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Abstract

The ‘proxy variable’ approach is often used to estimate production functions. This approach
is not robust to measurement error, and it relies on some strong assumptions, including strict
monotonicity, scalar productivity, and timing. In this paper, I develop partial identification
results that are robust to deviations from these assumptions and measurement errors in inputs.
In particular, my model (i) allows for multi-dimensional unobserved heterogeneity, (ii) relaxes
strict monotonicity to weak monotonicity, (iii) accommodates . I show that under these assump-
tions production function parameters are partially identified by an ‘imperfect proxy’ variable
via moment inequalities. Using these moment inequalities, I derive bounds on the parameters
and propose an estimator. An empirical application is presented to quantify the informativeness
of the identified set.
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1 Introduction

Production functions are a critical input in many economic studies. These studies typically require
estimating a production function using firm-level data. A major challenge in production function
estimation is the endogeneity of inputs. Firms observe their productivity before choosing produc-
tion inputs; however, productivity is unobservable to the researcher. This results in inputs being
correlated with productivity, a standard endogeneity problem.

A commonly used method to address the endogeneity problem is the proxy variable approach.
Introduced by Olley and Pakes (1996) (henceforth OP), this approach relies on using a variable,
which is called a proxy, to control for unobserved productivity. OP use investment as a proxy
variable, which is assumed to be a strictly increasing function of productivity conditional on capital.
By inverting this unknown function, they essentially recover the productivity shock, and control
for it in the estimation. The proxy variable approach has become the workhorse for estimating
production functions and has been extended by several papers. Levinsohn and Petrin (2003) (LP)
have proposed using materials as a proxy, and Ackerberg et al. (2015) (ACF) have introduced a
unified framework of proxy variable approach that deals with some practical concerns.

A limitation of proxy variable approach is that it relies on strong assumptions, such as single-
dimensional unobserved heterogeneity and strict monotonicity. These assumptions have important
economic implications, as observed by others (Ackerberg et al. (2007), Ackerberg et al. (2015)). First,
firms are differentiated only by a single productivity shock, which restricts firm-level heterogeneity.
Second, there is no heterogeneity in adjustment costs and investment prices, as investment depends
only on productivity. Third, estimation requires restricting competition in the output market.
Moreover, the proxy variable approach is not robust to measurement errors in inputs, an important
concern, especially for capital.

In this paper, I develop a partial identification approach that is robust to some deviations from
proxy variable assumptions and measurement errors in inputs. In particular, my model (i) allows for
multi-dimensional unobserved heterogeneity, (ii) relaxes strict monotonicity to weak monotonicity,
(iii) accommodates a more general timing assumption, and (iv) is robust to measurement errors in
all inputs. With these changes, the standard proxy variable becomes an ‘imperfect proxy,’ which
can be used to derive moment inequalities for identification. Using these moment inequalities, I
characterize the identified set for the parameters and propose an estimator.

An ‘imperfect proxy’ variable contains information about productivity, but it cannot be directly
used to control for productivity in estimation. Instead, an imperfect proxy gives a stochastic ordering
of productivity distributions, which can be used for identification. To show this result, I first group
firms into ‘high’ investment firms, firms that invest more than a cutoff value, and ‘low’ investment
firms, firms that invest less than the cutoff value. Then, I show that the productivity distribution
of ‘high’ investment firms first-order stochastically dominates the productivity distribution of ‘low’
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investment firms. The main idea for identification is to use this stochastic ordering in the form of
moment inequalities to obtain bounds for production function parameters.

I derive moment inequalities and study identification under a wide range of assumptions. The
first identification result relies only on the assumption that productivity shocks follow an exogenous
Markov process. This is the least restrictive specification, and therefore, gives the widest bounds.
The other identification results exploit modeling assumptions fully to derive moment inequalities via
the imperfect proxy. These moment inequalities give an identified set for the main specification of
the paper. I also show how to tighten the identified set under additional distributional assumptions
and shape restrictions. Analyzing identification under a wide range of assumptions makes the role
of each assumption in identification transparent. For example, one can start with the most general
model to impose as few restrictions as possible. If the estimated set is not informative, then a
nested model can be considered to shrink the identified set. Also, comparing the results from a
nested model and a general model tests the restrictions imposed by the nested model.

The partial identification approach allows me to have a model with rich heterogeneity. My model
includes two productivity shocks, one persistent and the other transitory. The firm can observe both
of these shocks, so both can create endogeneity. Moreover, my model includes unobserved variables
that affect the firm’s choice of investment. Consequently, it allows for heterogeneity in input prices
and adjustment costs as well as demand shock in the output market. Finally, the identification
approach is robust to measurement errors in all inputs. This robustness is particularly crucial for
capital, which is most prone to measurement error.

My method is generic in that it applies to production functions under different specifications.
First, one can use my method to partially identify the parameters of both value-added or gross
Cobb-Douglas production functions. Second, the model is agnostic about which proxy variable to
use, so both investment and materials can serve as an imperfect proxy for estimation. Third, the
model can accommodate different timing assumptions about capital. One can assume that capital
is chosen one period in advance, as in prior approaches, or that firms choose capital after (partially)
observing productivity shocks. Finally, the model is not specific to the Cobb-Douglas production
function. A nonlinear production function that is known up to a finite-dimensional parameter vector
can be considered.

This paper contributes to the large literature on production function estimation using proxy
variables (OP, LP, ACF; Gandhi et al. (2018) (GNR)).1 OP find the conditions under which in-
vestment can be used as a ‘proxy’ to control for unobserved productivity. Motivated by ‘zero’ and
‘lumpy’ investment problem, LP propose using materials as a proxy variable. ACF point out a
collinearity issue in these papers and propose an alternative proxy variable approach that avoids

1The production function estimation literature goes back to Marschak and Andrews (1944), who first recognized
the endogeneity problem. First attempts to address the endogeneity problem have used panel data methods (Mund-
lak and Hoch (1965), Mundlak (1961)). However, in practice, these methods do not give satisfactory answers, as
summarized by Griliches and Mairesse (1995). See also Blundell and Bond (2000).
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the collinearity problem. My paper extends these approaches by showing how to make inferences
when the standard proxy variable approach assumptions are violated.

A few recent papers study production function estimation with measurement errors in capital
(Hu et al. (2011), Collard-Wexler and De Loecker (2016) and Kim et al. (2016)). These papers
require either an instrumental variable or another proxy variable to address measurement errors.
In contrast, my method does not require an additional variable, but it gives a bound rather than a
point estimate.

This paper is related to the literature on monotone instrumental variables (Manski (1997),
Manski and Pepper (2000)). This literature assumes that the means of potential outcomes can
be ordered conditional on an observed variable, which is called the monotone instrument. In my
model, the monotone instrument corresponds to the indicator variable that specifies whether the
proxy variable is greater than a cutoff. My approach differs from the monotone instrument variable
approach in that the monotone instrument costructed from inside the model.

