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Abstract

Traditional production functions rely on factor-neutral technology and
functional form assumptions. These assumptions impose strong economic
restrictions and are often empirically rejected. This paper develops a
new method for estimating production functions with labor-augmenting
technology and applies it to markup estimation. The method does not
impose parametric restrictions and generalizes prior approaches that rely
on the CES production function. I first extend the canonical Olley-Pakes
framework and then develop an identification strategy based on a novel
control variable approach and first-order conditions. I use this method to
estimate output elasticities and markups in manufacturing industries in the
US and four developing countries. I find that neglecting labor-augmenting
productivity underestimates variable input elasticity, and overestimates
markups in all countries. These biases also affect markup growth: I estimate
a more muted markup growth in the US manufacturing sector than recent
estimates. My findings suggest that accommodating labor-augmenting
productivity is crucial for markup estimation.
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1 Introduction

Production functions are useful in many areas of economics. They are used to

quantify productivity growth, misallocation of inputs, and market power. The

typical exercise requires researchers to specify a model of production function and

estimate it using firm-level data. However, a misspecified production function may

produce biased estimates, which in turn generate incorrect answers to important

economic questions. For example, a biased capital elasticity would imply misallo-

cation in an economy with efficient allocation, and a biased flexible input elasticity

would give incorrect markup estimates.

Much of the empirical literature relies on Hicks-neutral technology and func-

tional form assumptions for production function estimation. These two elements of

standard practice impose strong theoretical restrictions, which, as several papers

have shown, are rejected by data. For example, the large firm-level heterogene-

ity in input ratios is not consistent with Hicks-neutral technology (Raval (2020)).

The elasticity of substitution is often estimated to be less than one, contradicting

the Cobb-Douglas functional form (Chirinko (2008)). This evidence suggests that

firms’ production functions do not take the form of commonly used specifications.

In this paper, I develop a method for estimating nonparametric production

functions with factor-augmenting productivity and examine its implications em-

pirically. The model has two key features. First, it has labor-augmenting produc-

tivity in addition to Hicks-neutral productivity. Second, it does not rely on para-

metric assumptions for identification; it only imposes a limited functional form

structure, which nests the common parametric forms. Together, these features

yield a flexible production model, with the ability to better explain the data.

This paper makes both methodological and empirical contributions. Method-

ologically, I extend the canonical Olley and Pakes (1996) framework to a model

with multidimensional productivity, and then study the nonparametric identifica-

tion of this model by building on the recent literature on factor-augmenting tech-

nical change (Doraszelski and Jaumandreu (2018), Raval (2019)). Empirically, I

find that neglecting factor-augmenting technology mismeasures output elasticities

and markups.

A major challenge in estimating production functions is the endogeneity of



inputs. This problem generates additional complications in my model due to the

multidimensional unobserved productivity and the absence of parametric restric-

tions. To address this challenge, I make three novel methodological contributions.

My first result establishes the invertibility of labor-augmenting productivity.

In particular, I show how to express labor-augmenting productivity as a function

of inputs by inverting input demand functions. This result is key to controlling

for labor-augmenting productivity, and it generalizes the parametric inversion to

a nonparametric model (Doraszelski and Jaumandreu (2018)). I establish invert-

ibility under the assumption that the production function satisfies homothetic

separability in labor and materials, a weak condition that nests the most com-

monly used production functions. Most importantly, it is an economic rather

than a statistical restriction, with clear implications for firm behavior.

My second contribution is to develop a novel control variable approach for

production function estimation, building on Imbens and Newey (2009). This re-

sult uses the timing assumption for capital and Markov property of productivity

shocks, both of which are standard in the literature. The control variable ap-

proach differs from the standard “proxy variable approach” in that it does not

directly condition on the observed inputs. Instead, it estimates control variables

from data in the form of conditional quantiles and conditions on them to address

endogeneity. The control variable approach generally cannot be applied to multidi-

mensional unobserved heterogeneity due to the lack of invertibility (Kasy (2011)).

I circumvent this problem by showing that the input demand functions form a tri-

angular structure under the modeling assumptions, allowing for invertibility with

two-dimensional unobserved heterogeneity.

The third methodological contribution is an identification strategy for output

elasticities. After developing the control variable approach, I study which features

of the production function can be identified. I first establish a negative result: the

output elasticity of flexible inputs (labor and materials), the key input for markup

estimation, is not identified due to a functional dependence problem. However,

the sum of the flexible input elasticities is identified. To separately identify the

flexible input elasticities, I use the first-order conditions of cost minimization,

which imply that the ratio of two flexible inputs’ elasticities is identified as the

ratio of their expenditures. Importantly for markup estimation, this result does
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not rely on perfect competition in the output market.1

Using cost minimization to identify the ratio of output elasticities has an ap-

pealing feature: markup estimates from two different flexible inputs are identical.

This addresses the well-documented problem that different flexible inputs often

yield conflicting markup estimates (Raval (2020)). I show that allowing for labor-

augmenting productivity provides a natural solution to this problem. Without

labor-augmenting productivity, the model is not rich enough to explain the large

firm-level heterogeneity in input ratios, leading to conflicting markup estimates.

Labor-augmenting productivity introduces unobserved heterogeneity, makes the

model internally valid, and generates identical markup estimates.

I use my method to estimate output elasticities in manufacturing industries in

the US and four developing countries: Chile, Colombia, India, and Turkey. I com-

pare my results with estimates from three production functions: (i) Cobb-Douglas,

(ii) translog with Hicks-neutral productivity, and (iii) CES with labor-augmenting

productivity. The results suggest that the Cobb-Douglas model underestimates

the capital elasticity, on average, by 30 percent and overestimates the labor elas-

ticity by 25 percent. Using a labor-augmenting CES or Hicks-neutral translog pro-

duction function only partially corrects these biases, pointing to the importance of

both relaxing parametric restrictions and introducing unobserved heterogeneity.

Estimates of output elasticities are typically used to measure important eco-

nomic variables. A prime example is markups, which have recently been estimated

using production functions (De Loecker et al. (2020)). After documenting biases

in output elasticities, I study how these biases propagate into markup estimates.

Hicks-neutral production functions yield biased estimates for markups. First,

the Cobb-Douglas model overestimates markups in all countries by 10 to 15 per-

centage points, an important magnitude when markups are interpreted as a mea-

sure of market power. This bias persists, to a smaller extent, when we allow for

more flexible Hicks-neutral production functions, such as translog, or parametric

labor-augmenting production functions, such as CES. Overall, my results suggest

that one has to take into account labor-augmenting productivity and allow for a

flexible functional form to reliably estimate markups.

1The paper also provides identification conditions and results for other objects of interest, such
as elasticity of substitution and labor-augmenting productivity.
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Next, I study how labor-augmenting productivity affects the estimates of

markup changes. For this, I estimate the evolution of markups in US manufac-

turing using data from Compustat. Recently, De Loecker et al. (2020) found that

the aggregate markup in the US has risen by 35 percentage points since the 1960s

using Hicks-neutral production functions. Their finding has drawn significant at-

tention, as it suggests a large increase in market power. Using the same dataset,

I instead find that the aggregate markup in US manufacturing has increased by

only 15 percentage points, from 1.3 in 1960 to 1.45 in 2012. This difference arises

because the Hicks-neutral specification suggests a negligible change in production

technology over the last fifty years, whereas I find that flexible input elasticity and

its relationship with firm size have changed.

My paper contributes to the literature on production function estimation with

proxy variable approach (Olley and Pakes (1996), Levinsohn and Petrin (2003),

Ackerberg et al. (2015), Gandhi et al. (2020)). My approach builds on these papers

but differs in three main respects. First, it includes factor-augmenting productivity

in addition to Hicks-neutral productivity. Second, I use control variables (Imbens

and Newey (2009)) rather than proxy variables to address endogeneity. Third, I

use the first-order conditions of cost minimization for identification with respect

to two inputs. Unlike the work of Gandhi et al. (2020), firms have market power

in the output market, but I require two flexible inputs.

