep-
arately for closed- and open-source models. For closed-source models (Figure 12(a)), we
observe very little variation: in most cases, the coefficient of variation is close to zero. This
suggests that alternative providers price these models nearly identically to the creator. This
result is unsurprising, as closed-source models are typically distributed to third parties un-
der contractual agreements that stipulate uniform pricing (with the notable exception of
Microsoft, which has unique access to OpenAI models)16.

In contrast, Figure 12(b) shows substantial variation in prices across providers for open-
source models, with coefficients of variation reaching as high as 1.7 for some cases. This
finding is striking, given that the underlying models are technically identical across providers.
While some differences in inference quality, such as latency, throughput, or reliability, may
partly explain this variation, the magnitude of the observed price dispersion is unexpectedly
large. In Appendix Table OA-6, we examine the correlation between prices and these at-
tributes. We find that price is positively and statistically significantly related to throughput,
whereas the correlations with the other attributes are not statistically significant.

16For OpenAI models served by Microsoft, we observe that the prices match those charged directly by OpenAI
for the same model.

16There is scope for providers to serve slightly different versions of a model, by limiting the context window or
changing the floating point precision.
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Figure 13: Completion-to-Prompt Price Ratios and their Relationship to Intelligence

(a) Distribution of Price Ratios (b) Price Ratio vs. Intelligence Index

Notes: Subfigure 13(a) shows the distribution of completion-to-prompt price ratios across providers (winsorized
at 6). The unit of observation is model-provider-date. Subfigure 13(b) bins models by intelligence score and
plots the ratio averaged across model-provider-date within each bin, with point size proportional to the number
of models in the bin.

5.4 Pricing of Prompt and Completion Tokens

Another useful measure for understanding LLM pricing is the ratio of completion (output)
to prompt (input) prices. Because the relative intensity of prompt versus completion usage
varies substantially across categories, this ratio is an important determinant of the effective
price users face. Figure 13(a) shows the distribution of this ratio across models. There is
substantial heterogeneity: while many models have roughly equal prompt and completion
prices, a sizable share exhibit higher completion costs. The median completion-to-prompt
price ratio is 3, and 50% of models have ratios between 2 and 5.

Figure 13(b) illuminates this variation by showing the relationship between the completion-
to-prompt price ratio and Intelligence Index. A clear positive relationship emerges: more ca-
pable models exhibit larger price differentials, with completion tokens commanding a higher
premium relative to prompt tokens. Providers therefore systematically differentiate pricing
by model capability, charging relatively more for completion tokens in higher-intelligence
models.

6 Market Dynamics and Differentiation

This section analyzes the market dynamics for LLM models. Because our data does not cover
the entire market, the reported market shares and token usage should not be interpreted as
representative of the global market. Therefore, instead of focusing on precise market shares,
we use observed patterns to draw inferences about the industry’s competitiveness and firms’
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model choices, with the goal of understanding potential vertical and horizontal differentiation.

With this caveat in mind, we focus on three types of analyses: (i) changes in dominant
models and market shares over time, (ii) concentration of models, and (iii) the tendency of
users to multi-home across models. Overall, the results indicate strong vertical and horizontal
differentiation among models, as well as a highly dynamic industry that evolves rapidly with
new model launches.

6.1 Market Shares over Time

Figure 14 illustrates aggregate usage patterns at three levels—by creator, by open-source
status, and by model. Panel 14(a) shows competition among creators by reporting daily
token shares by creator. Google and Anthropic together account for more than half of all
usage until September 2025, but their relative positions shift frequently. Anthropic peaks at
50% in early 2025 following the release of Claude 3.5 and 3.7, before giving way to Google
with the launch of Gemini 2.0 and 2.5, which push Google’s share to just above 40% by
mid-year. DeepSeek grows rapidly in mid-2025, reaching 20% at its peak, while OpenAI
shows temporary gains around the introduction of GPT-4o. Notably, xAI has disrupted this
dynamic in late August by gaining substantial market shares from Google and Anthropic
following the release of its widely adopted model, Grok Code Fast 1. When we look at
creators with smaller market shares, such as Meta-LLaMA, Mistral, and Qwen, they each
maintain a 1–10% niche, and the residual “Others” category maintains a share of 2–15%,
which fluctuated throughout the year. This figure highlights an industry in which usage is
concentrated among a few large providers, yet leadership is constantly reshuffled with each
new release.

Figure 14(b) aggregates usage into open- and closed-source models. Closed-source models
dominate, maintaining roughly 60%–75% of total tokens for most of the sample. Open-source
models gained ground in the first half of 2025: their share rises from about 25% in January
2025 to 45% by August 2025. This increase is closely linked to the release of more capable
open-source models, such as LLaMA 3, Mistral’s dense models, and DeepSeek’s efficient
architectures, which have narrowed the performance gap while offering lower costs and greater
flexibility. However, the market share for open-source models declined in the latter half of
the year to 25% by December 2025, attributable to the emergence of popular closed-source
xAI models such as Grok Code Fast 1. The figure suggests that although closed-source
providers remain the leaders, there is competition for market share between open-source and
closed-source models.

Figure 14(c) zooms in on the market shares of the top ten models as of December 2025.
The figure reveals both concentration and substantial turnover. Although the top ten models
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Figure 14: Aggregate Token Shares Over Time

(a) Daily Token Share by Creator

(b) Weekly Token Usage Share: Open vs. Closed-Source Models

(c) Daily Token Share of Top-10 Models

Notes: Subfigure 14(a) shows usage shares across model creators, Subfigure 14(b) aggregates usage between
open- and closed-source models, and Subfigure 14(c) reports usage shares of the ten most widely used models.
Rolling averages (14-day or weekly) are applied to smooth short-run variation. Market shares are based on the
total number of token consumptions (completion + prompt).
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Figure 15: Token-Weighted Distribution of Intelligence Over Time

Notes: This figure shows the weighted distribution of model intelligences—measured using the Intelligence
Index—weighted by total token usage over time. The sample includes all models available on OpenRouter. The
red line represents the median intelligence of tokens used, the dark shaded area shows the 25th–75th percentile
range, and the light shaded area shows the 10th–90th percentile range. The highest- and lowest-intelligence
models are shown in blue, indicating the upper and lower bounds of intelligence observed in the sample.

collectively account for around 60% of total usage today, the same set accounted for only
about 30% as recently as September 2025. Even more striking, these top ten models had zero
market share in February 2025, as none had yet been released. Looking at individual models
further underscores this rapid turnover. Models that dominated usage in early and mid-
2025—such as Gemini 2.0 Flash and Gemini 2.5—now have negligible market shares. The
panel overall highlights a dual feature of the market: strong responsiveness to innovation, with
adoption shifting quickly after new releases, coupled with persistent concentration among a
small set of leading models at any given point in time.

Next, we analyze the dynamics of the change in the intelligence of tokens over time in
Figure 15. The figure plots the distribution of token-weighted intelligence over time—showing
the median, interquartile range (25th–75th percentiles), and 10th–90th percentiles—alongside
the lowest and highest intelligence levels available in the market, marked by red lines. We
observe a steady upward shift in token-weighted intelligence, consistent with the introduction
and diffusion of newer, more capable models. The median token’s intelligence increases from
0.3 in January 2025 to 0.44 by year-end. Despite these increases, only a small fraction
of tokens are associated with frontier-level intelligence. As of December 2025, the 90th-
percentile token intelligence is only about 0.6, whereas the highest available intelligence
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Figure 16: Category Market Leaders Over Time

Notes: Market leaders are based on 30-day rolling market share by weekly prompt tokens used for each category
use case. The color indicates the creator of the top model in each category.

level exceeds 0.7. This persistent gap indicates that, despite rapid improvements at the
technological frontier, most usage gravitates toward models whose lower prices more than
offset their modestly lower intelligence—suggesting that the premium charged for frontier
models may not be justified for many applications.

6.2 Demand for Intelligence Across Use Cases

One reason for the limited adoption of frontier models may be substantial heterogeneity in
intelligence requirements across use case categories. To investigate this, we next analyze the
dominant models within each major use case and the corresponding intelligence levels implied
by their usage.