Notation. I use the notation Fa(t) and Fa(t | b) to donate the distribution of variable a and
the distribution of a conditional on b, respectively. Similarly, I use fa(t) and fa(t | b) to denote
the probability density function of random variable a and the probability density function of a
conditional on b, respectively.

2 Model

In this section, I describe the production function model and assumptions. The model builds
on the proxy variable framework introduced by OP, but allows for deviations from some of OP’s
assumptions. I discuss how my model differs from the proxy variable framework and the implications
of the differences for identification.

2.1 Production Function

I consider a value-added Cobb-Douglas production function to demonstrate the main results of the
paper.2 The production function is given by

yit = θkkit + θllit + ωit + εit, (2.1)

where yit denotes log-output, kit denotes log-capital, and lit denotes log-labor input.3 The model
includes two unobserved productivity shocks, ωit and εit. ωit represents the persistent component of
productivity; it is correlated over time. On the other hand, εit represents the transitory component
of productivity; it is independently and identically distributed over time, and it does not provide

2The identification strategy applies to other forms of production functions. I show how the model can be extended
to other commonly used production functions in Section 5.

3Lowercase letters correspond to the logarithm of uppercase variables.
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information about future productivity. Firms observe ωit before choosing inputs, whereas εit can be
partially or fully observed. Therefore, both productivity shocks can be correlated with inputs and
can generate endogeneity.

The data consists of a panel of firms observed over periods t = 1, . . . , T . To simplify the ex-
position I assume that T = 3. Observations are independently and identically distributed across
firms, but they can be serially correlated within the firm. The objective is to estimate the produc-
tion function parameters, (θl, θk). Since inputs are endogenous, OLS estimation would give biased
coefficient estimates.

I assume that capital is a dynamic input, meaning that the firm’s current period capital level
affects the firm’s future production.4 As a result, capital is a state variable in the firm’s dynamic
optimization problem. However, unlike the standard proxy variable framework, I do not assume
that capital is a predetermined input. That is, capital may be chosen after persistent productivity,
ωit, is (partially) observed by the firm.5 The model is agnostic about labor input, so it can be a
dynamic or static input.

2.2 Assumptions

My assumptions follow the structure of the proxy variable approach assumptions but relax them in
several ways. This section presents the assumptions and describes how they lead to a less restrictive
model than the proxy variable model, in terms of their economic implications. The first assumption
defines the firm’s information set.

Assumption 2.1 (Information Set). Let Iit denote the firm i’s information set at period t. I
assume that past and current persistent productivity shocks are in firm’s information set, that is,
{ωiτ}tτ=−∞ ∈ Iit. The transitory shocks satisfy E[εit | Iit−1] = 0.

This assumption distinguishes the roles of two productivity shocks. The persistent productivity,
ωit, is observed by the firm. The transitory productivity, εit, can be observed, partially observed, or
not observed. I also assume that the transitory shock cannot be predicted by the firm in the sense
that E[εit | Iit−1] = 0. Note that since this includes mean independence, not full independence, the
firm’s dynamic decision can still be affected by εit, as the distribution of εit can give information
about future production. The next assumption restricts the distribution of persistent productivity
shock.

Assumption 2.2 (Markov Property). Persistent productivity shocks follow an exogenous first-order
Markov process

P (ωit+1 | Iit) = P (ωit+1 | ωit),
4This can happen, for example, due to adjustment cost in investment.
5It is important to note that my results do not rely on this assumption since the model can accommodate

predetermined capital. This requires a minor modification in the estimation procedure, as discussed in Subsection
5.3.
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and the distribution is stochastically increasing in ωit.

This assumption is standard in the literature and states that the only information about future
productivity (in the firm’s information set) is given by current productivity. An implication of this
assumption is that the transitory productivity shock εit is not informative about the distribution
of future productivity shocks, once we condition on ωit. However, this assumption does not restrict
the correlation between two productivity shocks, as we might expect a positive correlation between
them.

The second part of the assumption says that the distribution of future persistent productivity is
stochastically increasing in ωit. This assumption was first made by OP and indicates that more pro-
ductive firms at the current period are likely to be more productive next period.6 This assumption
is critical for the moment inequality approach developed in this paper. Even though the literature
makes this assumption, this is the first paper to use it for identification.

Assumption 2.3 (Capital Accumulation). Capital accumulates according to

kit = δkit−1 + iit.

Capital is depreciated at the rate of δ, and firms make investments to accumulate capital.7 An
important feature of this assumption is that investment made at time t is productive immediately.
Therefore, it makes capital a dynamic but not necessarily a predetermined input. This assumption
relaxes the standard timing assumption, which assumes that capital is lagged by one period, that
is, kit = δkit−1 + iit−1. This timing assumption is critical for identification in standard methods.

I am able to relax the timing assumption because my method uses an imperfect proxy instead
of the perfect proxy. Also, my goal is partial identification, rather than point identification. I
also emphasize that Assumption 2.3 is not required for my identification results, and therefore, my
method can accommodate the standard timing assumption. I show this as an extension in Section
5.

Assumption 2.4 (Investment Function). The firm’s investment decision is given by,

iit = ft(kit−1, ωit, ξit),

where ξit ∈ RL is a vector of unobserved random variables that affects firm’s investment and it is
assumed to be jointly independent of ωit conditional on kit−1.

According to this assumption, investment depends on the two standard state variables, capital, and
persistent productivity, as well as other unobserved variables denoted by ξit. The unobserved vector

6We say a distribution is stochastically increasing if P (ωit+1 | ω̄it) first-order stochastically dominates P (ωit+1 |
ω̃it) if and only of ω̄it > ω̃it.

7My framework allows for a more complicated capital accumulation function; however, I do not consider it for
simplicity.
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ξit can include variables that affect the firm’s dynamic problem, such as heterogeneity in adjustment
cost, investment prices, or demand shocks.8 As noted by ACF, OP do not allow heterogeneity in
these variables, as the only unobservable that affects the firm’s investment decision is assumed to
be ωit. Note that ξit can also include εit, the transitory productivity. According to Assumption 2.3
the firm chooses kit at time t after observing the persistent productivity shock ωit.

Since ξit can include demand shocks to produced goods, I do not restrict market power and
competitive conduct. This is important because, in prior approaches, identification is possible only
under particular competition assumptionsx‘z‘ in the output market. For example, OP, LP, and
ACF implicitly assume a perfect competition or monopolistic competition with identical demand
curves. GNR consider a perfectly competitive market. This shows the importance of allowing
multidimensional heterogeneity in a model of a firm to capture a richer competition structure. This
is especially relevant when production function estimates are used for calculating markups (De
Loecker et al. (2018)).

Another condition in Assumption 2.4 is that ξit is independent of persistent productivity con-
ditional on the last period’s capital. Therefore, given the firm’s capital level, the variables that
affect the firm’s investment decision are not informative about the persistent productivity shock,
ωit. Although this assumption is restrictive, it allows for multi-dimensional heterogeneity in invest-
ment function and productivity. Some of the identification results presented later do not require
this assumption, so it is still possible to make inferences on the parameters without this assump-
tion. However, this assumption gives additional moment inequalities, which are likely to make the
identified set tighter.