Three recent papers have studied factor-augmenting technology and its impli-

cations (Doraszelski and Jaumandreu (2018), Raval (2019), Zhang (2019)). Com-

mon features of these papers are the CES production function and firm-level vari-

ation in input prices. They exploit the parameter restrictions between the pro-

duction and input demand functions and parametrically invert the input demand

functions to recover factor-augmenting productivity. I contribute to this litera-

ture by relaxing the CES assumption and analyzing identification with or without

variation in input prices. With the nonparametric form, I relax some common

restrictions the CES functional form imposes on the production technology, such

as homogeneous returns to scale and elasticity of substitution across firms.2

This paper contributes to the literature on markup estimation from production

2Another strand of literature uses a random coefficient model to introduce firm-level unobserved
heterogeneity (Kasahara et al. (2015), Li and Sasaki (2017), Balat et al. (2019)).
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data (Hall (1988), De Loecker and Warzynski (2012), Doraszelski and Jauman-

dreu (2019), Raval (2020)). This literature demonstrates how to estimate markups

from output elasticities under the cost minimization assumption and studies the

properties of this approach. I complement this literature by providing an esti-

mation method for labor-augmenting production functions and by showing that

labor-augmenting technology is important for markup estimation. Lastly, a grow-

ing literature analyzes change in market using the Hicks-neutral productivity as-

sumption and finds rising markups (Autor et al. (2020), De Loecker et al. (2020)).

My results suggest that a labor-augmenting production function estimation points

to a more muted rise in markups in the US manufacturing sector.

2 Model

I begin by introducing a production function model. The defining feature of my

model is that it allows for both labor-augmenting and Hicks-neutral productivity

without parametric restrictions.

2.1 Production Function with Labor-Augmenting Technology

Firm i produces output at time t by transforming three inputs—capital, Kit; labor,

Lit; and materials, Mit—according to the following production function:

Yit = Ft(Kit, ω
L
itLit,Mit) exp(ωHit ) exp(εit), (2.1)

where Yit denotes the output produced by the firm. The production function

includes two unobserved productivity terms. Labor-augmenting productivity, de-

noted by ωLit ∈ R+, increases the effective units of the labor input. Hicks-neutral

productivity, denoted by ωHit ∈ R, raises the quantity produced for any input

composition. Finally, εit ∈ R is a random shock to output.

The factors of production are either flexible or predetermined. I assume that

labor and materials are flexible inputs, meaning that the firm optimizes them

each period and their level does not affect future production.3 In contrast, I

assume that capital is a predetermined input ; that is, the firm chooses the level of

capital one period in advance. Each period, the firm chooses the level of flexible

3Whether labor is a flexible input depends on its measurement, the number of days vs. employees,
specific industry, and country. In my empirical setting of manufacturing, it is more likely to
hold for production workers than for white-collar workers.
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inputs to minimize the production cost given its information set, denoted by Iit,
which includes productivity shocks, capital stock, past information sets, and other

potential signals observed by the firm. The information set is orthogonal to the

random shock, i.e., E[εit | Iit] = 0, so εit can be viewed as measurement error in

output or an ex-post productivity shock not observed (or predicted) by the firm.

I assume that firms are price-takers in the input market. Input prices do

not vary across firms, but they can vary over time. My model and identification

strategy extend to the case with heterogeneous and observed input prices, which is

provided in Online Appendix B.1. The model does not assume perfect competition

in the output market but rules out market power in the input markets.

The form of the production function is industry-specific and time-varying. That

is, all firms in the same industry produce according to the same functional form,

which can change over time. The time-varying production function, unobserved

firm-specific productivity terms, and the nonparametric form yield a flexible pro-

duction model. Despite its flexibility, the production function has an important

restriction: factor-augmenting productivity affects only labor, implying that cap-

ital and materials productivity are homogeneous across firms. More generally, my

model can accommodate only one factor-augmenting productivity for a flexible

input. This limitation comes from the fact that a non-flexible input has dynamic

implications, requiring a different toolkit to model its productivity.

I choose to consider labor-augmenting technology for two reasons. First, het-

erogeneity in ωLit reflects firm-level differences in labor efficiency, which can be

generated by different mechanisms, such as firms’ management practices and hu-

man capital. Because these measures are typically not observed in the data, it is

natural to model them as unobserved heterogeneity. Second, in most production

datasets, labor’s cost share has the most across-firm variation among all inputs,

suggesting unobserved heterogeneity in labor productivity.

My model has two key features: (i) it contains factor-augmenting technol-

ogy, and (ii) it does not impose a parametric structure. These features have

important implications that are not captured by many other production func-

tions. As an illustration, consider the Cobb-Douglas production function, Yit =

Kβk
it L

βl
itM

βm
it exp(ωHit ) exp(εit), which is nested in Equation (2.1). Cobb-Douglas

has two key restrictions: (i) the production function is log-linear, and (ii) ωHit is
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the only source of unobserved heterogeneity in production technology. These are

strong restrictions with strong implications. First, they imply that revenue shares

of flexible inputs are the same across firms, a prediction rejected by the data

(Raval (2019)). Second, the literature has documented large heterogeneity in fac-

tor intensities, which contradicts constant elasticity.4 Finally, empirical evidence

suggests that the elasticity of substitution is less than one (Chirinko (2008)).

A more flexible Hicks-neutral production function, such as translog, is still

restrictive, as it does not have factor-specific productivity. The literature has

documented a large heterogeneity (across firms) and a significant decline (over

time) in labor share in advanced economies. Most importantly, these facts have

been attributed to within-industry changes and reallocation across firms (Autor et

al. (2020), Kehrig and Vincent (2021)), and heterogeneity in production technology

has been proposed as a mechanism (Oberfield and Raval (2021)).

2.2 Assumptions

This section presents assumptions and discusses their implications. The first as-

sumption imposes a homothetic separability restriction on the production func-

tion. This assumption allows me to invert the firm’s input choices to express ωLit
as an unknown function of inputs. Other assumptions concern firm behavior and

productivity shocks, generalizing the standard Olley and Pakes (1996) production

framework to a model with two productivity shocks. Throughout the paper, I as-

sume that all functions are continuously differentiable as needed, and all random

variables have a continuous and strictly increasing distribution function.

2.2.1 A Homothetic Separability Restriction

I first provide a set of conditions under which labor-augmenting productivity can

be expressed as a function of the firm’s inputs.

Assumption 2.1 (Homothetic Separability). Suppose that:

(i) The production function is of the form

Yit = Ft
(
Kit, ht(Kit, ω

L
itLit,Mit)

)
exp(ωHit ) exp(εit). (2.2)

(ii) ht(Kit, ·, ·
)
is homogeneous of arbitrary degree for all Kit.

4Large firms are more capital-intensive than small firms (Holmes and Schmitz (2010)), and
exporting firms are more capital-intensive than domestic firms (Bernard et al. (2007)).
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(iii) The firm minimizes production cost with respect to (Lit,Mit) given Kit, pro-

ductivity shocks (ωLit, ω
H
it ), and input prices (plt, p

m
t ).

(iv) Let σt(K,ωLL,M) denote the elasticity of substitution between effective labor

(ωLL) and materials. We have σt(K,ωLL,M) < 1 or σt(K,ωLL,M) > 1.

Assumption 2.1(i-ii) is called homothetic separability (Shephard (1953)), and

it is the key assumption of the paper. It states that the production function is

separable in Kit and a composite input ht that is homogeneous of arbitrary degree

in labor and materials. Homothetic separability is common in models of consumer

preferences and production functions, and most parametric production functions

satisfy this property. It has two key economic implications. First, the production

is broken into stages, where ht can be seen as an ‘intermediate input’ with its own

production function, which is then combined with capital for production. Second,

homotheticity of ht implies that increasing the scale of labor and materials is

equivalent to increasing the scale of ht. This means the firm decides the optimal

scale of ht rather than the optimal scale of labor and materials separately. In other

words, the optimal ratio of materials and labor is a sufficient statistic, allowing

for dimension reduction in the firm’s optimization. A production function that

violates this assumption is the CES with nested capital and labor.

Assumption 2.1(iii) specifies that firms choose the level of flexible inputs to

minimize production cost. The production cost does not involve capital, since it

is a predetermined input. Moreover, cost minimization is a static problem, so it

is agnostic about the firm’s dynamic decisions. Assumption 2.1(iv) implies the

effective labor and materials are either substitutes or complements. In a nonpara-

metric production function, whether two inputs are substitutes or complements

can change with the level of inputs. Assumption 2.1(iv) precludes this possibility.