Figure 16 shows the leading model for each use case category. Colors denote the model’s
creator, while text labels indicate the specific model name. We highlight the top six cre-
ators—Google, Anthropic, OpenAI, DeepSeek, xAI, and Meta—and group all others into
an “Other” label. The use cases include trivia, translation, technology, science, roleplay,
programming, SEO, marketing, legal, health, finance, and academia.

Two clear patterns emerge. First, no single model dominates across all use cases. Sec-
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Figure 17: Average Intelligence and Pricing by Use Case Category

(a) Average AI Intelligence Index (b) Average Prompt Pricing

Notes: Subfigure 17(a) shows the weighted average intelligence scores of the models used across categories over
the 30-day period from November 7 to December 6, 2025. Subfigure 17(b) shows the average prompt price per
million tokens over the same period across use case categories.

ond, model leadership is highly dynamic over time. Among current category leaders, Google
models hold the top position in just over half of the categories. This underscores that differ-
ent models may have comparative advantages in different domains—for example, Anthropic
models were widely preferred by programmers until the introduction of xAI’s Grok Code Fast
1. We also observe greater variation in category leaders earlier in the sample period, when
models from LLaMA and OpenAI temporarily led in certain categories. This highlights both
the market’s competitive intensity and the horizontal differentiation among models.17

Another important result concerns the dynamics of the industry. This period has seen
several major model launches, and across categories, the leading models are frequently re-
placed by new versions. In programming, for example, leadership transitioned rapidly from
Claude 3.5 to Claude 3.7, then to Claude 4 and 4.5, immediately following their releases.
Similarly, in categories where Google leads, we observe adoption of frontier models such as
Gemini 2.5. However, the timing of adoption is not uniform across categories. Some, such
as programming and legal, adopt newer models quickly, whereas others, such as trivia and
marketing, have not yet transitioned to the latest version of their top model (Gemini 2.5).

A more direct way to observe this heterogeneity is to examine the average intelligence
level across categories. In Figure 17(a), we report average intelligence scores over the 30-day
period from November 7 to December 6, 2025. Programming emerges as the category with

17We also confirm heterogeneous model dominance across industries in the Microsoft data, as shown in Figure
OA-5. Although the sample is primarily restricted to OpenAI models—because they are the only widely used
models offered on Azure during our sample period—we still observe substantial variation across industries in
the dominant models and their capabilities.
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the highest average intelligence, scoring 0.51, followed by science, which scores 0.47. At the
other end of the spectrum, trivia and translation show the lowest intelligence levels, with
scores of 0.37 and 0.32, respectively.

The next question is how much users pay for this intelligence. Here, the heterogeneity is
even more striking. As shown in Figure 17(b), the search engine optimization category pays
an average of $1.40 per million prompt tokens, while translation pays just $0.17 and legal a
mere $0.16.

Taken together, these patterns illustrate a sharp divergence in both the demand for in-
telligence and the willingness to pay across use cases. High-stakes domains such as search
engine optimization, programming, and technology place substantial value on incremental
improvements in capability and are willing to pay a premium for frontier models. By con-
trast, in domains where tasks are simpler or less sensitive to model intelligence—such as trivia
or translation—users gravitate toward lower-priced options, with little incentive to adopt the
most advanced models.

In other words, vertical differentiation in quality interacts with horizontal differentiation
in use cases. The market is not one in which a single “best” model dominates across all tasks.
Instead, model choice is mediated by the extent to which each use case values incremental
intelligence relative to cost. This heterogeneity in demand is a key reason why multiple
creators remain competitive, and why leadership is both dynamic and fragmented across
categories.

6.3 Concentration

Next, we directly analyze market concentration on the OpenRouter platform by creator. Fig-
ure 18 reports market shares by rank, focusing on the top five creators and grouping others
into ranks 6–10, 11–20, and 20+. A few observations stand out. First, overall concentra-
tion appears relatively stable over the sample period, with no evidence of a single creator
dominating the market. Day-to-day fluctuations occur, but the largest creator holds around
25%–50% of usage, while the second-ranked creator ranges between 15%–30%. Beyond the
top two, other leading creators also maintain significant shares: creators ranked 6–10 collec-
tively account for around 5%-15%. Even providers ranked outside the top 10 capture several
percentage points, suggesting meaningful competitive pressure from smaller players.

In Figure 19, we analyze concentration more formally using the Herfindahl-Hirschman
Index (HHI). The HHI is a standard measure of market concentration used in antitrust
analysis, calculated as the sum of squared market shares. Values range from 10,000 in a
monopoly to 0 in a perfectly competitive market, with intermediate values indicating the
degree of concentration (for example, an HHI of 2,500 is equivalent to four equally sized
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Figure 18: Token Usage Share by Creator Rank over Time

Notes: This figure reports creator market shares by rank from January 2025 through December 2025, high-
lighting the top five creators and grouping the remainder into ranks 6–10, 11–20, and 20+. A rank of 2, for
instance, denotes the market share of the second-largest creator on that day, which varies over time. The figure
presents a 14-day rolling average, and market shares are computed from total token consumption (prompt and
completion tokens combined).

firms). The figure shows HHIs at both the model level (orange) and creator level (blue)
across categories, along with benchmark lines for interpreting concentration levels.18

Concentration is high across most categories. Translation is the most concentrated, with
HHIs approaching 8,000—equivalent to a duopoly market with asymmetric firms. Many other
categories, including programming, health, and marketing, record HHIs between 3,000 and
5,000, equivalent to a concentration level when only two or three firms of equal size compete.
Comparing model- and creator-level HHIs reveals that they do not differ significantly from
each other, indicating that when multiple models are used in a given category, they often
originate from the same creator. Importantly, concentration levels do not map directly onto
willingness to pay for quality. Earlier, we found that programming and technology exhibit
the highest willingness to pay, whereas translation exhibits the lowest. Yet translation is
the most concentrated category, showing that competitive structure is not tightly coupled to
demand-side valuation.

Finally, the overall market concentration (“All” category) is significantly lower than the
concentration within individual categories. This indicates that while certain models dominate
in specific domains, multiple creators and models are active across the broader set of use

18Our decision to analyze concentration at the category level should not be interpreted as a claim that each
category constitutes a relevant antitrust market. Rather, our goal is simply to examine usage patterns within
categories and compare concentration across them.
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Figure 19: Average Market Concentration by Category (HHI Index)

Notes: The Herfindahl-Hirschman Index (HHI) is a standard measure of market concentration used in antitrust
analysis, calculated as the sum of squared market shares. Values range from 10,000 in a monopoly (one firm)
to 2,500 in a market with four equally sized firms. The figure shows HHIs at both the model level (orange) and
creator level (blue) across categories, along with benchmark lines for interpreting concentration levels. Market
shares are based on total token usage. The sample period is from January 2025 to December 2025.

cases. Thus, competition is more fragmented at the aggregate level, even though categories
individually tend to be more concentrated - implying that dominance is category specific
rather than market wide.

6.4 Multihoming

The final set of facts we document concerns the extent to which firms multi-home, i.e., use
multiple models within a given period. To study this, we analyze granular model-level usage
data from Microsoft Azure, enabling us to observe firms’ adoption patterns across multiple
LLMs. In Figure 20(a), we present the share of firms using multiple models over time,
measured at the monthly level, distinguishing between those using 1, 2, 3, 4, 5–10, and 10+
models. The plots indicate that most firms use a single model for all API queries. However,
this share has declined significantly since mid-2023 (from over 75% to slightly more than
50%), as the share of firms using 2-5 models has risen steadily over the same period. A
much smaller share but growing share of firms in the right tail employ more than five distinct
models, suggesting experimentation or use case segmentation.