Finally, Assumption 2.4 also accommodates measurement error in capital, as one interpreta-
tion of ξit could be measurement error in investment. I discuss this point in Section 5.5, since
measurement error in capital is an important concern in production function estimation.

Assumption 2.5 (Imperfect Proxy). ft(kit−1, ωit, ξit) is weakly increasing in ωit conditional on
(kit−1, ξit).

This assumption relaxes the standard condition that investment is strictly monotonict in pro-
ductivity. It instead assumes a weak monotonicity. Strict monotonicity is the key restriction in the
proxy variable approach, which makes it possible to invert and essentially ‘observe’ the productivity
using the proxy variable. Under my assumption, investment is no longer a ‘perfect proxy’ because
the one-to-one relationship between investment and productivity disappears. However, by weak
monotonicity, investment is still informative about productivity, so it becomes an imperfect proxy.
My identification approach relies on capturing the information in an imperfect proxy variable via

8There is strong evidence for heterogeneity in adjustment cost. For example, Goolsbee and Gross (2000) present
empirical evidence on heterogeneity in adjustment cost. Cooper and Haltiwanger (2006) argue that there is substantial
heterogeneity in capital associated with heterogeneity in adjustment costs. Hamermesh and Pfann (1996), in a review
paper, claim that heterogeneity in adjustment cost is a key source of heterogeneity across firms and should be included
in models of firm behavior.
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moment inequalities.

Relaxing strict monotonicity has important practical implications. As observed by LP and
other papers, investment is often lumpy in the data. Moreover, several firms do not invest in some
periods. This suggests that investment is not continuous in productivity. OP drop firms with zero
investment to overcome this problem. LP propose using materials instead of investment as a proxy.
My approach is robust to both zero and lumpy investments in the data.

Assumption 2.6 (Measurement Error in Labor). Labor is measured with error

lit = l∗it + ηlit

where l∗it denotes true labor input and ηlit is measurement error in labor. I assume that measurement
error is orthogonal to the information set at t− 1, E[ηlit | Iit−1] = 0.

This assumption addresses an important concern in production function estimation literature
as production inputs are prone to measurement errors. My estimation method can accommodate
measurement error in labor as long as it is orthogonal to the firm’s information set t− 1. Note that
ηlit is more general than the classical measurement error because it can be correlated with right-hand
side variables. Also, this assumption nests the situation where labor does not have measurement
error when we set ηlit = 0.

2.3 Discussion

Overall, Assumptions 2.4 and 2.5 are the key differences of this paper from the standard assumptions,
which assume that iit = ft(kit, ωit) and ft(kit, ωit) is strongly increasing in ωit. These assumptions
limit the dimension of unobserved heterogeneity that impacts firm behavior. I relax these two
strong assumptions on the functional form of investment by assuming that (i) investment is weakly
increasing in productivity, and (ii) there are other unobservables affecting the investment decision.
Under these assumptions, ft is not invertible, which is the key step in OP to control for unobserved
productivity. I deal with controlling for ωit using moment inequalities. This allows me to have
multi-dimensional unobserved heterogeneity.

3 Identification

This section derives a set of moment inequalities from the assumptions presented in the previous
section. I derive moment inequalities and study identification under a wide range of assumptions.
The first identification result relies only on the exogenous Markov assumption, so it is the least
restrictive and gives the largest bound. Other identification results make use of other modeling
assumptions and tighten the bounds.

7



3.1 Identification with Markov Assumption

In this section, I show that the Markov property of ωit in Assumption 2.1 provides moment inequal-
ities and set identifies the production function. This result relies on the following proposition.

Proposition 3.1. Under Assumption 2.2 we have

E
[(
ωit + εit − ωit−1 − εit−1

)2]
6 E

[(
ωit + εit − ωjt−1 − εjt−1

)2]
. (3.1)

Proof. See Appendix A.

This proposition states that the difference between productivity shocks across two periods is smaller
for the same firm than for two different firms. The key assumption to obtain this result is that
conditional distribution of ωit is stochastically increasing in ωit−1. Therefore, firm i’s current period
productivity, ωit+ εit, is closer to firm i’s previous period productivity than firm j’s previous period
productivity in Euclidean distance. Now, using the Cobb-Douglas functional form, I write the
productivity shocks in Proposition 3.2 as

∆ωit + ∆εit = ∆yit − θk∆kit − θl∆lit,

∆ωijt + ∆εijt = ∆yijt − θk∆kijt − θl∆lijt,

where I use ∆zit := zit − zit−1 and ∆zijt := zit − zjt−1. Combining this with Proposition 3.1, I
construct a moment inequality

E
[
∆yit − θk∆kit − θl∆lit

]
6 E

[
∆yijt − θk∆kijt − θl∆lijt

)]
, (3.2)

which consists only of data and parameters, so it can be used for estimating bounds for the param-
eters. The result uses only two assumptions (i) persistent productivity shock follows an exogenous
Markov process, and ii productivity shocks are additively separable in the production function.
Therefore, moment inequalities are obtained under very general conditions. First, inputs could be
dynamic or static. Second, we do not need to observe a proxy variable to control for productivity
shocks. Finally, the variables that affect the firm’s dynamic or static decisions are unrestricted. Of
course, this flexibility might come with a cost, as the identified set might not be very informative.

In Proposition 3.1, I use the Euclidean distance to derive moment inequalities. However, one can
consider other distance measures and obtain different moment inequalities. In that case, different
distances would give different identified sets, which can be intersected to obtain tighter bounds.

3.2 Identification with Other Assumptions

This section derives a set of conditional moment inequalities based on all the modeling assumptions.
The derivation relies on using investment as an imperfect proxy variable. The first step in construct-
ing moment inequalities is stochastically ordering the productivity distributions that involve firms
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with ‘high’ and ‘low’ investment.

Proposition 3.2. Assumptions 2.1-2.6, along with some regulatory conditions, imply that

(i) For all z in the support of iit,

fωit(t | kit−1, iit > z)

fωit(t | kit−1, iit < z)

is increasing in t, that is, it satisfies the Monotone Likelihood Ratio Property (MLRP).

(ii) The distribution function of ωit conditional on kit−1 and {iit > z} first order stochastically
dominates (FOSD) the distribution function of ωit conditional on kit−1 and {iit < z}

Fωit(t | kit−1, iit > z) > Fωit(t | kit−1, iit < z),

for all (t, z) ∈ R2
+.

(iii) The mean of ωit conditional on kit−1 and {iit > z} is greater than the mean of ωit conditional
on kit−1 and {iit < z}:

E[ωit | kit−1, iit > z] > E[ωit | kit−1, iit < z], (3.3)

for all z in the support of iit,

Proof. See Appendix A.