Next, I provide two parametric forms that satisfy Assumption 2.1.

Example 1 (CES). The constant elasticity of substitution production function is:

Yit =
(
βkK

σ
it + βl[ω

L
itLit]

σ + (1− βl − βm)Mσ
it

)v/σ
exp(ωHit ) exp(εit).

My model nests the CES production function with ht(·) = βl
[
ωLitLit

]σ
+ (1− βl −

βm)Mσ
it. This function is homogeneous of degree one with elasticity of substitution

σ. The CES specification has been widely used in the literature to study factor-
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augmenting technology (Doraszelski and Jaumandreu (2018), Raval (2019)).

Example 2 (Nested CES). A more flexible parametric form is the nested CES,

where the elasticity of substitution between effective labor and materials is σ1:5

Yit =
(
βkK

σ
it + (1− βk)

(
βl
[
ωLitLit

]σ1 + (1− βl)Mσ1
it

)σ/σ1 )v/σ
exp(ωHit ) exp(εit).

My production function differs from these examples in two important ways.

First, in both examples, the elasticity of substitution between inputs is constant,

which has strong theoretical implications (Nadiri (1982)). In contrast, I impose

a mild restriction on the elasticity of substitution given by Assumption 2.1(iv),

so it can vary freely subject to this restriction. Second, neither example allows

for heterogeneity in returns to scale across firms, which equals v. In my model,

returns to scale is heterogeneous across firms.

Proposition 2.1.

(i) Under Assumptions 2.1(i-iii), the flexible input ratio, denoted by M̃it =

Mit/Lit, depends only on Kit and ωLit through an unknown function rt(Kit, ω
L
it):

M̃it ≡ rt(Kit, ω
L
it). (2.3)

(ii) Under Assumption 2.1(iv), rt(Kit, ω
L
it) is strictly monotone in ωLit.

See Appendix B for the proof. The first part of the proposition states that

the flexible input ratio is a function of ωLit, but not ωHit . The intuition is that the

firm’s labor and materials allocation depends the relative marginal products of

these inputs, which in turn depends on the input ratio by homotheticity.

The second part of Proposition 2.1 establishes that rt(Kit, ω
L
it) is strictly mono-

tone in ωLit. For strict monotonicity, the flexible input ratio should always move

in the same direction as ωLit, which increases the ratio of marginal products of

labor and materials. Because the relationship between the input ratio and the

ratio of marginal products depends on the substitutability of inputs, Assumption

2.1(iv) restricts the elasticity of substitution. Together, these two results provide

a function, rt(Kit, ω
L
it), that is strictly monotone in a scalar unobserved variable.6

To relate this result to parametric production functions, note that under the

5Note that in this example, as σ1 →∞ the production function approaches Leontief in materials
and labor, so my model can approximate the Leontief production function.

6Another common assumption is Leontief, where inputs are perfect complements. In this case,
rt becomes a linear function of ωL

it conditional on Kit.
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CES assumption, M̃it = rt(Kit, ω
L
it) has a known functional form, which is log-

linear in ωLit: log(M̃it) = σp
l/m
it +log(ωLit), where p

l/m
it is the ratio of input prices. A

common approach in the literature is to estimate this equation by instrumenting

for input prices (Doraszelski and Jaumandreu (2018)).7 However, this relies on

the linear separability functional form obtained from CES, which might not hold

in more flexible production functions. Therefore, one contribution of this paper is

generalizing the CES production function to an arbitrary functional form (subject

to Assumption 2.2) and showing invertibility under more general conditions.8,9

2.2.2 Other Assumptions

The rest of the assumptions generalize the standard production function assump-

tions to accommodate labor-augmenting technology.

Assumption 2.2 (First-Order Markov). Productivity shocks follow an exogenous

first-order Markov process: P (ωLit, ω
H
it | Iit−1) = P (ωLit, ω

H
it | ωLit−1, ω

H
it−1).

This assumption is a natural generalization of the standard first-order Markov

assumption from Olley and Pakes (1996) to accommodate two-dimensional pro-

ductivity.10 It does not restrict the joint distribution of productivity shocks, which

can be arbitrarily correlated. Moreover, it allows for first-order dynamics in pro-

ductivity shocks: higher ωHit today can be associated with higher ωLit+1 tomorrow.

Assumption 2.3 (Timing). Capital evolves according to Kit = κ(Kit−1, Iit−1),

where Iit−1 denotes investment made by firm i during period t− 1.

According to this assumption, firms choose capital one period in advance, implying

that Kit belongs to the firm’s information set at period t− 1, that is, Kit ∈ Iit−1.

Assumption 2.4 (Monotonicity). Firms’ materials demand is given by

Mit = st(Kit, ω
L
it, ω

H
it ), (2.4)

where st(Kit, ω
L
it, ω

H
it ) is an unknown function that is strictly increasing in ωHit .

7Estimating this equation requires heterogeneous input prices at the firm level.
8CES may not be restrictive for some empirical problems, as it is a first-order approximation to
any production functions with separability (Doraszelski and Jaumandreu (2018)).

9However, one drawback of this approach is that, contrary to the parametric setting, rt depends
on the derivatives of ht in a complicated way (see Equation (B.4)). Therefore, it is more difficult
to use the additional restrictions on rt that could be obtained from a parametric specification,
as in Doraszelski and Jaumandreu (2018).

10The model can accommodate a controlled Markov process, where observed variables, such as
R&D and export, can affect productivity distribution (Doraszelski and Jaumandreu (2013)).
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Introduced by Levinsohn and Petrin (2003), this assumption states that, hold-

ing all else constant, more productive firms have higher input demand. In my

model, the materials demand function depends also on ωLit as it affects the marginal

product of materials.11 Since the firm’s materials demand depends on its profit-

maximizing level of output, verifying this assumption requires the primitives of

the output market, such as the demand shifters and competition structure, which

I do not model in this paper.12 Implicit in this assumption is that there is no un-

observed firm-specific heterogeneity in the firm’s perceived residual demand curve

in the output market; otherwise, the materials input demand function should

include firm-specific unobserved demand shocks, violating two-dimensional unob-

served heterogeneity required for identification. However, if there are observed

demand shifters or proxies for demand shocks, one can include them, as in De

Loecker (2011), to introduce firm-specific heterogeneity in demand.

Even though this assumption restricts the competition in the output market, it

accommodates some commonly used demand models, such as monopolistic compe-

tition without unobserved demand shifters and Cournot competitions. Moreover,

it allows for ex-post demand shocks after the firm chooses the planned output. Fi-

nally, this assumption does not imply constant markups. Ex-post demand shocks

and some monopolistic competition models, such as variable elasticity of substitu-

tion, allow for heterogeneous markups. See also Jaumandreu (2018), Doraszelski

and Jaumandreu (2019), and Bond et al. (2021) for more discussion on the im-

portance of demand shocks in production function estimation.

2.3 Invertibility: Expressing Unobserved Productivity Using Inputs

Proposition 2.1 provides the necessary conditions, monotonicity and scalar unob-

served heterogeneity, to invert out ωLit using the flexible input ratio:

ωLit = r−1
t (Kit, M̃it) ≡ r̄t(Kit, M̃it). (2.5)

Similarly, Assumption 2.4 provides a monotonicity condition for ωHit using ma-

terials demand function in Equation (2.4). Inverting Equation (2.4) yields

11As discussed in Gandhi et al. (2020), this assumption imposes an implicit restriction on the
distribution of εit, i.e., E[exp(εit) | Iit] = E[exp(εit) | Kit, ω

L
it, ω

H
it ].

12For derivation, see Equation (B.1), which includes the planned output. The implicit assump-
tion is that no unobserved variable affects the firm’s planned output.
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ωHit = s−1
t (Kit,Mit, ω

L
it). Substituting for it from Equation (2.5):

ωHit = s−1
t (Kit,Mit, r̄t(Kit, M̃it)) ≡ s̄t(Kit,Mit, M̃it). (2.6)

Equations (2.5) and (2.6) demonstrate that the modeling assumptions and opti-

mal firm behavior allow me to write unobserved productivity shocks as unknown

functions of inputs. Invertibility is a standard condition in the proxy variable

approach, which uses observables, such as investments or materials, to control for

unobserved productivity. In the next section, I use these invertibility results to

develop a control variable approach to address endogeneity.