One limitation of these simple multi-homing measures is that they do not capture the
intensive margin of model usage. A firm may rely heavily on a single model while experi-
menting with others, or shift workloads between models across periods. To account for this,
Figure 20(b) reports the distribution of usage shares across a firm’s top models, conditional
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Figure 20: Patterns of Multihoming Across Firms

(a) Share of Firms by Number of Models Used
Over Time

(b) Distribution of Usage Shares Across
Multihoming Firms’ Top Model

Notes: Subfigure 20(a) shows the share of firms using 1, 2, 3, 4, 5–10, or 10+ models in a month over time.
Subfigure 20(b) reports the distribution of usage shares across multihoming firms’ top models as of June 2025,
conditional on firms using at least two models in June 2025.

on multi-homing (using at least two models) as of June 2025. We find that, even among these
multi-homing firms, most spend nearly all of their consumption on a single model, though
a substantial share also use a second model for at least 15% of usage. Our interpretation
of these patterns is that, for most firms, multi-homing reflects experimentation rather than
intensive dual use of models tailored to specific tasks.

7 Demand: Price Elasticities and Differentiation Among Providers

In this section, we examine how demand for AI models responds to changes in price, per-
formance, and other characteristics. Understanding these demand relationships is crucial
for two reasons. First, it helps predict how the AI industry will evolve as models become
more efficient. Second, it speaks directly to a prominent debate about the so-called Jevons
Paradox in AI—the possibility that efficiency improvements could increase total resource
consumption.

7.1 Theoretical Framework

Jevons’ Paradox occurs when technological improvements that reduce the cost of using a
resource lead to such significant increases in demand that total resource consumption rises
rather than falls. In the context of AI, this would mean that more efficient models, requiring
less compute per task, could increase total compute and energy usage.

The paradox emerges under specific economic conditions. Consider an aggregate demand
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function D(p) and a competitive supply with constant marginal cost c, such that p = c.
Total expenditure equals p ·D(p) = c ·D(c). Jevons Paradox occurs when a reduction in c

increases total expenditure, which requires that the price elasticity of demand exceeds unity
in absolute value: |ϵD| = |d logD/d log p| > 1.

While this aggregate condition provides the benchmark, demand estimates are typically
made at a lower level of aggregation. We estimate demand at two levels: (1) across models,
capturing how users substitute between different AI models, and (2) across providers of the
same model. Model-provider level elasticities are larger in magnitude than the corresponding
aggregate elasticity because they measure substitution across models and providers rather
than solely between the outside option and the set of models and providers.

7.2 Empirical Strategy

The primary challenge in estimating demand elasticities is the presence of price endogeneity.
High-quality models command both higher prices and higher quantities, potentially biasing
naive price coefficients upward. We address this challenge through a within-model identifi-
cation strategy that uses variation in prices across providers offering the same model.

Specifically, we estimate:

log(Qimt) = β1 log(Priceimt) + β2 log(Throughputimt) + β3 log(Latencyimt) (1)

+ β4 log(Contextimt) + γtm+ θim+ εimt (2)

where Qimt denotes daily total tokens for provider i offering model m on date t. The key
covariates capture:

• Priceimt: prompt price per token

• Throughputimt: inference speed (tokens/second)

• Latencyimt: time to first token (seconds)

• Contextimt: maximum context window length

The fixed effects γtm and θim control for time by model trends and provider-model quality,
respectively. We also experiment with alternative fixed-effect configurations.

Our identification of β1 relies on within-model price variation arising from two sources:
(1) entry and exit of providers offering the same model, and (2) price changes by existing
providers. Since model quality is held constant, this variation plausibly isolates the causal
effect of price on quantity demanded. Our data for this estimation comprises just open-source
models, since these exhibit within-model price variation.
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Figure 21: Residualized Quantity vs. Provider Attributes for Open-Source Models

(a) Context Length (b) Latency

(c) Throughput (d) Price

Notes: Bin scatter plots of residualized log total token usage against provider attributes for open-source mod-
els. Subfigure 21(a) shows context length; Subfigure 21(b) shows latency (seconds); Subfigure 21(c) shows
throughput (transactions per second); Subfigure 21(d) shows price. The x-axes report residualized log values
of provider attributes, and the y-axes report mean residualized log total token usage. The unit of observation
is a provider–model-day in the analysis; fitted regression lines are shown in red. In each plot, the variables are
residualized with respect to the other three attributes in other plots.

7.3 Empirical Results

Figure 21 presents bin scatter plots of residualized log quantity against four key attributes:
price, latency, context length, and throughput. These bin scatters are based on residualized
variables, meaning that the effects of other attributes, as well as model and date fixed effects,
have been partialled out before the relationship is plotted.

The plots show patterns consistent with higher quality being associated with greater
usage. Specifically, longer context lengths and higher throughput are positively associated
with usage, while higher latency and higher prices are negatively associated with usage. In
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Table 2: Price Elasticity Regressions

Log(Daily Tokens)

(1) (2) (3)

Log(Price) -0.55∗∗∗ -1.08∗∗∗ -1.11∗∗∗

(0.09) (0.19) (0.22)
Log(Throughput) -0.40∗∗ -0.01 -0.07

(0.16) (0.08) (0.05)
Log(Latency) -0.11 -0.31∗∗∗ -0.13∗∗∗

(0.24) (0.08) (0.04)
Log(Context Length) 0.82∗∗∗ 0.27∗∗∗ 0.22

(0.13) (0.10) (0.24)

Observations 32,539 32,539 32,539
R2 0.34 0.76 0.97
Within R2 0.31 0.16 0.06

Date fixed effects ✓ ✓
Model fixed effects ✓
Date × Model fixed effects ✓
Model × Provider fixed effects ✓

Notes: This table reports regression results estimating price elasticity of demand at the provider-model-day
level. The dependent variable is the log quantity (tokens). The main independent variable is log price (per
million tokens). Controls include provider performance characteristics (context window ratio, throughput ratio,
latency ratio), model characteristics (Intelligence Index, open source indicator), and temporal effects. All
specifications include model- and provider fixed effects. Standard errors clustered at the provider level are
reported in parentheses.

terms of magnitudes, the strongest relationship is observed with price.19

Table 2 displays the demand model estimates. Column (1) includes the above variables
and just a date fixed effect. This coefficient on price in this specification is -0.55, suggesting
a very small elasticity; however, without accounting for differences in model quality this
estimate is biased. In Column (2), we add model fixed effects, allowing us to control for
unobserved quality differences across models. Under this specification, we find a more sizable
elasticity, -1.08, which is at least potentially consistent with Jevons’ paradox. However,
it may be that cheaper providers of a given model are also better in other respects, not
captured by our covariates. In column (3), we add provider-model and date-model fixed
effects. Identification now derives solely from variation within day and model. We find an
elasticity of -1.11.

We also find effects consistent with the expected signs for latency and context length.
When these increase, the number of daily tokens decreases. However, in our preferred spec-

19An important caveat is that OpenRouter allows users to either select a specific provider or delegate the choice
to its routing algorithm. OpenRouter’s algorithm selects providers based on a combination of price and other
attributes. Thus, some of the observed price sensitivity may reflect routing decisions made by OpenRouter
rather than direct user choices.
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ification (3), higher throughput is associated with lower demand. This is consistent with
providers having finite capacity. When more tokens are requested, throughput decreases.
Note that this raises endogeneity concerns, since demand affects throughput. In Table OA-5,
we show a version of the demand estimation without provider performance metrics and find
very similar results.

Although the elasticities we find are consistent with a provider-level Jevons paradox effect,
they are very close to one in magnitude. Since aggregate demand elasticities are substantially
smaller, we interpret our findings as going against the Jevons paradox in the short-run. This,
however, does not preclude from Jevons effects operating on longer-run horizons. Firms may
take time to decide whether and to what extent to use LLMs. As a result, short-run price
fluctuations may not lead to significant changes in quantity, even as year-over-year price
declines result in substantially more LLM usage. This is consistent with the huge growth in
tokens served across OpenRouter and the industry as a whole.