This proposition shows that weak monotonicity of investment in ωit gives three stochastic orderings:
(i) monotone likelihood ratio, (ii) first-order stochastic dominance, and (iii) mean ordering. The
proof of this proposition shows that the weak monotonicity encompasses all the information given
by the proxy variable. That is, MLRP holds if and only if investment is weakly monotone in
productivity.

It is useful to compare the statements of this proposition with the invertibility condition in
the proxy variable approach. When investment is invertible, and therefore is a perfect proxy, the
ranking of the firm in investment equals to the ranking in productivity. This makes it possible to
infer productivity using investment. In my model, investment is not a perfect proxy, so it is not
possible to recover productivity from investment. However, by weak monotonicity, investment still
provides information about productivity, so it becomes an imperfect proxy.

This proposition shows that an imperfect proxy can be used to order productivity stochastically,
rather than deterministically. In particular, Proposition 3.2 says that when firms are grouped based
on how much they invest, we can infer that high investment firms will be more productive than low
investment firms, on average. The main idea for identification is to use these stochastic orderings
in the form of moment inequalities to set identify the production function.

My first moment inequality derivation exploits the condition Proposition 3.2(iii). To see how to
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obtain a moment inequality, first note that the Markov assumption implies

ωit = g(ωit−1) + ζit,

where ζit = ωit − E[ωit | ωit−1] and E[ζit | Iit−1] = 0 by construction. Also, the assumption
that P (ωit | ωit−1) is stochastically increasing implies that g(ωit−1) is a monotone function. This
representation of ωit has been commonly used in the proxy variable approach for constructing
moments. Substituting productivity into the production function yields:

yit = θkkit + θllit + g(ωit−1) + ζit + ηlit + εit. (3.4)

This representation of the production function involves three error terms: innovation to productivity
ζit, measurement error in labor ηlit, and the transitory productivity shock εit. Let me define a
function which takes data and parameter:

m(wit, θ̃) := yit − θ̃kkit − θ̃llit (3.5)

with wit = (kit, lit) and θ̃ = (θ̃l, θ̃k). Also let θ denote the vector of true parameter values. The next
proposition presents a conditional moment inequality using Equation (3.4) and Proposition 3.2.

Proposition 3.3. For all z ∈ I and kit−1 ∈ K

E[m(wit, θ) | kit−2, iit−1 > z]− E[m(wit, θ) | kit−2, iit−1 < z] > 0 (3.6)

This proposition is the main identification result of the paper. Conditional on kit−2 if we
compare two groups of firms, one with investment greater than z and one with investment lower
than z, Equation (6.1) is satisfied at the true parameter values. The key conditions needed for this
proposition are monotonicity of g(ωit−1) and the weak monotonicity of investment in productivity.

Another key condition for this proposition is that (ζit, η
l
it, εit) are orthogonal to the firm’s in-

formation set at t− 1. Recall that Proposition 3.2(iii) provides moment inequality in terms of ωit.
However, we can only recover g(wit−1) + ζit + ηlit + εit from the observed variables and parameters.
Therefore, we need to account for (ζit, η

l
it, εit). The orthogonality condition allows me to achieve

this, as ζit + ηlit + εit drop from the moment inequality in Equation (6.1) when we take conditional
expectations.

Remark 3.1 (Comparison to Proxy Variable). Single dimensional unobserved heterogeneity and
strong monotonicity of investment in productivity allow OP to invert the investment function and
recover productivity shock as

ωit = f−1t (iit, kit).
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An invertible investment function means that one can control for unobserved productivity by
conditioning on observables. My model relaxes the two necessary conditions for invertibility. First,
I allow the investment function to be weakly monotone in productivity. Second, there are additional
unobserved variables affecting investment. Therefore, we can no longer compare the productivity
levels of two firms by comparing their investments under my assumptions.

Remark 3.2 (Conditioning on Two Investment Levels). One might think that a moment inequality
similar to Equation (3.3) holds, conditional on two different investment levels:

E[ωit | kit−1, iit = z1] > E[ωit | kit−1, iit = z2],

where z1 < z2. However, this inequality does not hold, as it is easy to find counterexamples.
Therefore, it is crucial to group firms using a cutoff value in investment.

Remark 3.3 (Relation to Monotone Instrument and Imperfect Instrument Literature). This paper
is related to the literature on monotone instrumental variables (Manski (1997), Manski and Pep-
per (2000)). This literature assumes that the mean potential outcomes are ordered based on an
observed variable, which is called a monotone instrument. In my model, investment can be consid-
ered a monotone instrument for productivity. The main difference of my model from the standard
monotone instrumental variable approach is that the monotone instrument comes from within the
model in this paper. My approach is also related to the ‘imperfect instrument approach,’ which
assumes that the researcher has some prior information about the correlation between the endoge-
nous variable and unobserved heterogeneity. This information is then used to construct moment
inequalities. See, for example, Nevo and Rosen (2012) and Conley et al. (2012).

3.3 Identified Set

In this section, I characterize the identified set using the derived moment inequalities. Since I have
conditional moment inequalities, the identified set is given by intersection bounds. Recall that the
true parameter satisfies:

E[yit − θkkit − θllit | kit−2, iit−1 > z]− E[yit − θkkit − θllit | kit−2, iit−1 < z] > 0. (3.7)

In what follows, I assume that all expectations are conditional on (kit−2 = k), so I drop it from
notation. Define the following variables indexed by z

Ihit(z) := 1{iit−1 > z}, I lit(z) := 1{iit−1 < z}.

Ihit(z) equals one if a firm invests less than z and zero otherwise. The opposite is true for I lit(z). I
call firms with Ihit(z) = 1 as high investment and I lit(z) = 1 as low investment. With some abuse
of notation, I treat these variables as events when they are in the conditioning set. I can write the
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moment inequality in Equation (3.7) as:

θk
(
E[kit | Ihit(z)]− E[kit | I lit(z)]

)
+ θl

(
E[lit | Ihit(z)]− E[lit | I lit(z)]

)
6
(
E[yit | Ihit(z)]− E[yit | I lit(z)]

)
.

This expression shows that the identified set depends on average capital and labor of ‘high’ and
‘low’ investment firms. For example, if average capital and labor do not vary with investment, then
the identified set would not be informative. Next, I characterize the identified set. Define

al(z, k) := E[lit | Ihit(z)]− E[lit | I lit(z)], (3.8)

ak(z, k) := E[kit | Ihit(z)]− E[kit | I lit(z)], (3.9)

ay(z, k) := E[yit | Ihit(z)]− E[yit | I lit(z)]. (3.10)

Using these definitions, the moment inequality can be expressed as

ak(z, k)θk + al(z, k)θl 6 yl(z, k) for all z > 0, k ∈ K.

The identified set, conditional on k and z, is a region defined by a half-plane. Therefore, the
identified set is the intersection of these half-planes.

Proposition 3.4 (Identified Set). Assume θ ∈ Θ̃, a compact parameter space. The identified set Θ

is defined as the set of parameters that satisfy the conditional moment inequalities

Θ :=

{
θ̃ ∈ Θ̃ :

⋂
k∈K

⋂
z>0

ay(z, k)− θ̃kak(z, k)− θ̃lal(z, k) > 0 a.s.
}
,

and the identified set contains true parameter value θ ∈ Θ.