3 A Control Variable Approach to Production Functions

The control variable approach relies on constructing variables from data to control

for endogenous variation. In this section, I show how to construct a control variable

for each productivity shock using the Markov and timing assumptions.

My approach builds on Imbens and Newey (2009), who study the identifica-

tion of non-separable models where a scalar unobservable has a strictly monotone

relationship with the outcome and it is independent of an instrument. I make

two innovations to apply the control variable approach to production function

estimation. First, I show that the Markov and timing assumptions provide the

necessary independence condition. Second, my model involves two-dimensional

unobserved heterogeneity, for which the control variable approach generally does

not apply due to the lack of invertibility (Kasy (2011)). To overcome this, I use

the triangular structure of input demand functions in Equations (2.3) and (2.4).

3.1 Control Variable for Factor-Augmenting Technology

If productivity shocks are continuously distributed, we can relate labor-

augmenting productivity to past productivity shocks in the following way:

ωLit = g1(ωLit−1, ω
H
it−1, u

1
it), u1

it | ωLit−1, ω
H
it−1 ∼ Uniform(0, 1). (3.1)

This representation of ωLit is without loss of generality and follows from the Sko-

rohod representation of random variables. Here, g1(ωLit−1, ω
H
it−1, τ) corresponds to

the τ -th conditional quantile of ωLit given (ωLit−1, ω
H
it−1). So, we can view u1

it as the

productivity rank of firm i relative to firms with the same past productivity levels.

Another interpretation of u1
it is unanticipated innovation to ωLit, which deter-
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mines the current period’s productivity given last period’s productivity. Unlike

the standard definition of ‘innovation’ to productivity, which is separable from

and mean-independent of past productivity,13 u1
it is non-separable and indepen-

dent. These properties of u1
it are key for using the modeling assumptions to derive

the control variables. The previous section showed that M̃it = rt(Kit, ω
L
it). Sub-

stituting for ωLit from Equation (3.1) and using Equations (2.5-2.6), I obtain

M̃it = rt
(
Kit, g1(ωLit−1, ω

H
it−1, u

1
it)
)
,

= rt
(
Kit, g1

(
r̄t(Kit−1, M̃it−1), s̄t(Kit−1,Mit−1, M̃it−1), u1

it

))
,

≡ r̃t
(
Kit,Wit−1, u

1
it

)
, (3.2)

for some unknown function r̃t(·) andWit := (Kit,Mit, Lit). Note that M̃it is strictly

monotone in u1
it because rt(·) is strictly monotone in ωLit by Assumption 2.1, and

g1(·) is strictly monotone in u1
it by construction. Next, I establish the statistical

independence of u1
it from other variables in Equation (3.2).

Lemma 3.1. Under Assumptions 2.2 - 2.3, we have that u1
it⊥⊥(Kit,Wit−1).

The proof is provided in Appendix B. The lemma shows that the modeling

assumptions, Markov and timing, give the necessary independence condition to

apply control variable approach. The intuition behind this result is as follows.

Condition on (ωLit−1, ω
H
it−1) throughout. By the timing assumption, (Kit,Wit−1) ∈

Iit−1. Together with the Markov assumption, this implies that (Kit,Wit−1) is not

informative about current productivity. Recall that u1
it contains all information

related to current productivity. Since (Kit,Wit−1) does not contain information

about current productivity, it is independent of u1
it.

We now have the two conditions needed to derive a control variable: (i)

r̃t (Kit,Wit−1, u
1
it) is strictly monotone in u1

it and (ii) u1
it is independent of

(Kit,Wit−1). Since the distribution of u1
it is already normalized to a uniform dis-

tribution in Equation (3.1), we can identify u1
it from data as:

u1
it = FM̃it|Kit,Wit−1

(M̃it | Kit,Wit−1), (3.3)

where FM̃it|Kit,Wit−1
denotes the CDF of M̃it conditional on (Kit,Wit−1).14 The

13In particular, the innovation ξ is defined as ωL
it = g(ωL

it−1, ω
H
it−1) + ξit with E[ξit | Iit] = 0.

14To simplify the exposition, I assume M̃it is strictly increasing in u1it. This is without loss of
generality because I need to recover u1it up to a monotone transformation.
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main idea is that two firms, i and j, with the same capital and last period’s inputs,

but different materials-to-labor ratios, differ only in their innovations to labor-

augmenting productivity. That is, conditional on Kit = Kjt and Wit−1 = Wjt−1,

M̃it > M̃jt if and only if u1
it > u1

jt. As a result, I can recover u1
it from the firm’s

rank in the flexible input ratio. Using this result, I can express ωLit as a function

of the control variable and past inputs:

ωLit = g1(ωLit−1, ω
H
it−1, u

1
it) = g1(r̄t(Kit−1, M̃it−1), s̄t(Kit−1,Mit−1, M̃it−1), u1

it

)
,

≡ c1t

(
Wit−1, u

1
it

)
, (3.4)

where c1t(·) is an unknown function.

3.2 Control Variable for Hicks-Neutral Technology

The derivation for the control variable for ωHit proceeds similarly:15

ωHit = g2(ωLit−1, ω
H
it−1, u

1
it, u

2
it), u2

it | ωLit−1, ω
H
it−1, u

1
it ∼ Uniform(0, 1). (3.5)

Following the same steps as in Equation (3.2), I use the monotonicity of materials

in ωHit given by Assumption 2.4 to write

Mit ≡ s̃t
(
Kit,Wit−1, u

1
it, u

2
it

)
, (3.6)

where s̃t(·) is an unknown function. Note that s̃t (Kit,Wit−1, u
1
it, u

2
it) is strictly

increasing in u2
it because st(Kit, ω

L
it, ω

H
it ) is strictly increasing in ωHit by Assumption

2.4, and g2(ωLit−1, ω
H
it−1, u

1
it, u

2
it) is strictly increasing in u2

it by construction.

Lemma 3.2. Under Assumptions 2.2 - 2.3, we have that u2
it⊥⊥(Kit,Wit−1, u

1
it).

See Appendix B for the proof. Now, we can use Equation (3.6) to identify u2
it as:

u2
it = FMit|Kit,Wit−1,u1it

(Mit | Kit,Wit−1, u
1
it). (3.7)

With this result, ωHit can be written as:

ωHit ≡ c2t

(
Wit−1, u

1
it, u

2
it

)
(3.8)

for an unknown function c2t(·) whose derivation is the same as Equation (3.4). This

result and Equation (3.4) imply that conditional on last period’s inputs and two

control variables, there is no variation in productivity shocks. Hence, we can use

these control variables to address endogeneity in production function estimation.

15u1it is included in g2 to account for the correlation between ωL
it and ωH

it . If one assumes
productivity shocks are independent conditional on past productivity, u1it need not be included.
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Remark 3.1 (Comparison to the Proxy Variable Approach). My approach dif-

fers from the proxy variable approach in that it relies on a different representation

of productivity shocks. The proxy variable approach uses: ωLit = r̄t(Kit, M̃it),

ωHit = s̄t(Kit,Mit, M̃it), whereas the control variable approach relies on: ωLit =

c1t (Wit−1, u
1
it), ωHit = c2t (Wit−1, u

1
it, u

2
it) to control for endogeneity. The key dif-

ference is that control variables exploit the independence property given by the

Markov assumption, whereas the proxy variable approach only uses its mean in-

dependence implication. Using the independence assumption fully might result in

efficiency gains. However, if the mean independence holds but independence does

not, then control variables would give inconsistent estimates, whereas the proxy

variable estimator would remain consistent.

Remark 3.2 (Comparison to Ackerberg et al. (2022)). Another paper that allows

for non-separable productivity using the control variable approach is Ackerberg

et al. (2022). Their model allows for a single productivity shock in an unrestric-

tive way, whereas I allow for two productivity shocks under specific functional

form restrictions. Another important difference is how the control function is con-

structed. Ackerberg et al. (2022) use the lagged inputs, whereas I use the input

demand functions. These approaches complement each other, as the plausibility

of these different assumptions depends on the empirical setting.