8 Substitution and Market Expansion: Evidence from Model Entry

In this section, we examine how new model releases affect the demand for existing models.
Understanding substitution patterns is important for characterizing competition in the in-
telligence market: do new models primarily cannibalize their predecessors, steal share from
rivals, or expand the overall market? We conduct a series of case studies using data from
OpenRouter and Microsoft Azure, focusing on major model releases and tracking usage of
competing models in the days surrounding each launch. We find heterogeneous substitution
patterns across providers. Some model families exhibit strong within-brand cannibalization,
while others appear to expand the market with minimal displacement of competitors. We
also show that users of a given Coding app demand different models at any given point in
time. These patterns corroborate our earlier evidence on differential model demand across
use cases, and suggest that models are differentiated in ways not fully captured by public
benchmarks.

The ideal experiment to measure substitution would be to randomly assign model access
to some users and not others. Unfortunately, we do not have access to such an experiment.
Instead, we conduct an interrupted time-series analysis. This requires many assumptions,
two of which are particularly important. First, there should be no concurrent events that
shock the market when a model becomes available. This assumption may be violated if, for
example, a new developer begins using OpenRouter concurrently with the launch of a new
model. The second assumption is that the model entry does not mechanically induce users
to switch from a deprecated model on OpenRouter to the new model.

If new model releases increase token demand substantially, this should be evident in the
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Figure 22: Total Consumed Tokens and Model Entry

Notes: This figure shows the evolution of the 7-day rolling average of tokens over time with vertical lines
indicating major model releases on OpenRouter. The x-axis is calendar time, and the y-axis shows the total
number of tokens. Model entry dates are marked for official, non-experimental releases of major models.

time series; Figure 22 shows total tokens over time, with vertical lines denoting major model
entries on OpenRouter. We define entry as the time when the official, non-experimental,
non-secret version of the model is released.20 We see that new model releases do not seem
to cause abnormally great changes in token demand relative to the overall trend (with the
exception of the release of Grok Code Fast 1, which we discuss further below). One way
to interpret this is that, relative to the overall secular trend in token demand, the effects of
individual models during this period are small.

Next, we examine substitution across models upon the release of a new model, both using
OpenRouter and Microsoft data. For OpenRouter case studies, we consider models that
achieved substantial success on OpenRouter at the time of entry. These include: Claude
3.7 Sonnet, Claude 4 Sonnet, Gemini 2.0 Flash, Gemini 2.5 Flash, Gemini 2.5 Pro, and
Grok Code Fast 1. For each entering model, we select the five most popular models at the
time of entry as comparison models. We then plot the 20 days around the entry. In the
Microsoft case studies, we analyze the introduction of two models—GPT-4o and DeepSeek
R1—and measure substitution as the change in the share of firms that use existing models. By
comparing trends across these comparison models on both platforms, we can assess whether
any anomalous shifts in demand are plausibly attributable to the focal model’s release.

20For example, we exclude Gemini 2.0 Flash Experimental (free), which was available in December 2024 but
capacity-constrained. We also exclude “Optimus Alpha,” a version of OpenAI’s GPT-4.1 that was temporarily
offered for free on OpenRouter prior to the official release of 4.1.
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Figure 23: Usage for Select Models Following Claude 3.7 Sonnet Release

Notes: Daily token usage for selected models around the Claude 3.7 Sonnet launch. The x-axis is labeled
in days from launch (vertical black line at day 0), spanning approximately -20 to +20 days. Series shown:
claude-3.7-sonnet, claude-3.5-sonnet, deepseek-chat-v3, gemini-2.0-flash-001, gpt-4o, llama-3.1. y-
axis units are millions of tokens.

8.1 Case Studies from Open Router

Claude 3.7 Release: Claude 3.7 Sonnet was released by Anthropic on Feb 24, 2025. At the
time of its release, Claude 3.7 Sonnet was a state-of-the-art model, marketed for its strengths
in coding and front-end development. Figure 23 plots the tokens used by the model relative
to the launch date. It reveals a striking pattern of within-creator substitution. Upon the
release of Claude 3.7 Sonnet, we observe an immediate and substantial decline in the usage
of Claude 3.5 Sonnet, suggesting strong substitutability between successive generations. The
decline in Claude 3.5 usage is nearly one-for-one with the uptake of Claude 3.7, indicating
that users view these models as close substitutes rather than complements. Interestingly,
we observe minimal impact on other major models, such as GPT-4o and Gemini 2.0 Flash,
suggesting that Claude’s competitive positioning is primarily within its own model family
rather than across providers.

Claude 4 Sonnet Release: Claude 4 Sonnet was another major release by Anthropic,
improving upon the benchmarks of Claude 3.7 Sonnet. Similar to the Claude 3.7 release,
Appendix Figure OA-16 shows within-family substitution. The entry of Claude 4 Sonnet
results in an immediate cannibalization of Claude 3.7 Sonnet usage, with the magnitude of the
decline in the predecessor model closely matching the uptake of the new model. Interestingly,
demand for Claude 3.7 remains substantial even after the introduction of Claude 4 Sonnet.
This concurrent demand for Claude 3.7 and 4 provides evidence that models are differentiated
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Figure 24: Usage for Select Models Following Gemini 2.0 Flash Release

Notes: Daily token usage for selected models around the Gemini 2.0 Flash launch (February 5, 2025). The
x-axis is days from launch with a vertical black line at day 0 (window ≈ -20 to +20 days); the y-axis reports
tokens. Series include gemini-2.0-flash-001 (focal) and contemporaneous leading models.

in ways that are not captured by public benchmarks.

Gemini 2.0 Flash Release: Google’s Gemini 2.0 Flash was released on February 5, 2025.
The model lacked frontier capabilities at the time of its release, but it was fast and cost-
effective. In contrast to the Claude releases, Figure 24 reveals a different substitution pattern.
Rather than the clean within-family substitution observed with Claude models, Gemini 2.0
Flash’s entry appears to expand the market, with overall token demand growth tracking
Gemini 2.0 Flash usage.

Gemini 2.5 Flash Release: The Gemini 2.5 Flash model made similar tradeoffs to Gemini
2.0 Flash; it was fast and cheap, but not a frontier model. Figure OA-17 in the Appendix
continues the pattern observed with Gemini 2.0 Flash, showing few if any visible substitution
effects with other popular models at the time of the release.

Gemini 2.5 Pro Release: Gemini 2.5 Pro was Google’s flagship model in the 2.5 series,
designed for complex reasoning and professional applications. This model was considered
frontier at the time of release. Appendix Figure OA-18 shows that Gemini 2.5 pro gains
market share over time as demand for DeepSeek Chat V3 and Claude 3.7 flattens. Note that
an experimental, rate-limited version of Gemini 2.5 Pro was released approximately 10 days
prior to Gemini 2.5 Pro’s full launch. There is no tell-tale discontinuity at the time of Gemini
2.5 Pro’s full or experimental release to suggest substitution.

Grok Code Fast 1: xAI’s Grok Code Fast 1 was released in late August 2025 and was
billed as xAI’s fast and cheap competitor to existing coding models. As shown in Figure
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Figure 25: Usage for Select Models Following Grok Code Fast 1 Release

Notes: Daily token usage for selected models around the Grok Code Fast 1 launch. The x-axis is days from
launch with a vertical black line at day 0 (window ≈ -20 to +20 days); the y-axis reports tokens. Series include
grok-code-fast-1 (focal) and contemporaneous leading models.

OA-17, it achieved a huge market share within a week of launch. This was done through
aggressive partnerships with coding apps and subsidizing pricing. For example, this model
was free on Roo Code, a popular open-source coding app. Perhaps surprisingly, given the
success of Grok, the other top models during this period show no change in their demand
trends. For example, Claude 4 Sonnet, which was perhaps the premier coding LLM at the
time, continues on a steady trend around the time of the launch. We conclude that Grok
Code Fast 1 increased the market for LLMs upon entry.

8.2 Case Studies from Microsoft Azure

GPT-4o Release: OpenAI’s GPT-4o model was released in May 2024, and represented a
significant improvement over GPT-3.5 and GPT-4 when launched. In Figure 26(a) we plot
the share of firms using each of the top two most popular models on Azure’s API at the time
of GPT-4o’s launch. We normalize each share to its value during the GPT-4o launch week.
Here we see an immediate and steep decline in the share of customers using other popular
models after GPT-4o’s introduction, while the usage trends of these two popular models were
relatively flat leading up to the introduction of GPT-4o.