3.4 Moment Inequalities Using FOSD and MLRP

This subsection shows how to construct moment inequalities using MLRP and FOSD under further
assumptions. These assumptions include restrictions on the distribution of unobservables.

Proposition 3.2 establishes that the distributions of productivity conditional on high and low
investment satisfy MLRP and FOSD. However, when characterizing the identified set, I only used
the mean ordering, a much weaker condition. This is because even though MLRP and FOSD hold
for productivity, I can only recover g(wit−1) + ζit + ηlit + εit. Therefore, I need additional conditions
that ensure that MLRP and FOSD are preserved when there are additive errors. The following two
theorems present those conditions.

Theorem 3.1 (Shaked and Shanthikumar (2007)). Let X1 and X2 be two independent random
variables, and Y1 and Y2 be another two independent random variables. If Xi 6FOSD Yi for i = 1, 2
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then

X1 +X2 6FOSD Y1 + Y2.

Theorem 3.2 (Shaked and Shanthikumar (2007)). Let X1, X2 and Z be random variables such
that X1 and Z are independent and X2 and Z are independent. If X1 6MLRP X2 and Z has a
log-concave probability density functions, then

X1 + Z 6MLRP X2 + Z.

These two theorems suggest that in order for MLRP and FOSD to be preserved under convo-
lutions I need: (i) an independence condition for FOSD and (ii) independence and log-concavity
conditions for MLRP. Therefore, I next impose these conditions on the unobservables to derive
moment inequalities using FOSD and MLRP.

3.4.1 Identified Set Using FOSD

As Theorem 3.1 suggests, I need to impose independence restrictions on unobservables to preserve
FOSD ordering.

Assumption 3.1. (ηit, ζit, εit) are jointly independent from Iit−1.

With this assumption g(ωit−1) becomes jointly independent from the rest of the unobservables,
ζit + εit + ηit, conditional on Iit−1. Therefore, MLRP for g(ωit−1) conditional on high and low
investment is preserved for g(ωit−1) + ζit + εit + ηit conditional on high and low investment. Under
this assumption, I can strengthen the mean ordering in Equation (3.3) to the first-order stochastic
dominance ordering, and characterize the identified set accordingly.

Proposition 3.5 (Identified Set-FOSD). Under Assumptions 2.1-2.6 and Assumption 3.1, the true
parameter θ ∈ Θ̃ satisfies the following condition

Fm(wit,θ)(· | kit−2 = k, Ihit(z) = 1)− Fm(wit,θ)(· | kit−2 = k, I lit(z) = 1) > 0, (3.11)

for all (k, z) in the support of (kit−2, iit−1) such that 0 < E[Ihit(z) | kit−2 = k] < 1. The identified
set (conditional on k and z) is

ΘFOSD
t = {θ̂ ∈ Θ : (3.11) holds with θ in place of θ̂}.

The independence assumption is non-standard in production function models, but it is difficult to
consider situations where mean independence holds and independence does not hold. Next, I specify
the assumption that allows me to use the MLRP result in Proposition 3.2(i) for identification.
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3.4.2 Identified Set Using MLRP

As Theorem 3.2 suggests, I need to impose independence and shape restrictions on the distributions
of unobservables to be able to use MLRP.

Assumption 3.2. (ηit, ζit, εit) are jointly independent from Iit−1, and each variable in ηit, ζit, εit

has a log-concave probability distribution function.

Under this assumption, I can strengthen the mean inequality in Proposition (??) to MLRP and
characterize the identified set accordingly.

Proposition 3.6 (Identified Set-MLRP). Under Assumptions 2.1-2.6 and Assumption 3.2, the true
parameter θ ∈ Θ̃ satisfies the following inequality:

Fm(wit,θ)(· | a 6 m(wit, θ) 6 b, kit−2 = k, Ihit(z) = 1)− (3.12)

Fm(wit,θ)(· | a 6 m(wit, θ) 6 b, kit−2 = k, I lit(z) = 1) > 0

for all (k, z) in the support of (kit−2, iit−1) such that 0 < E[Ihit(z) | kit−2 = k] < 1 and for all (a, b)

such that a < b. The identified set (conditional on k and z) is

ΘMLRP
t = {θ̂ ∈ Θ : (3.12) holds with θ̂ in place of θ}.

Most well known distributions ,such as those in the exponential family, satisfy the assumptions
required for this proposition.

3.5 Discussion

An advantage of identification analysis under a wide range of assumptions is that we can see the
role of each assumption in identification. For example, we can start with the most general model
to impose as few restrictions as possible. If the estimated set is not informative, then a nested
model can be considered to shrink the identified set. Also, comparing estimates from a nested and
a nesting model would test the restrictions imposed by the nested model.

Note also that proxy variable specification is a special case of my framework. So, if the estimates
set is not information, one can use the proxy variable approach to point identify the parameters.
It is also worth noting that, the identified set under my assumptions does not have to include the
point estimates obtained from proxy variable method. The reason is that under the proxy variable
assumptions the model is over-identified. If my partial identification method uses overidentification
restrictions, the point estimates might be excluded from the identified set. This would mean rejecting
the proxy variable assumptions.

One may think that set identifying the production function parameters is not useful unless the
set is tight. As in most set identification results, the informativeness of the identified set depends on
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the data and empirical example. However, as discussed above, there are other advantages of using
my framework. Most importantly, since the standard OP approach is nested under my assumptions,
there is no harm in starting with a more general model.

4 Estimation

The identification analysis generates conditional moment inequalities. It is convenient to turn
conditional moment inequalities into unconditional ones for estimation. To achieve this, I integrate
out kit−2 and define the propensity of high and low investment conditional on kit−2.

First, I define the propensity score, which equals the probability that investment is greater than
a cutoff z.

m(kit−2, z) = E[Ihit(z) | kit−2].

I define the moments using the propensity scores in the following ways.

E[
(
yit − θkkit − θllit

)
| kit−2, Ihit(z)] = E

[(
yit − θkkit − θllit

)
Ihit(z)

m(kit−2, z)
| kit−2

]
,

E[
(
yit − θkkit − θllit

)
| kit−2, Ihit(z)] = E

[(
yit − θkkit − θllit

)(
1− Ihit(z)

)(
1−m(kit−2, z)

) | kit−2

]
.

Integrating out kit−2, the unconditional moment inequality can be written as:

E

[(
yit − θkkit − θllit

)
Ihit(z)

m(kit−2, z)

]
> E

[(
yit − θkkit − θllit

)(
1− Ihit(z)

)
1−m(kit−2, z)

]
.

Define

sh(θ, z) = E

[(
yit − θkkit − θllit

)
Ihit(z)

m(kit−2, z)

]
, sl(θ, z) = E

[(
yit − θkkit − θllit

)(
1− Ihit(z)

)
1−m(kit−2, z)

]
.