Remark 3.3 (Comparison to Gandhi et al. (2020)). Gandhi et al. (2020) con-

sider the identification of the nonparametric Hicks-neutral production function

by inverting materials conditional on labor, which allows for labor as a dynamic

input and other unobserved differences in labor choice. In contrast, my approach

rules out these by assuming that labor is a flexible input, but it allows for two

unobserved productivity shocks. With the flexible labor assumption, I can use the

first-order conditions with respect to two inputs for identification.

4 Identification

This section presents the results for the identification of the output elasticities.

First, I point out an identification problem by showing that the production func-

tion and output elasticities are not identified from variations in inputs and output.

Then, I propose a solution to this problem by exploiting the first-order conditions
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of cost minimization to identify output elasticities.

4.1 A Non-identification Result

Taking the logarithm of output and denoting ft = log(Ft), I write the logarithm

of the production function in an additively separable form in ωHit and εit as:

yit = ft
(
Kit, ht(Kit, ω

L
itLit,Mit)

)
+ ωHit + εit.

Since ht(·) is homogeneous of arbitrary degree in its second and third arguments

by Assumption 2.1, I assume, without loss of generality, that it is homogeneous of

degree one. Using this property, I rewrite the production function as follows:

yit = ft
(
Kit, Litht(Kit, ω

L
it, M̃it)

)
+ ωHit + εit. (4.1)

This reformulation is convenient because ωLit is now an argument in ht(·). In

Section 2.3, I showed that ωLit = r̄t(Kit, M̃it). Substituting this into Equation

(4.1),

yit = ft
(
Kit, Litht

(
Kit, r̄t(Kit, M̃it), M̃it

))
+ ωHit + εit.

This representation of the production function reveals an identification problem.

Proposition 4.1. Without further restrictions, ht cannot be identified from vari-

ations in inputs and output.

Proof. Note that for arbitrary values of (Kit, M̃it), the second argument of the

ht function, r̄t(Kit, M̃it), is uniquely determined. Therefore, it is not possible to

independently vary (Kit, ω
L
it, M̃it) and trace out all dimensions of ht. This implies

that ht is not identified from variations in inputs and output.16,17

Most objects of interest, such as the output elasticities or elasticity of substi-

tutions, are a function of ht, underscoring the challenge for identification. To see

this, we can write the output elasticities as (suppressing the function arguments):

θKit := (ft1 + ft2ht1)Kit, θLit := ft2ht2Litr̄t(Kit, M̃it), θMit := ft2ht3Mit,

where ftk denotes the derivative of ft with respect to its k−th component. I also

use θjit to denote the output elasticity of j. Note that all the output elasticities

depend on the derivatives of ht, which is not identified. This functional dependence
16Online Appendix Section C.2 shows the parametric analog of this non-identification problem
for the CES production function where some parameters are not separately identified.

17Ekeland et al. (2004) show a similar nonidentification result for hedonic demand models.
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problem breaks down when there is variation in input prices because r̄t(Kit, M̃it)

also depends on the price ratio. However, in this case, the identification requires

exogenous variation in input prices. This case is analyzed in Online Appendix

Section B.1.

Given this nonidentification result, I introduce another function, h̄t(Kit, M̃it) ≡
ht(Kit, r̄t(Kit, M̃it), M̃it), and rewrite the production function as:

yit = ft
(
Kit, Lith̄t(Kit, M̃it)

)
+ ωHit + εit. (4.2)

Here, h̄t can be viewed as a reduced form function, which arises from the firm’s

optimal input choices. It combines the effects of ωLit and the ratio of the optimally

chosen flexible inputs on output. The rest of the section investigates (i) what can

be identified from the reduced form representation, that is, from ft(·) and h̄t(·),
and (ii) how first-order conditions of cost minimization help identification.

4.2 Identification of Output Elasticities

This section presents identification results that are relevant for markup estimation.

Other identification results are presented in Appendix A.

4.2.1 Identifying the Ratio of Labor and Materials Elasticities

The multicollinearity problem presented in Section 4.1 implies that θLit and θMit

cannot be identified from variation in the inputs and output. However, the data

provides an additional source of information from cost minimization. Recall that

cost minimization implies a link between the production function and optimally

chosen flexible inputs through the first-order conditions. Thus, we can learn about

the output elasticities from the level of flexible inputs. To show the information

provided by the first-order conditions, I write the firm’s cost minimization problem:

min
Lit,Mit

pltLit + pmt Mit s.t. Ft
(
Kit, ω

L
itLit,Mit

)
exp(ωHit )E[exp(εit) | Iit] > Ȳit,

where Ȳit is planned output. The first-order condition associated with this opti-

mization problem is FtV λit = pVt , where V ∈ {M,L}, FtV donates the marginal

product of V , and λit is the Lagrange multiplier. Multiplying both sides by
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Vit/(Yitpit) and rearranging gives,

FtV
(
Kit, ω

L
itLit,Mit

)
Vit

Ft
(
Kit, ωLitLit,Mit

)︸ ︷︷ ︸
Elasticity(θVit )

E[exp(εit) | Iit]λit
exp(εit)pit

=
Vitp

v
t

Yitpit
,︸ ︷︷ ︸

Revenue Share of Input(αV
it)

(4.3)

where pit is the output price. This expression holds for all flexible inputs. There-

fore, taking the ratio of Equation (4.3) for V = M and V = L yields

θMit /θ
L
it = αMit /α

L
it. (4.4)

The ratio of labor and materials elasticities is identified as the ratio of revenue

shares using the cost minimization assumption. Since the revenue shares are ob-

served in the data, we can calculate the ratio of elasticities without estimation.18

Using the first-order conditions in production function estimation has long

been recognized in the literature, but mostly under parametric assumptions. (See

Doraszelski and Jaumandreu (2013) for Cobb-Douglas and Grieco et al. (2016) for

CES). Gandhi et al. (2020) propose a method that uses Equation (4.3) nonpara-

metrically under a perfectly competitive output market, which implies that the

output elasticity of a flexible input equals that input’s revenue share. My contri-

bution is to exploit the first-order conditions nonparametrically in the presence of

two flexible inputs, even if firms have market power in the output market.

4.2.2 Identification of Sum of Materials and Labor Elasticities

In this section, I show how to recover the sum of the labor and materials elasticities

from the reduced form representation of the production function in Equation (4.2).

Proposition 4.2. The sum of labor and materials elasticities is identified as

θVit := θMit + θLit = ft2
(
Kit, Lith̄t(Kit, M̃it)

)
Lith̄(Kit, M̃it). (4.5)

Proof. Using Equation (4.1), the materials and labor elasticities are written as:

θMit = ft2ht3Mit, θLit = ft2(ht − ht3M̃it)Lit.

The sum of the elasticities depends only on ht, but none of its derivatives:

θVit = θMit + θLit = ft2htLit = ft2h̄tLit.

18Doraszelski and Jaumandreu (2019) also use revenue shares to identify the ratio of elasticities.
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From this proposition, we see that identifying ft and h̄t is sufficient for identi-

fying the sum of flexible input elasticities. Importantly, we do not need to identify

the structural part of the production function, ht, and labor-augmenting produc-

tivity shock.19 Using the ratio of elasticities identified in the previous subsection,

we can obtain the labor and materials elasticities as

θLit = θVitα
L
it/α

V
it , θMit = θVitα

M
it /α

V
it , (4.6)

where αVit = αLit +αMit . This result shows that combining the first-order conditions

with the sum of elasticities identifies the labor and materials elasticities separately.

Overall, this result is important for markup estimation because variable input

elasticity is the key input for markup estimation. Therefore, the researcher can

identify markups even without identifying the entire production function.

4.2.3 Other Identification Results

While this section focused on the identification of objects related to markup es-

timation, Appendix A provides identification results for other objects, such as

the elasticity of substitution, capital elasticity, and productivity shocks. It is also

worth highlighting that my model can accommodate some commonly used models

in the literature. Online Appendix C shows how to impose returns to scale re-

strictions and estimate the CES and Nested CES production functions using my

method. Thus, researchers interested in estimating a more restricted production

function with labor-augmenting productivity can use one of these models.

5 Empirical Model and Data

This section presents the empirical model, describes the estimation procedure, and

introduces the datasets used in empirical estimation.