Deepseek R1 Release: Deepseek’s R1 model was released in late May, 2025. At the time,
this model received substantial attention, in part because it was an open-weight model that
performed comparably to some closed-source frontier models. In Figure 26(b), we again show
the normalized share of firms using top models at the time. Interestingly, the results here are
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Figure 26: Firm-Level Usage Following the Release of GPT-4o and Deepseek R1

(a) Change in Other Model Usage after GPT-4o
Introduction

(b) Change in Other Model Usage after
Deepseek R-1 Introduction

Notes: Subfigure 26(a) shows the normalized share of firms using the top two most popular models on Azure’s
API at the time of GPT-4o’s launch (May 2024). Subfigure 26(b) shows the normalized share of firms using the
top three most popular models at the time of Deepseek R1’s launch (late May 2025). Each share is normalized
to its value during the launch week.

in contrast to the impact of GPT-4o. For all three of the most popular models, we do not
observe any apparent change in usage trends for the three most popular models hosted by
Microsoft before and after R1 was released. However, we cannot rule out responses among
smaller models or among models not hosted by Microsoft.

Synthesis: Heterogeneous Preferences and Substitution Patterns Our case studies reveal
differences in how models from different providers compete in the intelligence market. There
are two distinct substitution and market expansion patterns:

Brand-Centric Competition (Claude): Anthropic’s Claude models exhibit within-
family substitution, where new releases cannibalize predecessors with minimal cross-provider
effects. This pattern suggests two potential explanations. First, Anthropic has established a
brand identity in which users exhibit strong loyalty and view successive model generations
as close substitutes. Alternatively, Anthropic’s models may be better in ways not captured
by publicly available benchmarks that users care about. The fast substitution patterns also
indicate low switching costs within the Claude ecosystem.

Performance-Centric Competition and Market Expansion (Gemini Flash
and Grok Code Fast): Google’s Gemini models demonstrate broader, more diffuse sub-
stitution patterns. Of particular note is that the Gemini 2.0 Flash model gained substantial
market share without causing noticeable declines in the usage of other models. This suggests
that the model was selected at a price-to-performance point previously unoccupied by other
models. Other Gemini models achieved moderate success, without either greatly expanding
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Figure 27: Model Usage Distribution for Popular Coding Apps

(a) July 30, 2025 (b) October 30, 2025

Notes: Subfigure 27(a) shows the distribution of tokens used on July 30, 2025 for three popular coding appli-
cations on OpenRouter. Similarly, Subfigure 27(b) shows the distribution of tokens used on October 30, 2025

the market or causing large-scale substitution from any specific model. Similar to Google’s
Flash models, Grok Code Fast 1 achieved substantial market share without causing noticeable
declines in the demand for other models.

8.3 App-Specific Usage Patterns and Alternative Explanations

The preceding analysis considered aggregate token demand and substitution patterns across
models. However, substitution can arise from several sources: firms actively choosing models
for internal AI applications, the aggregated choices of end users of consumer-facing apps, or
decisions by OpenRouter or app developers to steer their users toward particular models. In
this section, we discuss these explanations in greater detail by using examples from individual
coding applications.

Figure 27 displays the distribution of token usage across three popular open-source VS-
Code plugins—Cline, Kilo Code, and Roo Code—at two points in time. Users of these apps
are individual developers who select models through a simple interface. Between July and
October 2025, the most popular model across all three apps shifted from Claude 4 Sonnet to
Grok Code Fast 1, while most remaining Sonnet usage migrated to Claude 4.5 Sonnet. The
figures also reveal a substantial long tail of model usage, consistent with heterogeneous user
preferences.

However, an alternative explanation for these shifts is a default or salience effect. Cod-
ing apps can set recommendations and defaults, and may have financial incentives to pro-
mote certain models. The routing method—whether through OpenRouter or directly via a
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provider—may also depend on app-level choices. Notably, all three apps feature Grok Code
Fast 1 prominently as a free option. Thus, at least some of the switching we observe may
reflect default settings or promotional placement rather than informed user choice.

9 Conclusion

This paper uses large-scale marketplace data from two LLM API platforms, OpenRouter and
Microsoft Azure Foundry, to measure how the market for LLMs has evolved - characterizing
supply, pricing, demand, and usage dynamics since mid-2023. The supply side is charac-
terized by rapid entry, particularly from open-source models and inference providers, and
by sharp declines in intelligence-adjusted token prices. We find that large price dispersion
persists even among models with similar benchmark performance; open-source models are
90% cheaper than comparable closed-source models, yet account for less than 30% of the
market on average, indicating meaningful non-price differentiation.

Demand is similarly dynamic and heterogeneous. Market-share leadership shifts fre-
quently across both models and creators, and no single model dominates across use cases.
The willingness to pay for incremental intelligence varies widely across applications, and
most API usage remains below the frontier. We find evidence of heterogeneity in substi-
tution patterns following new model entries, with some entrants cannibalizing predecessors
within a model family, while others gain share with little displacement of contemporaneous
competitors - patterns consistent with meaningful horizontal differentiation. Finally, using
within-model provider price variation, we estimate price elasticities that are inconsistent with
model- or market-level Jevons paradox effects in the short run.

These findings reveal a market in rapid transition, with important implications for the fu-
ture of AI adoption and competition. The proliferation of inference providers—particularly
for open-source models—has created competitive pressures that benefit users by lowering
prices and increasing choice. Of particular interest for future research are longer-run adjust-
ments by firms and other users to these lower prices and greater capabilities.
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Appendix

A Additional Tables

Table OA-1: Price Trends Regression Results

Log Price per Million Prompt Tokens
(1) (2) (3)

Time Trend -0.002∗∗∗ -0.0003∗∗∗ −8.92× 10−6

(0.0003) (0.0001) (9.59× 10−5)
Time Trend × Open Source -0.0006∗∗∗

(0.0002)

R2 0.026 0.970 0.970
Observations 98,959 98,959 98,882

Model fixed effects ✓ ✓

Notes: This table reports regressions of log prompt token price (per million tokens) on a linear time trend.
Column (1) includes only the time trend. Column (2) adds model fixed effects. Column (3) further includes
an interaction between the time trend and an indicator for open-source models, allowing price trends to differ
between open- and closed-source models. Standard errors, reported in parentheses, are clustered at the model
level.
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Table OA-2: Inference Providers and Token Shares (December 2025)

Provider Share (%) Distinct Creators Open Source Closed Source

xai 32.22 1 0 7
google-vertex 20.14 4 1 13
openai 7.37 2 0 15
google-ai-studio 5.62 2 0 13
anthropic 4.84 2 0 11
deepinfra 4.35 11 24 0
novita 4.03 10 24 0
chutes 3.30 7 23 0
minimax 2.96 1 4 0
stealth 2.16 1 4 0
z-ai 1.45 1 7 0
amazon-bedrock 1.37 4 2 14
nebius 0.92 8 18 0
atlas-cloud 0.91 10 19 0
groq 0.81 5 12 0
crusoe 0.73 5 6 0
siliconflow 0.69 7 19 0
mistral 0.62 2 7 12
gmicloud 0.56 8 15 0
deepseek 0.50 1 3 0
parasail 0.48 12 23 0
fireworks 0.48 8 17 0
azure 0.46 5 3 11
together 0.40 11 32 0
moonshotai 0.38 1 4 0
alibaba 0.27 2 22 0
wandb 0.24 5 8 0
cerebras 0.20 4 7 0
baseten 0.19 6 10 0
hyperbolic 0.17 7 20 1
nvidia 0.15 1 2 0
ncompass 0.13 4 6 0
streamlake 0.11 1 1 0
phala 0.11 4 6 0
venice 0.10 5 8 0
friendli 0.09 5 11 0
nextbit 0.09 12 18 0
modelrun 0.07 2 2 0
perplexity 0.06 1 0 6
sambanova 0.05 5 10 0
clarifai 0.04 2 3 0
mancer 0.04 7 9 0
amazon-nova 0.03 1 1 0
cloudflare 0.02 7 13 0
liquid 0.02 1 2 0
avian 0.02 2 2 0
byteplus 0.02 3 4 0
morph 0.01 1 2 0
aion-labs 0.01 1 3 0
infermatic 0.01 3 3 0
open-inference 0.01 5 6 0
meta 0.01 1 4 0
cohere 0.00 1 1 3
inception 0.00 1 2 0
arcee-ai 0.00 1 1 0
relace 0.00 1 1 0
ai21 0.00 1 2 0
switchpoint 0.00 1 1 0
inflection 0.00 1 2 0
featherless 0.00 2 2 0
cirrascale 0.00 1 1 0
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Table OA-3: Overview of Benchmark Suite Used by Artificial Analysis

Benchmark Description

MMLU-Pro Advanced version of the Multi-Task Language Understanding bench-
mark with 12,032 10-option multiple-choice questions across science, law,
economics, health, and other domains. Evaluates broad reasoning and
knowledge.