Estimation can be carried out by testing the hypothesis θh(θ, z) > sl(θ, z) and inverting the test.
Specifically, for a given θ, test sh(θ, z) > θl(θ, z) for all z > 0 and include θ in the identified set if
the the null hypothesis fails to be rejected. The natural estimators for sh(θ, z) and sl(θ, z) are

ŝh(θ, z) =

N∑
i=1

(
yit − θkkit − θllit

)
Ihit(z)

m̂(kit−2, z)
, sl(θ, z) =

N∑
i=1

(
yit − θkkit − θllit

)
I lit(z)

1− m̂(kit−2, z)
, (4.1)

where m̂(kit−2, z) is an estimate of m(kit−2, z). These functions involve the propensity score, which
is a nuisance function and needs to be estimated in the first stage. To make the estimation procedure
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more robust to an estimation error in the nuisance function, I can define the doubly robust moment
functions. This requires other nuisance functions in the moment functions. Define

gh(k, z, θ) = E[
(
yit − θkkit − θllit

)
| kit−2 = k, Ihit(z)],

gl(k, z, θ) = E[
(
yit − θkkit − θllit

)
| kit−2 = k, I lit(z)].

Using these functions, the doubly robust moments are

shdb(θ, z) = gh(kit−2, z, θ) +
Ihit(z)

((
yit − θkkit − θllit

)
− gh(kit−2, z, θ)

)
m(kit−2, z)

,

sldb(θ, z) = gl(kit−2, z, θ) +

(
1− Ihit(z)

)(
(yit − θkkit − θllit)− gl(kit−2, z, θ)

)
1−m(kit−2, z)

.

The sample analog of these moments can be obtained similar to Equation (4.1). Expectations of
the doubly robust moments and the original moments equal to each other:

E
[
shdb(θ, z)

]
= E

[
sh(θ, z)

]
, E

[
sldb(θ, z)

]
= E

[
sl(θ, z)

]
.

Doubly robust moments have the property that if one of the nuisance functions is correct, then
the moment is correct. Semenova (2017) studies moment inequality estimation with nuisance func-
tions shows how to do inference when the nuisance functions are estimated using machine learning
methods.

One can also consider using conditional moment inequalities to tighten the identified set instead
of integrating out capital. For that estimation problem one can use many moment inequalities
framework of Chernozhukov et al. (2018) or conditional moment inequality estimation framework
of Andrews and Shi (2013).

5 Extensions

The approach developed in this paper can be extended to other forms of production functions. To
give some examples, I discuss the application to gross production function and using materials as
the proxy variable instead of labor. I also show how my model accommodates measurement error
in capital.

5.1 Gross Production Function

In this subsection, I show how to extend my model to a gross production function. The estimation
procedure remains the same, with an increase in the number of parameters.
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A gross production function is given by

yit = θkkit + θllit + θmmit + ωit + ηlit + εit (5.1)

Similar to the main model, using Markov we can the production function as

yit = θkkit + θllit + θmmit + g(ωit−1) + ζit + ηlit + εit

All the proposition shown in this paper apply to this model since they do not depend on the
functional form of the production function. Therefore, we can construct a moment function as

m(wit, θ̃) := yit − θ̃kkit − θ̃llit − θ̃mmit

with wit = (kit, lit,mit), θ̃ = (θ̃l, θ̃k, θ̃m). Also let θ denote the vector of true parameter values.

Proposition 5.1. For all z ∈ I and kit−1 ∈ K

E[m(wit, θ) | kit−2, iit−1 > z]− E[m(wit, θ) | kit−2, iit−1 < z] > 0

This moment inequality can be used to estimate the model parameters. The only difference is
that there are more parameters to estimate, so the estimates might be less precise.

5.2 Using Materials as Proxy

Levinsohn and Petrin (2003) propose using materials instead of investment as a proxy for produc-
tivity shock, because investment is lumpy in the data. Even though my framework is robust to this
problem, the model allows for using materials as a proxy instead of investment. For this, I need to
replace Assumption 2.4 with the following assumption.

Assumption 5.1. Firms’ materials decision is given by

mit = mt(kit−1, ωit, ξit),

where ξit is a vector of unobserved random variables that affect firm’s materials decision and it is
assumed to be independent of ωit conditional on kit−1.

When materials is used as an imperfect proxy, the moment inequalities become

Proposition 5.2. For all z ∈ I and kit−1 ∈ K

E[m(wit, θ) | kit−1,mit > z]− E[m(wit, θ) | kit−1,mit < z] > 0.

Moment function, m(wit, θ), is defined in Equation (3.5). This moment inequality can be used to
estimate the model parameters. This moment applied to a gross production function.
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5.3 Identification with the Standard Timing Assumption

To accommodate the standard timing assumption, I replace Assumption 2.3 with the following
assumption.

Assumption 5.2. Capital accumulates according to

kit = δkit−1 + iit−1.

This assumption implies that the amount of capital used for time t production is determined at
time t− 1. I also need to replace Assumption (2.4) with

Assumption 5.3. Firms’ investment decision is given by

iit = ft(kit, ωit, ξit)

where ξit is a vector of unobserved variables that affect firm’s investment decision and it is assumed
to be independent of ωit conditional on kit.

These changes only affect the conditioning set in the moment inequalities. In particular I need
condition on (kit−1, iit−1) instead of (kit−2, iit−1). So the moment inequality becomes:

E[m(wit, θ) | kit−1, iit−1 > z]− E[m(wit, θ) | kit−1, iit−1 < z] > 0,

where the moment function, m(wit, θ), is defined in Equation (3.5). This moment inequality can be
used to estimate the parameters. The estimation procedure remains the same.

5.4 Nonparametric Production Function

The identification strategy in this paper requires Cobb-Douglas functional form only to account for
measurement errors. Thus, if I rule out measurement errors, I can use nonlinear production function
that is known up to a finite dimensional parameter vector. To demonstrate this extension, consider
the following model:

yit = r(θ, wit) + ωit + εit, (5.2)

where r(θ, wit) is a known function up to the parameter vector θ. For this model, the moment
function becomes:

m∗(wit, θ̃) := yit − r(θ̃, wit). (5.3)

With this moment function, the results for the main model can be applied to estimate Equation
(5.2).
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5.5 Measurement Error in Capital

My framework can also accommodate measurement error in capital, which is important because
among all inputs, capital is most prone to measurement error.

Let ηkit denote measurement error in investment. It is natural to model measurement error in
capital using measurement error in investment because capital is accumulated through investment.
Also, capital is often constructed from investment series in the data.9 Let i∗it denote true investment.
The observed investment is given by:

iit = i∗it + ηkit

= ft(kit−1, ωit, ξit) + ηkit.

Measurement error, ηkit, can be included into ft function as a part of ξit vector. Define ξ∗it = (ξit, ζ
k
it)

and rewrite the investment function as

iit = ft(kit−1, ωit, ξ
∗
it).