5.1 Empirical Model

The purpose of my empirical model is to estimate the output elasticities and to

infer markups from those estimates. To ease the demand on data, I consider the

weak homothetic separable production function:

yit = ft
(
Kit, ht(ω

L
itLit,Mit)

)
+ ωHit + εit. (5.1)

19Note that even if ft and h̄t are not uniquely identified, the sum of elasticities is identified.
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This form is nested by Equation (2.2), but slightly less general in that ht does not

take Kit as an argument, which simplifies the estimation procedure. This form

leads to the following estimating equation:

yit = ft
(
Kit, Lith̄t(M̃it)

)
+ ωHit + εit. (5.2)

In Section 4, I showed how to identify the output elasticities from ft and h̄t, so

the goal is to identify these functions.20 To control for Hicks-neutral productivity,

I use the control variables developed in Equation (3.8), ωHit = c2t (Wit−1, u
1
it, u

2
it).

Substituting this into Equation (5.2), the estimating equation can be written as:

yit = ft
(
Kit, Lith̄t(M̃it)

)
+ c2t

(
Wit−1, u

1
it, u

2
it

)
+ εit, E[εit | Wit,Wit−1, u

1
it, u

2
it] = 0.

Since all right-hand-side variables are orthogonal to the error term, this equation

can be estimated by minimizing the sum of squared residuals. However, this

equation is not the only moment restriction the model provides. Recall that capital

is a predetermined input orthogonal to the innovation to productivity shocks at

time t, which can be used to augment the moment restrictions. To see this,

using the first-order Markov property of the productivity shocks, Hicks-neutral

productivity can be expressed as

ωHit ≡ c̄3t(ω
L
it−1, ω

H
it−1) + ξit,

for an unknown function c̄3t(·), where ξit is the separable innovation to Hicks-

neutral productivity with E[ξit | Iit−1] = 0. This innovation term is different from

those defined in Section 3 because it is mean independent of (ωHit−1, ω
L
it−1) and

separable, in contrast to (u1
it, u

2
it), which are independent and non-separable. This

representation is commonly used in the proxy variable approach for constructing

moments.

Since (ωLit−1, ω
H
it−1) can be written as a function of Wit−1, I obtain a second

representation of ωHit as ωHit ≡ c3t(Wit−1) + ξit, giving another estimating equation:

yit = ft
(
Kit, Lith̄t(M̃it)

)
+ c3t(Wit−1) + ξit + εit.

The error term, ξit + εit, is orthogonal to the firm’s information set at time t− 1,

which includes Kit, so E[ξit + εit | Kit] = 0. I now summarize the estimation prob-

20Note that even though h̄t is identified up to a scale, the elasticities are uniquely identified. I
restrict the logarithm of ht to have mean zero in the estimation to impose this normalization.
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lem by combining the models and moment restrictions. We have two estimating

equations:

yit = ft
(
Kit, Lith̄t(M̃it)

)
+ c2t(Wit−1, u

1
it, u

2
it) + εit, E[εit |Wit,Wit−1, u

1
it, u

2
it] = 0 (5.3)

yit = ft
(
Kit, Lith̄t(M̃it)

)
+ c3t(Wit−1) + ξit + εit, E[ξit + εit, | Kit,Wit−1] = 0. (5.4)

Identification of output elasticities requires identification of the functions, ft and

h̄t, using these moment restrictions. Therefore, one question is whether moment

restrictions in Equation (5.3) and (5.4) identify these functions. I analyze this

question in Online Appendix E and show that the moment restrictions in Equa-

tion (5.3) identify ft and h̄t except for special cases.21 These cases include some

support conditions on the conditional CDF in Equation (3.7) and conditions on the

derivatives of the production function. Since Equation (5.3) identifies the output

elasticities, the moment restrictions in Equation (5.4) provide efficiency gains.22

The estimation proceeds in two steps. In the first step, I estimate the control

variable u2
it by estimating the conditional CDF in Equation (3.7). In the model

given in Equation 5.1, u1
it corresponds to normalized M̃it, so it does not require

any estimation. After estimating the control variables, I approximate the nonpara-

metric functions using polynomials and use the moment restrictions in Equations

(5.3) and (5.4) for estimation.

5.1.1 Estimation Procedure

In this section, I provide an overview of the estimation procedure; the details are

given in Online Appendix Section A.7. I estimate separate production functions

for each industry. However, estimating the production function separately each

year is not feasible for most industries due to the small sample size. To address

this, I use an eight-year rolling-window estimation for Compustat and three-year

rolling window estimation for other datasets following De Loecker et al. (2020).

The estimation involves two stages. The first stage estimates the CDF in

Equation (3.7). To estimate this CDF, I partition the support into 500 equally

21This is called generic identification; see Lewbel (2019). One would ideally like to analyze the
identification properties of moment restrictions in Equations (5.3) and (5.4) jointly. Since this
is a difficult problem, I focus on the identification properties of Equation (5.3).

22One can also use the recursive representation of productivity shocks, ωH
it =

c2t
(
Wit−k, {u1it−l}

k−1
l=0 , {u2it−l}

k−1
l=0

)
, and construct more moment functions using E[εit |

{W 1
it−l}

k−1
l=0 {u1it−l}

k−1
l=0 , {u2it−l}

k−1
l=0 ] = 0 to increase efficiency.
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sized grids and I use a logit model with third-degree polynomials to estimate

the CDF at these points. I then approximate the CDF by interpolating between

the points in the grid. In the second stage, I use polynomial approximations to

estimate production function. I first approximate the logarithm of h̄t by using

third-degree polynomials:

log( ̂̄ht(M̃it)) = a1t + a2tm̃it + a3tm̃
2
it + a4tm̃

3
it, (5.5)

where {ajt}4
j=1 are the parameters of the polynomial approximation. I set a1t = 0

to impose the normalization for h̄t(M̃it) described in Section 4. Letting Vit :=

Lit
̂̄ht(M̃it), the production function can be approximated as:

f̂t(Kit, vit) = b1t + b2tkit + b3tk
2
it + b4tk

3
it + b5tvit + b6tv

2
it + b7tv

3
it (5.6)

+ b8tk
2
itvit + b9tkitv

2
it + b10tkitvit

where {bjt}10
j=1 are the parameters of the polynomial approximation.23 I similarly

approximate the control functions c2t(·) and c3t(·) using third-degree polynomials.

I then construct an objective function using the moment restrictions in Equations

(5.3) and (5.4). In particular, I use the sum of squared residuals from Equation

(5.3) and timing moments from Equation (5.4) to obtain the following objective

function to minimize:

J(f̂t,
̂̄ht, ĉ2t, ĉ3t) =

1

TN

∑
i,t

ε̂21it︸ ︷︷ ︸
Sum of Squared Residuals

+
( 1

TN

∑
i,t

(ξ̂it + ε̂2it)Kit

)2

+
( 1

TN

∑
i,t

(ξ̂it + ε̂2it)K
2
it

)2

︸ ︷︷ ︸
Timing Moments

Estimating ĉ2t and ĉ3t is computationally simple as they can be partialed out for

a given (f̂t,
̂̄ht). Thus, the estimation requires searching for f̂t and ̂̄ht to minimize

the objective function. After obtaining the estimates for ft and h̄t, I calculate the

output elasticities as described in Equations (4.5), (4.6), and (A.3).

Deriving the large sample distribution of the output elasticities and other es-

timates used in the empirical applications is difficult. First, I need to account for

estimation error in the first stage, and then I need to understand how estimation

errors in the output elasticities translate into further stages. To avoid these com-

plications, I use bootstrap to estimate standard errors. The bootstrap procedure

23For the US, the third-degree polynomial approximation gives very large standard errors and
unstable estimates due to small sample size, especially in the beginning of the sample. For
this reason, I use the second-degree polynomials for the US.
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Table 1: Descriptive Statistics on Datasets

US Chile Colombia India Turkey

Sample Period 1961-2014 1979-96 1978-91 1998-2014 1983-2000
Num. of Industries 3 5 9 5 8
Industry Level 2-dig NAICS 3-dig SIC 3-dig SIC 3-dig NIC 3-dig SIC
Num. of Obs/Year 1247 2115 3918 2837 4997

Notes: This table provides descriptive statistics for the dataset used in the empirical estimation.

treats firms as independent observations and resamples firms with replacement. I

use 100 bootstrap repetitions to estimate the standard errors.