HLE Humanities Last Exam is 2,684 challenging open-answer questions across
math, humanities, and natural sciences. Designed to test models on very
challenging academic tasks.

AA-LCR Artificial Analysis Long Context Reasoning evaluates reasoning over long
contexts (up to 100k tokens) using 100 hard open-answer text-based
questions from documents such as reports, consultations, and legal texts.

GPQA Diamond Scientific reasoning benchmark with 198 graduate-level 4-option
multiple-choice questions across biology, physics, and chemistry. Fo-
cuses on “Google-proof” knowledge.

AIME 2025 30 questions from the 2025 American Invitational Mathematics Exami-
nation with integer answers.

AIME 30 questions from previous American Invitational Mathematics Exami-
nations with integer answers.

MATH-500 500 open-answer mathematics problems assessing high-level symbolic
reasoning and competition-style problem solving.

IFBench Instruction-following benchmark of 294 questions. Tests precise compli-
ance with instructions in a single turn such as counting, formatting, and
manipulation.

SciCode Scientific code generation benchmark of 338 python programming tasks.

LiveCodeBench Coding benchmark of 315 tasks using python from LeetCode, AtCoder,
and Codeforces.

Artificial Analysis Indices

Intelligence Index Composite measure aggregating eight constituent benchmarks: MMLU-
Pro, HLE, GPQA Diamond, AIME 2025, SciCode, LiveCodeBench, IF-
Bench, and AA-LCR.

Math Index Reflects math problem solving using AIME 2025 benchmark.

Coding Index Composite of LiveCodeBench and SciCode benchmarks to reflect pro-
gramming ability.
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Table OA-4: Model Launch Impact: Total Tokens of Existing Models

Launch Event Model Before (B) After (B) Change (%)

Gemini 2 0 Flash 001 Gemini 2 0 Flash 001 0.00 53.22 New
Claude 3 5 Sonnet 274.82 297.78 +8.4
Gemini Flash 1 5 39.82 70.60 +77.3
Gpt 4o Mini 25.66 25.77 +0.4

Claude 3 7 Sonnet Claude 3 7 Sonnet 0.00 213.65 New
Gemini 2 0 Flash 001 295.24 320.82 +8.7
Claude 3 5 Sonnet 242.86 108.92 -55.2
Gemini Flash 1 5 61.68 67.66 +9.7

Gemini 2 5 Pro Gemini 2 5 Pro 136.37 161.45 +18.4
Claude 3 7 Sonnet 367.52 345.48 -6.0
Gpt 4o Mini 113.54 326.28 +187.4
Gemini 2 0 Flash 001 286.24 247.96 -13.4

Gemini 2 5 Flash Gemini 2 5 Flash 0.00 90.65 New
Claude 3 7 Sonnet 355.11 376.72 +6.1
Gemini 2 0 Flash 001 260.33 202.65 -22.2
Gemini 2 5 Pro 193.39 201.23 +4.1

Claude 4 Sonnet Claude 4 Sonnet 0.00 240.01 New
Gpt 4o Mini 453.06 497.48 +9.8
Claude 3 7 Sonnet 395.17 312.28 -21.0
Gemini 2 5 Flash 185.27 223.24 +20.5

Gemini 2 5 Flash Lite Gemini 2 5 Flash Lite 0.00 47.69 New
Claude 4 Sonnet 284.49 365.70 +28.5
Deepseek Chat V3 238.29 263.15 +10.4
Gemini 2 5 Flash 237.44 259.47 +9.3

Grok Code Fast 1 Grok Code Fast 1 0.00 536.52 New
Claude 4 Sonnet 527.38 549.41 +4.2
Gemini 2 5 Flash 251.43 470.08 +87.0
Deepseek Chat V3 262.96 218.55 -16.9

Grok 4 Fast Grok 4 Fast 0.00 635.08 New
Grok Code Fast 1 1181.38 1029.39 -12.9
Claude 4 Sonnet 604.98 548.77 -9.3
Gemini 2 5 Flash 325.94 349.62 +7.3

Claude 4 5 Sonnet Claude 4 5 Sonnet 0.00 298.52 New
Grok Code Fast 1 1070.80 1057.91 -1.2
Grok 4 Fast 1015.38 738.80 -27.2
Claude 4 Sonnet 579.29 315.83 -45.5

Gemini 3 Pro Gemini 3 Pro 0.00 191.92 New
Grok Code Fast 1 1452.95 1204.38 -17.1
Claude 4 5 Sonnet 605.17 495.98 -18.0
Gemini 2 5 Flash 444.19 448.66 +1.0

Note: Token usage in billions.
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Table OA-5: Price Elasticity Regressions - No Provider Performance Covariates

Log(Daily Tokens)

(1) (2) (3)

Log(Price) -0.48∗∗∗ -1.07∗∗∗ -1.02∗∗∗

(0.15) (0.23) (0.13)

Observations 48,362 48,362 48,362
R2 0.11 0.67 0.93
Within R2 0.07 0.18 0.05

Date fixed effects ✓ ✓
Model fixed effects ✓
Date × Model fixed effects ✓
Model × Provider fixed effects ✓

Notes: This table reports regressions of log daily token usage on log prompt token price. Each column shows a
different fixed-effects specification. Column (1) includes date fixed effects. Column (2) adds model fixed effects.
Column (3) includes date × model fixed effects and model × provider fixed effects. Standard errors are reported
in parentheses.

Table OA-6: Correlation of Prices with Provider Performance

Log(Price)

(1) (2) (3)

Log(Throughput + 1) 0.08∗

(0.04)
Missing Throughput 1.02∗∗∗

(0.23)
Log(Latency + 1) 0.01

(0.08)
Missing Latency 0.72∗∗∗

(0.13)
Log(Context Length + 1) -0.13

(0.12)

Observations 48,362 48,362 48,362
R2 0.84 0.84 0.79
Within R2 0.22 0.21 0.01

Date fixed effects ✓ ✓ ✓
Model fixed effects ✓ ✓ ✓

Notes: This table reports regressions of log model prices on provider performance characteristics. The dependent
variable in all columns is log price per million prompt tokens. Column (1) relates prices to log(throughput + 1)
and an indicator for missing throughput. Column (2) includes log(latency + 1) and a missing-latency indicator.
Column (3) includes log(context length + 1). All specifications include date fixed effects and model fixed effects,
and standard errors are reported in parentheses.
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Table OA-7: Model Naming Convention Examples

model_name5 model_name4 model_name3 model_name2 model_name1

claude-4.5-sonnet-
20250929

claude-4.5-sonnet-
20250929

claude-4.5-sonnet claude-4.5-sonnet claude-4.5

deepseek-chat-v3-0324 deepseek-chat-v3-
0324

deepseek-chat-v3 deepseek-chat-v3 deepseek-chat

gemini-2.5-flash gemini-2.5-flash gemini-2.5-flash gemini-2.5-flash gemini-2.5
gemini-3-pro-preview-
20251117

gemini-3-pro-
20251117

gemini-3-pro gemini-3-pro gemini-3

gpt-5-mini-2025-08-07 gpt-5-mini-2025-08-
07

gpt-5-mini gpt-5-mini gpt-5

llama-3.3-70b-instruct llama-3.3-70b-
instruct

llama-3.3 llama-3.3 llama-3.3

mercury-coder-small-
beta

mercury-coder-small mercury-coder-
small

mercury-coder mercury

Notes: This table illustrates the systematic naming convention used in the paper. Each row shows a model from a
different creator, progressing from the raw name as observed in the data to the most aggregated level. Raw Name
(model_name) is the original model name. model_name5 removes free/paid distinctions for technically identical
models. model_name4 removes beta/preview release references. model_name3 removes date information.
model_name2 distinguishes reasoning vs. non-reasoning and other major variants. model_name1 represents
the most general model family definition.
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B Additional Figures