With measurement error in investment, observed capital takes the form

kit = k∗it +
t∑

j=0

(1− δ)jηkit,

where k∗it is true capital. Substituting this into the production function yields

yit = θkkit + θllit + g(ωit−1) + ζit −
( t∑
j=0

(1− δ)jηkit
)
θk + ηlit + εit. (5.4)

I can combine measurement errors in capital and labor as ηit = −
(∑t

j=0(1− δ)jηkit
)
θk + ηlit. With

the combined measurement error, production function becomes:

yit = θkkit + θllit + g(ωit−1) + ζit + ηit + εit. (5.5)

This equation takes the same form I consider for my partial identification results. So if we assume
that ηkit be is independent of ωit conditional on kit−1 and E[ηit | Iit−1] = 0, we can use the same
moment inequalities derived in Equation (6.1).

Since measurement error in capital is an important problem, the literature has paid particular
attention to measurement error in capital. Some examples are Hu et al. (2011), Collard-Wexler
and De Loecker (2016), and Kim et al. (2016). These papers require an instrumental variable or
another proxy variable to control for measurement error in capital and show point identification. In

9For example, the perpetual inventory method.
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contrast, my method does not require another variable, but it gives a bound instead of a point.

6 Empirical Application

In this section, I apply my method to a panel production data from Turkey.

6.1 Data

The data for Turkey are provided by the Turkish Statistical Institute (TurkStat; formerly known as
the State Institute of Statistics, SIS), which collects plant-level data for the manufacturing sector.10

Periodically, Turkstat conducts the Census of Industry and Business Establishments (CIBE), which
collects information on all manufacturing plants in Turkey. In addition, TurkStat conducts the
Annual Surveys of Manufacturing Industries (ASMI) that covers all establishments with at least
10 employees. The set of establishments used for ASMI is obtained from the CIBE. In non-census
years, the new private plants with at least 10 employees are obtained from the chambers of industry.

I use a sample from Annual Surveys of Manufacturing Industries, covering a period from 1983
to 2000. Data from a more recent period is available, but due to major changes in the survey
methodology, it is not possible to link this dataset to the data from a more recent period. I limit
the sample to only private establishments. I focus on the textile industry, which is the largest 3-
digit industry in terms of the number of firms. My sample includes 1437 firms and 14271 year-firm
observations.

The data includes gross revenue, investment, the book value of capital, materials expenditures
and the number of production and administrative workers. The real value of annual output is
obtained by deflating the plant’s total annual sales revenues by an industry-specific price index.
Material inputs include all purchases of intermediate inputs. I deflate the nominal value of total
material input cost by each plant using the industry-level intermediate input price index. Finally,
capital stock series is constructed using the perpetual inventory method where investment in new
capital is combined with deflated capital from period t− 1 to form capital in period t.

6.2 Empirical Model

For my empirical application, I consider a value-added production function.

yit = θkkit + θllit + ωit + εit.

10This dataset has been used by Levinsohn (1993) and Taymaz and Yilmaz (2015).
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I maintain the standard timing assumption that capital is chosen one period in advance.11 I use
the following moment inequality for estimation

E[yit − θ̃kkit − θ̃llit | kit−1, iit−1 > z]− E[yit − θ̃kkit − θ̃llit | kit−1, iit−1 < z] > 0. (6.1)

I follow the steps outlined in the estimation section to construct unconditional moment inequalities
from this conditional moment inequality. In particular, I first calculate the empirical analog of
ŝhdb(θ, z) and sldb(θ, z) using

ŝhdb(θ, z) =

N∑
i=1

ĝht (kit−1, z, θ) +
Ihit(z)

((
yit − θkkit − θllit

)
− ĝht (kit−1, z)

)
1− m̂t(kit−1, z)

, (6.2)

ŝldb(θ, z, θ) =

N∑
i=1

ĝlt(kit−1, z) +
I lit(z)

((
yit − θkkit − θllit

)
− ĝlt(kit−1, z)

)
m̂t(kit−1, z)

, (6.3)

where I estimate the nuisance functions m̂t, ĝht and ĝlt using random forest method in the first stage.
Following Semenova (2017), I also employ cross-fitting, i.e, I estimate the nuisance functions in the
first half of the sample and construct the moments, ŝhdb(θ, z) and ŝldb(θ, z), using the second half of
the sample. I then swap these samples to avoid loss of efficiency.

I test the moment inequality shdb(θ, z) > sldb(θ, z) using the Chernozhukov et al. (2018) many
moment inequalities framework with the empirical analogs given in Equations (6.2) and (6.3). I
obtain 50 moment inequalities by choosing 10 different z values from the support and testing moment
inequalities in 5 different periods (84-87, 88-90, 91-93, 94-96, 97-00) for each z value.12 The estimated
set is constructed by inverting this test, that is, estimated set includes all parameter values for which
I fail to reject shdb(θ, z) > sldb(θ, z).

I present the estimation results in Figure 1, where the red region shows the estimated set (with
95% coverage). As suggested in the identification analysis of Section 3, the estimated set is a half-
plane. It is more informative about θk than θl, as it excludes the large values of capital elasticity
values. One can also combine this estimated set with a priori restrictions on the production function
based on economic theory. For example, if we impose that the restriction that the production
function is constant returns to scale, then we can conclude from the identified set that the elasticity
of capital is less than 0.28.

Even though the identified set does not give a definite answer about the production function
parameters, it suggests that less restrictive assumptions in the proxy variable framework is still
informative about production technology. Also, the estimated set is not sharp, since the estimation

11I assume this because the capital series is constructed under this assumption using the perpetual inventory
method.

12To calculate the critical values I use their multiplier bootstrap method.
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Figure 1: Estimated Set
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Note: The estimated of set for the value-added Cobb-Douglas production function parameters. The
reported set shown in black covers the true parameter with 95% probability.

procedure does not use moment inequalities conditional on capital. Moreover, one can also use the
moment inequalities derived from FOSD and MLRP restrictions under slightly stronger assumptions
in Subsection 3.4. These estimations might give more informative estimated sets.13

7 Conclusion

This paper extends the production function estimation literature by relaxing the restrictive assump-
tions of the proxy variable approach and showing that the parameters remain partially identified.
My model (i) allows for multi-dimensional unobserved heterogeneity, (ii) relaxes strict monotonicity
to weak monotonicity, (iii) accommodates a more general timing assumption. Also, the method is
robust to measurement errors in inputs, an important problem in production function estimation.

I accomplish this by using an ‘imperfect proxy’ variable for identification. An ‘imperfect proxy’
variable contains information about productivity, but it cannot directly be used to control for
productivity as in the proxy variable approach. Instead, an imperfect proxy variables generates
stochastic orderings of productivity distributions, which can be exploited for estimation. I show how
to use this stochastic ordering in the form of moment inequalities to obtain bounds for production
function parameters.