5.2 Data

I use panel data from manufacturing industries in five countries: Chile, Colombia,

India, Turkey, and the US. Table 1 provides descriptive statistics of the dataset.

5.2.1 Chile, Columbia, India, and Turkey

The data for the four developing countries are plant-level production data collected

through censuses. The Chilean dataset comes from the census of Chilean manu-

facturing plants with more than ten employees between 1979 and 1996. Similarly,

the Colombian data come from the manufacturing census covering all manufactur-

ing plants with more than ten employees from 1981 to 1991. The Turkish dataset

is from the Annual Surveys of Manufacturing Industries and covers all establish-

ments with ten or more employees between 1983 and 2000. Finally, the Indian

data are from the Annual Survey of Industries conducted by the Indian Statistical

Institute, covering plants with 100 or more employees from 1998 to 2014.

From these datasets, I obtain input and output measures for estimating the

production functions. I obtain the materials input by deflating the materials cost

using the appropriate deflators. The labor input equals the number of worker days

or the number of workers. I obtain the capital input via the perpetual inventory

method or deflated book values of capital. I remove outliers based on labor and

materials’ shares of the revenue. To improve the precision of the estimates, I limit

my sample to industries with at least an average of 250 plants per year. I provide

details about the datasets and descriptive statistics in Online Appendix A.
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5.2.2 US

The Compustat sample contains all publicly traded manufacturing firms in the US

between 1961 and 2014. It includes information from financial statements, includ-

ing sales, total input expenditures, number of employees, capital stock formation,

and industry classification. From this information, I obtain labor, materials, and

capital inputs and output measures. My output measure is the net deflated sales,

and my labor measure is the number of employees. Compustat does not report

separate expenditures for materials. To address this, I follow Keller and Yeaple

(2009) to estimate materials cost by netting out capital depreciation and labor

costs from the cost of goods sold and administrative and selling expenses.

Even though Compustat is compiled from financial accounting data rather

than manufacturing censuses, as in other countries, it has better coverage across

industries and over time. Therefore, it is more suitable to study the change in

markups and market power. For this reason, it played an important role in the

growing evidence on the rise of market power in the US (De Loecker et al. (2020). I

aim to revisit those findings and explore how using factor-augmenting production

function technology affects the markup estimates.

An important typical data limitation is observing revenues and expenditures

rather than physical quantities, a concern if sales reflect firm-level demand het-

erogeneity (Jaumandreu (2018), Doraszelski and Jaumandreu (2019) and Bond et

al. (2021)). Although physical output or firm-level price indexes are available in

some recent datasets, I aim to demonstrate my method on several commonly used

datasets. As a robustness check, I use quantity input and output data from seven

industries in India that produce relatively homogeneous products. I show that the

main results of the paper on the importance of labor-augmenting productivity are

robust to estimating quantity production functions (Section F.1).

6 Empirical Results: Production Function

This section presents results on production function estimates. I use the estimates

to discuss several findings. First, I compare my estimates with other commonly

used models and find that my estimates are significantly different from the esti-

mates of these models. Second, my estimates uncover significant heterogeneity
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in output elasticities. This heterogeneity is meaningful: larger firms are more

capital-intensive, and smaller firms are more labor- and variable input-intensive.

6.1 Output Elasticities

In this section, I estimate output elasticities with four different production func-

tions: (i) Cobb-Douglas (CD), (ii) Translog with Hicks-neutral productivity

(Translog), (iii) CES with labor-augmenting productivity (CES-FA), and (iv) my

model, a nonparametric production function with labor-augmenting productivity

(FA).24,25 The main goal is to compare the estimates from these models and study

the potential biases in the output elasticities. Remember that my model intro-

duces two forms of flexibility: functional form (nonparametric) and unobserved

heterogeneity (labor-augmenting productivity). What are the contributions of

these different forms of flexibilities to the estimates? Comparing the estimates

from different models allows me to answer this question. For example, translog

introduces functional form flexibility relative to CD, so comparing CD, Translog,

and FA would identify the role of unobserved heterogeneity. On the other hand,

CES-FA introduces unobserved heterogeneity only, so comparing CD, CES-FA,

and FA would uncover the contribution of functional form flexibility.26

I report the sales-weighted economy-level output elasticities of capital, labor,

and variable input in Figure 1. Looking at capital elasticity, I find that FA esti-

mates a higher capital elasticity than other production functions in all countries

except the US.27,28 The results point out large biases in the CD estimates; for

example, capital elasticity from FA is almost twice as large as the corresponding

estimates from CD in Turkey and Chile. In most countries, translog estimates

are close to the FA estimates, suggesting that functional form flexibility through

Translog partially reduces the bias. However, the CES-FA estimates give lower
24Since the gross production functions are not identified with the Ackerberg et al. (2015) method,
I estimate CD and Translog with the Blundell and Bond (2000) method. I estimate CES-FA
using procedures described in Section 5.1.1, but I impose the CES functional form assumption.
The details of these estimation procedures are given in Online Appendix Sections C.3 and A.8

25Since Cobb-Douglas does not allow for a non-neutral productivity shock, I consider the CES
as a parametric specification with labor-augmenting productivity.

26Other estimates, materials elasticity, and returns to scale are reported in Online Appendix
Figure G.3. Supplemental Materials present the sales- and cost-weighted average elasticities
for the three largest industries in each country.

27The standard errors for differences between the FA estimate and other estimates are reported
in Online Appendix Figure G.5

28Appendix A shows how to estimate capital elasticity.
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Figure 1: Average Capital and Labor Elasticities Comparison
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Notes: Comparison of sales-weighted average elasticities produced by Cobb-Douglas (CD), (ii)
Translog with Hicks-neutral productivity (Translog), (iii) CES with labor-augmenting productiv-
ity (CES-FA), and (iv) nonparametric production function with factor-augmenting productivity
(FA). For each year and industry, sales-weighted averages are calculated, and then simple av-
erages are taken over years. The error bars indicate 95% confidence intervals calculated using
bootstrap (100 iterations).
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capital elasticities, suggesting that labor-augmenting productivity, alone, does not

reduce the bias. Overall, this suggests that functional form flexibility is more

important than labor-augmenting productivity for capital elasticity. Examining

labor elasticities reveals a different pattern: the labor elasticity estimates decrease

once we add labor-augmenting productivity to the production model. This time,

CD and Translog estimates are similar, indicating that adding functional form

flexibility does not change the estimates, whereas CES-FA results are close to FA,

suggesting that labor-augmenting productivity alone, without the non-parametric

form, eliminates the bias in labor elasticity. These results indicate that labor-

augmenting productivity is more important than functional form flexibility when

estimating labor elasticities.

I now turn to variable input elasticity, the key input for markup estimation.

There is a clear pattern with variable input elasticity estimates. The variable elas-

ticity estimates decrease from the least flexible (CD) to most flexible (FA) speci-

fication, suggesting that both forms of flexibility, functional form and unobserved

heterogeneity, are important to correctly estimate the flexible input elasticity. This

result has important implications for markups because variable input elasticity is

the critical input for markup estimation. These results motivate my analysis in

the next section, where I study how the production function specification affects

markup estimates.29

To summarize, three conclusions can be drawn from these results: (i) flexi-

ble functional form is more important for capital elasticity estimation, (ii) labor-

augmenting technology is more important for labor elasticity estimation, and (iii)

both flexible functional form and factor-augmenting productivity are important

to estimate variable input elasticity, the critical input for markup estimation.

6.2 Heterogeneity in Output Elasticities

This section examines the within-industry heterogeneity in the output elasticities.

In particular, I first document heterogeneity in output elasticities across firms

and then examine how production technology changes with firm size. The liter-

ature has found substantial firm-level heterogeneity in many firm outcomes and

29Some concerns in production function estimation are measurement error in capital and not
observing capacity utilization. To address these concerns, Section 9.2 presents robustness
checks and shows that my results are not explained by these factors.
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Figure 2: Average Coefficient of Variation
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Notes: This figure shows the mean (gray) and 10th and 90th percentile (red) of the
distribution of the average coefficient of variation cross industries and years for different
output elasticities.

productivity (Syverson (2011), Van Reenen (2018)); however, there is limited ev-

idence of heterogeneity in production technology. Moreover, by documenting this

heterogeneity, this section demonstrates the added flexibility of my method.