Figure OA-1: Average Intelligence of API Calls

Notes: This figure shows the average intelligence of API calls over time. The blue line plots the mean Intelligence
Index per token, while the red line plots the mean Coding Index per token. The x-axis is calendar time (January
through December 2025), and the y-axis reports the respective index values.
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Figure OA-2: Correlation Between Different LLM Benchmarks

Notes: The figure reports linear relationships across nine large language model benchmarks. The included
benchmarks include MMLU-Pro (Massive Multitask Language Understanding Pro) which is a test with ques-
tions across dozens of academic subjects designed to measure broad reasoning and subject-matter expertise;
Intelligence (AA) is the Intelligence Index from Artificial Analysis; LiveCodeBench is a coding benchmark that
evaluates models on writing and debugging code; GPQA is the Graduate-Level Google-Proof Q&A which is a
set of challenging science and reasoning questions that cannot be solved by simple web search; Coding (AA)
is the Coding Index from Artificial Analysis; Math (AA) is the math index from Artificial Analysis; Math
500 is a set of 500 challenging math problems from OpenAI’s math benchmark test; AIME 2025 is based on
problems from the 2025 American Invitational Mathematics Examination; SciCode is a benchmark designed to
test writing code for solving scientific research problems.
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Figure OA-3: Cumulative Models Created Over Time by Creator

Notes: Cumulative number of models created over time by major developers. The x-axis shows observations
from December 2022 through December 2025, and the y-axis shows the cumulative number of models. Separate
lines are plotted for Google, OpenAI, Anthropic, Mistral, Deepseek, and Qwen.
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Figure OA-4: Availability of Model Families Over Time for the Top 10 Creators

Notes: This figure shows the availability of model families developed by the top 10 providers. Each bar represents
the time period during which a model family was available.
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Figure OA-5: Top Model of Each Industry for Firms using Microsoft Azure

Notes: This figure shows the market-leading model for firms in each industry that use LLMs hosted on Microsoft
Azure Foundry from April 2023 through July 2025.
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Figure OA-6: Availability of Models Over Time for the Top 10 Creators

Notes: This figure shows the availability of individual models developed by the top 10 creators determined by
number of models. Each bar represents the time period during which a model was available.
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Figure OA-7: Prompt Token Price Evolution - Top Five Open and Closed-Source Models

Notes: Top models are categorized by total token usage (solid lines indicate closed-source, dashed lines indicate
open-source). Labels show model names with source type at the end of each line.

Figure OA-8: Price Trajectories for Anthropic Models Over Time

Notes: Each line shows the minimum prompt price for a given Anthropic model variant over time. The y-axis
is on a log scale. The legend is ordered by final observed price.
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Figure OA-9: Price Trajectories for Google Models Over Time

Notes: Each line shows the minimum prompt price for a given Google model variant over time. The y-axis is
on a log scale. The legend is ordered by final observed price.

Figure OA-10: Price Trajectories for OpenAI Models Over Time

Notes: Each line shows the minimum prompt price for a given OpenAI model variant over time. The y-axis is
on a log scale. The legend is ordered by final observed price.
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Figure OA-11: Daily Maximum Benchmark Index Values Over Time

Notes: The figure plots the daily maximum values across a set of benchmark indices, including math, coding,
reasoning, and composite indices. See OA-3 for an overview of all included benchmarks. line represents a
benchmark, normalized between 0 and 1. Step increases indicate the introduction of new models achieving
higher benchmark scores.

Figure OA-12: Model Shares for Anthropic

Notes: Share of Anthropic’s usage by model (14-day rolling average) from November 2024 to December 2025.
Top six models are displayed: Claude 3.5, 3.7, and 4 series dominate usage, with rapid shifts following each new
release
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Figure OA-13: Model Shares for Google

Notes: Share of Google’s usage by model (14-day rolling average). Usage is concentrated in Gemini 2.0 and 2.5
Flash/Pro variants, which gain substantial share after release

Figure OA-14: Model Shares for Meta-LLaMA

Notes: Share of Meta-LLaMA’s usage by model (14-day rolling average). LLaMA 3.x models hold steady shares,
with LLaMA 4 Maverick and Scout appearing later in the sample
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Figure OA-15: Model Shares for OpenAI

Notes: Share of OpenAI’s usage by model (14-day rolling average). GPT-4o Mini dominates early in the sample,
later supplemented by GPT-4.1 and GPT-5 variants)

Figure OA-16: Usage for Select Models Following Claude 4 Sonnet Release

Notes: Daily token usage for selected models around the Claude 4 Sonnet launch. The x-axis is days from
launch, with a vertical black line at day 0 (window ≈ -20 to +20 days). Series include claude-4-sonnet (focal),
claude-3.7-sonnet, and other leading contemporaries. y-axis units are millions of tokens.
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Figure OA-17: Usage for Select Models Following Gemini 2.5 Flash Release

Notes: Daily token usage for selected models around the Gemini 2.5 Flash launch. The x-axis is days from
launch with a vertical black line at day 0 (window ≈ -20 to +20 days); the y-axis reports tokens. Series include
gemini-2.5-flash (focal) and contemporaneous leading models.

Figure OA-18: Usage for Select Models Following Gemini 2.5 Pro Release

Notes: Daily token usage for selected models around the Gemini 2.5 Pro launch. The x-axis is days from
launch with a vertical black line at day 0 (window ≈ -20 to +20 days); the y-axis reports tokens. Series include
gemini-2.5-pro (focal) and contemporaneous leading models (e.g., deepseek-chat-v3, claude-3.7-sonnet).
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C Data Appendix

This section describes the datasets.

C.1 OpenRouter Data

We aggregate publicly available information on OpenRouter’s website. OpenRouter is a
marketplace for LLMs and a popular API gateway for app developers. They provide access
to hundreds of LLMs from many creators such as OpenAI, Anthropic, Google, Meta, and
Deepseek. In practice, the OpenRouter platform sits between app developers and LLM
inference providers, routing traffic to selected providers while aggregating pricing and usage
analytics. OpenRouter publishes these pricing and usage analytics for each provider as well
as a number of other model-related attributes.

OpenRouter provides a model catalog with an individual page per model. A model is
defined at the model-variant level; for instance, some LLMs have a free variant in addition
to a standard variant, or some might have a beta variant in addition to a standard variant.
In these cases, there will be two model pages, and we treat each as a separate model. An
LLM could potentially have more than two pages (e.g. free, beta, and standard variants), or
just one page (standard variant only).

C.1.1 Model and Provider Data

On each model page, OpenRouter lists its providers; providers are platforms that host LLMs
and provide the computing infrastructure needed to deploy them. Some models have a single
provider, while other open-source models can have many providers. Providers of open-source
models include independent hosts such as Chutes, DeepInfra, Novita AI, and Nebius, among
others. Some providers, such as Anthropic and OpenAI, host only models they themselves
develop. OpenRouter reports the current prices per million tokens separately for prompt and
completion tokens. When relevant, pages also display additional prices, such as for image or
audio tokens.