13I plan to look at the estimated sets under these assumptions in the future versions of the paper.
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A Proofs

A.1 Proof of Proposition 3.1

Proof. Under Assumption 2.2 productivity shock can be written as

ωit = g(ωit−1) + ξit

where g(·) is a monotone function as the distribution is stochastically increasing in ωit by stochastic
dominance condition in Assumption 2.2. Substituting this into Equation 3.2 and expanding the left
hand side

E
[(
ωit + εit − ωit−1 − εit−1

)2]
= E

[(
g(ωit−1) + ξit + εit − ωit−1 − εit−1

)2]
= E

[(
(g(ωit−1)− ωit−1) + ξit + εit − εit−1

)2]
= E

[(
g(ωit−1)− ωit−1

)2]
+ E

[
(ξit + εit − εit−1

)2]
+ 2E

[(
g(ωit−1)− ωit−1

)
(ξit + εit − εit−1

)]
Expanding the right hand side similarly

E
[(
ωit + εit − ωjt−1 − εjt−1

)2]
= E

[(
g(ωit−1) + ξit + εit − ωjt−1 − εjt−1

)2]
= E

[(
g(ωit−1)− ωjt−1 + ξit + εjt − εjt−1

)2]
= E

[(
g(ωit−1)− ωjt−1

)2]
+ E

[
(ξit + εit − εjt−1

)2]
+ 2E

[(
g(ωit−1)− ωjt−1

)
(ξit + εit − εjt−1

)]
By the iid assumption the second expectations are equal to each

E
[
(ξit + εit − εit−1

)2]
= E

[
(ξit + εit − εjt−1

)2]
By the orthogonality of (εit, εit−1, ξit−1) to ωit−1 and iid assumption third expectations are equal to
zero

E
[(
g(ωit−1)− ωjt−1

)
(ξit + εit − εjt−1

)]
= E

[(
g(ωit−1)− ωit−1

)
(ξit + εit − εit−1

)]
= 0

Therefore we need to show that

E
[(
g(ωit−1)− ωit−1

)2]
6 E

[(
g(ωit−1)− ωjt−1

)2]
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Expanding both sides

E
[(
g(ωit−1)− ωit−1

)2]
= E[g(ωit−1)

2] + E[ω2
it−1]− 2E[g(ωit−1)ωit−1]

E
[(
g(ωit−1)− ωjt−1

)2]
= E[g(ωit−1)

2] + E[ω2
jt−1]− 2E[g(ωit−1)ωjt−1]

The second and third moments are equal to each other by iid assumption

E[g(ωit−1)
2] = E[g(ωit−1)

2]

E[ω2
it−1] = E[ω2

jt−1]

So we need show that

E[g(ωit−1)ωit−1] > E[g(ωit−1)ωjt−1]

Observe that E[g(ωit−1)ωjt−1] = 0 again by iid assumption. For a random variableX, E[f(X)X] > 0

for an increasing function f . Therefore

E[g(ωit−1)ωit−1] > 0

which gives the inequality in proposition.

E
[(
ωit + εit − ωit−1 − εit−1

)2]
6 E

[(
ωit + εit − ωjt−1 − εjt−1

)2]

A.2 Proof of Proposition 3.2

Proof. Using Bayes rule for continuous random variables, I write the conditional probability distri-
bution function of ωit as (by changing the notation slightly)

f(ωit | kit−1, iit > z) =
Pr(iit > z | kit−1, ωit)f(ωit | kit−1)f(kit−1)

Pr(iit > z | kit−1)f(kit−1)
=

Pr(iit > z | kit−1, ωit)f(ωit | kit−1)
Pr(iit > z | kit−1)

and similarly for f(ωit | kit, iit < z). By taking the ratio of the two

f(ωit | kit−1, iit > z)

f(ωit | kit−1, iit < z)
=

Pr(iit > z | kit−1, ωit)Pr(iit < z | kit−1)
Pr(iit < z | kit−1, ωit)Pr(iit > z | kit−1)

=
Pr(iit > z | kit−1, ωit)Pr(iit < z | kit−1)(

1− Pr(iit > z | kit−1, ωit)
)(

1− Pr(iit < z | kit−1)
)
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This function is increasing in Pr(iit > z | kit−1, ωit) if because numerator is increasing and denomi-
nator is decreasing in Pr(iit > z | kit−1, ωit). So if I can show that Pr(iit > z | kit−1, ωit) is weakly
increasing in ωit that imply

f(ωit | kit−1, iit > z)

f(ωit | kit−1, iit < z)

has the monotone likelihood ratio property. Therefore the next step is to show that Pr(iit > z |
kit, ωit) is increasing in ωit. We write Pr(iit > z | kit, ωit) as

Pr(iit > z | kit−1, ωit) =

∫
1{f(kit−1, ωit, ξit) > z}f(ξit|ωit, kit−1)dξit

=

∫
1{f(kit−1, ωit, ξit) > z}f(ξit|kit−1)dξit

where second line follows from Assumption 2.4. Since by assumption Assumption 2.5 f(ki−1, ωit, ξit)

is monotone in ωit, I conclude that Pr(iit > z | kit−1, ωit) is increasing in ωit. MLRP ratio implies
the first order stochastic dominance and mean inequality, so other results follow.

A.3 Proof of Proposition 5.2

Proof. From Equation (3.4) I can write the moment function at the true values of parameters as

m(wit, θ) = yit − θ0 − θkkit − θllit = g(ωit−1) + ζit + εit + ηit

Substituting m(wit, θ) = g(ωit−1) + ζit + εit + ηit into Equation (6.1) we need to show that the
following inequality holds

E[g(ωit−1) + ζit + εit + ηit | kit−2, iit−1 > z]− E[g(ωit−1) + ζit + εit + ηit | kit−2, iit−1 < z] > 0

I proceed in two steps. First note that, by my assumptions ξit, εit and ηit are orthogonal to
information set at t− 1. Therefore we have

E[g(ωit−1) + ζit + εit + ηit | kit−2, iit−1 > z] = E[g(ωit−1) | kit−2, iit−1 > z]

E[g(ωit−1) + ζit + εit + ηit | kit−2, iit−1 < z] = E[g(ωit−1) | kit−2, iit−1 < z]

To conclude the proof I need to show that

E[g(ωit−1) | kit−2, iit−1 > z] > E[g(ωit−1) | kit−2, iit−1 < z]
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To see this, by proposition 2.1, we have a first order stochastic dominance relationship between
ωit−1’s conditional on kit−1 and investment is larger and smaller than a threshold

Fωit−1(t | kit−2, iit−1 > z) > Fωit−1(t | kit−2, iit−1 < z) for all t > 0

where Fx(t|y) denotes probability distribution function of x conditional on y. Since g(ω) is a
monotone function and stochastic order is preserved under monotone transformation this implies

Fg(ωit−1)(t | kit−2, iit−1 > z) > Fg(ωit−1)(t | kit−2, iit−1 < z) for all t > 0

which leads to the condition we wanted to show

E[g(ωit−1) | kit−2, iit−1 > z]− E[g(ωit−1 | kit−2, iit−1 < z] > 0.
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