OpenRouter also publishes reliability and capacity statistics at the provider level on the
model page: recent latency, throughput, uptime, supported context window, and maximum
completion (measured in completion tokens). It also includes information on the provider’s
data policy.

Beyond provider-level information, each model page reports recent activity as daily tokens
used over the last 90 days for both prompts and completion, "Top public apps this week"
which are the names and urls for the top 20 apps ranked by total weekly token usage of a
given model, and a number of headline specs on each model including the model creator, the
creation date, model capability description, model group, and the context window. There are
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also headline prompt and completion prices which are the minimum prices available from the
available providers. The app-level usage data is only for apps that opt to have their usage
tracked and reported by OpenRouter; they receive a discount for doing so.

The following summarizes important information found on OpenRouter’s model pages.

• Model variant — The specific version of a model (e.g. standard, beta, free, thinking,
extended). Each variant has its own page and may differ in features or pricing

• Provider — The platform that hosts and serves the model endpoint (e.g., OpenAI,
Anthropic, DeepInfra). A model can be offered by one or many providers

• Prompt price — Price per million prompt tokens counted on the request side

• Completion price — Price per million completion tokens generated by the model in
its response

• Total context — The maximum amount of information (measured in tokens) a model
can keep in its working memory to refer to for a given conversation or task

• Max output — The maximum length (measured in tokens) of a single response
returned by the model

• Group — A label that ties model variants to a model family (e.g. GPT, Claude,
Gemini)

• Creation date — The date the model variant was created

• Uptime — The share of requests succeeding based on traffic routed through the plat-
form’s endpoints for the model over the last 3 days

• Latency — Response time to first token

• Throughput — Average number of completion tokens per second over the last 30
minutes

• Recent activity — Total model usage in prompt tokens and completion tokens per
day on OpenRouter, aggregated across all providers and reported for the last 90 days

• Top public apps — Top 20 apps using the model who have opted to have their usage
published by OpenRouter. Top apps are determined by total token usage over the last
7 days.
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C.1.2 Leaderboard Data

In addition to the model pages, OpenRouter publishes several leaderboards determined by
total token usage routed through its API gateway. Rankings are reported at daily, weekly, and
monthly frequencies for the top models overall. At the weekly level, OpenRouter reports top
models across a set of usecases including programming, roleplay, marketing, marketing/seo,
technology, science, translation, legal, finance, health, trivia, and academia. Weekly rankings
are also posted for total token usage by model creator and the top 20 apps that use the most
tokens across all models. Lastly, OpenRouter publishes a page for each provider with the
daily total tokens routed through that provider for the top 10 models.

C.1.3 Data Methodology

OpenRouter’s model catalog reports current pricing information for all models that are active
(they offer current API access to). OpenRouter’s model catalog also includes some deprecated
models without pricing information or current usage data. We focus on the active models.
Our core OpenRouter dataset consists of information aggregated from webscrapes of Open-
Router’s individual model pages for all active models. From April 11, 2025 to December 8,
2025, we scraped each model page as of 6:00 AM UTC. As stated previously, OpenRouter
identifies models at the variant level and tracks them over time with a model variant per-
maslug; this permaslug remains constant even when the model is updated or pricing changes.
We use this permaslug as a panel identifier.

We compile a daily model-provider pricing panel from webscraped pages of each active
model on OpenRouter from April 11, 2025 through December 8, 2025. Specifically, we focus
on models for which OpenRouter reports pricing data, as pricing data are removed from
deprecated models. Recent activity on each model page is reported for the past 90 days so
we have usage data from January 11, 2025. Additionally, we use the internet archive to get
model information as far back as November 2023 although these records are not consistently
captured each day. We construct a panel on provider-model pricing.

For the leaderboard data, we only began scraping these pages directly from OpenRouter
on August 14, 2025, this data is reported for the past three months so we have consistent data
from May 14, 2025. We supplement this data with pages pulled from the internet archive.
We focus on the usecase rankings and compile a dataset of the top 10 models per usecase per
week. Combining daily scrapes with internet archive data, we see weekly category rankings
from November 2023 through December 2025.

The following table provides an overview of what raw data is available and its level of
consistency. We are able to build a complete panel with weekly usage and pricing for each
active model from January 1, 2025 through December 8, 2025, which serves as our core
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dataset.

Table OA-8: Overview of Data Availability

Data Dates Available Consistency

Daily model-level token usage Jan 2025 - Dec 2025 Complete panel starting Jan
11, 2025

Weekly model-level token usage Nov 2024 - Dec 2025 49 percent of days observed
until complete panel starting
Aug 14, 2025 .

Daily category rankings Nov 2024 - Dec 2025 49 percent of days observed
until complete panel starting
Aug 14, 2025.

Top 20 apps by weekly usage by model Apr 2025 - Dec 2025 Complete panel starting April
11, 2025

Headline model–level prices and specs Nov 2023 - Dec 2025 31 percent of days until com-
plete panel starting April 11,
2025.

Model–provider pricing Nov 2023 - Dec 2025 6 percent of days until com-
plete panel starting April 11,
2025.

Provider-level usage May 2025 - Dec 2025 Complete panel for top 10
models for each provider start-
ing May 17, 2025

Provider-level reliability specs Apr 2025 - Dec 2025 Daily panel starting April 11,
2025 with high missingness
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D OpenRouter Data Processing
D.1 Model Naming

Defining what constitutes a “model” is non-trivial. In practice, models often exist in multiple
variants, including versions launched on specific dates, beta or preview releases, and free
versus paid offerings. In our dataset, model names are recorded at the level presented to the
user during selection. This results in a highly granular set of identifiers that is not always
appropriate for analysis.

To address these issues, we develop a systematic naming convention that assigns models to
increasingly aggregated levels. We first remove any information on whether the model is free
or paid, since these offerings are technically identical and differ only in pricing; we denote this
cleaned name as modelname5. Next, we strip references to beta or preview releases, yielding
modelname4. We then remove the date information, producing modelname3. Finally, we
manually classify models into two broader categories: modelname2, which reflects distinctions
such as reasoning versus non-reasoning variants, and modelname1, which corresponds to the
most general definition of a model family. See Table OA-7 for some examples of naming
procedure.

D.2 Merging with Artificial Analysis

We merge our data with benchmark scores from Artificial Analysis in order to obtain perfor-
mance measures for the models. Because the naming conventions used by OpenRouter and
Artificial Analysis do not align, we manually matched models across the two sources. The
matching was performed at the modelname3 level, which corresponds to the most granular
model-level information available from Artificial Analysis. This procedure may introduce
errors, as the model names reported by Artificial Analysis are often more general than those
in OpenRouter, and it is not always clear whether a given OpenRouter model belongs to a
particular family in Artificial Analysis. To mitigate this risk, we adopted a conservative ap-
proach, including only matches that could be identified with high confidence. We also flagged
likely matches and use these only in analyses that are not sensitive to potential matching
errors.

D.3 Free Models

Some providers offer free versions of models on OpenRouter, typically subject to usage quotas.
Free model usage accounts for approximately 5% of total activity in the OpenRouter data.
We exclude free models from all pricing analyses, as they do not reflect the true cost of
accessing the model. However, usage of free models is included in analyses of overall usage
patterns.
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D.4 Secret Models

OpenRouter occasionally displays models under internal-sounding or code-name identifiers,
especially when new models are added before full documentation is available. Some appear
through the API or community discovery before receiving standard public names. Examples
include “Sherlock Alpha” and “Sherlock Think Alpha,” which surfaced ahead of formal label-
ing, as well as more cryptic IDs such as “deepseek/r1-0528” or “mistral-nemotron-super-49b.”
These labels typically reflect provider-side versioning, experimental releases, or temporary
aliases during rollout. As a result, users may encounter models that are assigned obscure code
names, even though they correspond to real, accessible LLMs in the OpenRouter ecosystem.

Since the appearance of these models is infrequent and often short-lived, we do not at-
tempt to merge them with the officially released models that appear later. This is a reasonable
choice because users themselves may not know the true underlying model or final name at
the time these identifiers surface
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