To measure heterogeneity, I estimate the coefficient of variation (CV) of the

output elasticities within each industry-year. Figure 2 displays the average and

10–90th percentiles of the CV estimates for all countries. There is substantial

heterogeneity in the output elasticities in all countries, as evidenced by the large

average CV estimates. The heterogeneity is highest for labor and lowest for ma-

terials. This finding is consistent with the large heterogeneity in labor’s revenue

share and low heterogeneity in materials’ revenue share observed in the data.

Moreover, the 10–90th percentiles (red bars) show that the heterogeneity exists in

most industries. Finally, I find little heterogeneity in returns to scale, a reasonable

finding because too large or too small returns to scale would be inconsistent with

optimal firm behavior.

Heterogeneity in production technology is an important finding, and it comple-

ments the existing evidence on large firm-level heterogeneity in other dimensions.

Yet, a more interesting question is what explains this heterogeneity? To explore
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Figure 3: Output Elasticities by Firm Size Deciles
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Notes: This figure shows output elasticities by firm decile. For each country, average
elasticity for each decile within an industry-year is estimated first, then these estimates
are averaged across industry-year bins.

this, I report the average capital, labor, and variable input elasticities across firm

size deciles. In particular, for each industry-year-decile bin, I estimate the mean

output elasticities and then report their averages across years and industries.

The result reveals a striking pattern. In all countries, as firm size increases,

capital intensity of production increases and labor intensity of production de-

creases.30 The differences are large: the largest firms are twice as capital-intensive

as the smallest firms, and the smallest firms are twice as labor-intensive as the

largest firms. These results have two important implications. First, it is crucial

30These findings agree with the literature, which finds that large firms use more capital and less
labor than small firms (Holmes and Schmitz (2010), Kumar et al. (1999)).
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to allow for flexible production technology to capture substantial heterogeneity

in production technology across firms. Second and importantly for markup esti-

mation, the relationship between variable input elasticity and firm size is key to

correctly estimating aggregate markup, which we turn to next.

7 Inferring Markups from Production Function

There is a simple link between a firm’s markup and its output elasticities, which

has recently been widely used to estimate markups. This section describes this

link and argues that the form of the production function has critical implications

for markup estimates.

Building on Hall (1988), De Loecker and Warzynski (2012) propose an ap-

proach to estimate markups from production data under the assumptions that

firms are cost-minimizers with respect to at least one flexible input and firms take

input prices as given. In particular, markup is given by µit := θVit/α
V
it , where

µit denotes the firm-level markup, which equals the output elasticity of a flexible

input divided by its revenue share.31 Since the revenue shares of flexible inputs

are typically available in the data, an estimate of the flexible input elasticity is

sufficient to estimate markups.

7.1 How Does the Form of the Production Function Affect Markups?

Output elasticity is the only estimated component in the markup formula when

markups are estimated from production functions. As a result, the bias in output

elasticities directly translates to markups, making the markup estimates sensitive

to the elasticity estimates. We also know that elasticity estimates are sensitive

to the production function specification. For example, Van Biesebroeck (2008)

compares conventional production function estimation methods and finds that

the elasticity estimates differ substantially. This suggests that the production

function specification is critical when estimating markups from production data.32

Motivated by this fact, this section discusses the implications of production func-

tion specifications on markups and then shows that labor-augmenting productivity

31As shown in De Loecker and Warzynski (2012), this revenue share is with respect to planned
output, which requires correcting for exp(εit) in the form of pitYit/exp(ε). I implement this
correction when estimating markups.

32This is in contrast to productivity estimates, which are shown to be robust to the specification;
see Foster et al. (2017) and Van Beveren (2012).
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provides a solution to some puzzling results in the literature.

Conflicting Markup Estimates from Different Flexible Inputs. Cost min-

imization implies that markup estimates from different flexible inputs should be

the same. However, studies estimating markups from two flexible inputs have

found that different flexible inputs give conflicting markup estimates (Doraszelski

and Jaumandreu (2019), Raval (2020)). These papers suggest that at least one

assumption required to estimate markups from production data is violated, and

they point to a lack of factor-augmenting productivity.33

Consistent with these results in the literature, this paper shows that labor-

augmenting productivity ensures identical markup estimates from labor and ma-

terials and provides a natural solution to this problem. To see this, Equation (4.4)

immediately implies:
θLit
θMit

=
αLit
αMit

=⇒ µLit =
θLit
αLit

=
θMit
αMit

= µMit , (7.1)

where µLit and µMit denote markup estimates from labor and materials. Two key

components of my approach lead to this outcome: (i) using the ratio of revenue

shares to identify the ratio of elasticities and (ii) the presence of labor-augmenting

productivity. The presence of labor-augmenting productivity is key to the ability

to use the ratio of revenue shares to identify the ratio of elasticities. As I will show

in Section 8.1, without the labor-augmenting productivity, the identity in Equation

(7.1) is typically rejected, suggesting that the model is not internally valid. The

additional unobserved heterogeneity resolves this discrepancy by adding one more

dimension of unobserved heterogeneity, making the model internally valid.

7.2 Markup Decomposition: The Role of Production Functions

This section presents a markup decomposition framework to understand how pro-

duction function estimates affect markups. I show that production function esti-

mation can bias the aggregate markup through two mechanisms: (i) bias in the

average output elasticity and (ii) firm-level heterogeneity in the output elasticities.
33Raval (2020) formally tests the production function approach to markup estimation using
the implication that markups from two flexible inputs should be identical. He finds that the
two markup measures from labor and materials are negatively correlated and suggest differ-
ent trends. He then examines possible mechanisms, such as heterogeneity in the production
function, adjustment costs in labor, measurement error, and frictions in the labor market.
He concludes that the most plausible explanation is the inability of the standard production
functions to account for heterogeneity in production technology.
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The aggregate markup is given by µt =
∑
witµit, where wit is the aggregation

weight, usually a measure of firm size. To assess the influence of production func-

tions on the estimated aggregate markup, I apply the Olley-Pakes (OP) decompo-

sition, which decomposes a weighted average into an unweighted average and the

covariance between the weight and variable of interest. To implement the OP de-

composition, I use the aggregate log markup, µ̃t =
∑
wit log(θit)−

∑
wit log(αit),

which equals to the difference of two weighted averages. Applying the OP decom-

position to both terms obtains:

µ̃t = θ̄t︸︷︷︸
Avg. Elas.(1)

+ Cov(wit, log(θit))︸ ︷︷ ︸
Heterogeneity in Technology(2)︸ ︷︷ ︸

Estimation

− ᾱt︸︷︷︸
Avg. Share(3)

− Cov(wit, log(αit))︸ ︷︷ ︸
Heterogeneity in Shares(4)︸ ︷︷ ︸

Data

(7.2)

The aggregate log markup is composed of four parts. The first two parts involve out-

put elasticities, and the last two involve revenue shares. This decomposition is useful

for analyzing the aggregate markup because each component involves either the out-

put elasticities, which are estimated, or the revenue shares, which come directly from

data. Therefore, analyzing the first two components will reveal how biases in production

function estimation translate to markup estimates.

Bias from the Average Output Elasticity. The first component in the decomposition

is the average elasticity. Under misspecification, any bias in this component directly

translates into bias in the aggregate markup. The elasticity estimates in the previous

section suggested that Hicks-neutral production functions overestimate the flexible input

elasticity. Therefore, we expect the bias from this source to be positive.

Bias from Heterogeneity in Production Technology. The second component is

the covariance between firm size and flexible input’s output elasticity. This component

contributes to the aggregate markup when the elasticities are heterogeneous and cor-

related with firm size. The markup will be biased if the production function does not

capture this heterogeneity. The bias is positive if large firms have lower flexible input

elasticity than small firms. My estimates in Section 6.2 documented a negative corre-

lation between firm size and the elasticities of flexible input, so we should expect this

source of the bias to be positive. Moreover, if the first two components change over

time, these biases affect the estimates of markup trends. This can happen, for example,

if large firms become more capital-intensive over time, leading to a decrease in the second

component.

Since the elasticity estimates in the previous section suggested that both sources of
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Figure 4: Distribution of Markups Implied by Labor and Materials (Cobb-
Douglas)
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Notes: This figure compares the distribution of markups implied by labor (black) and
materials (red) elasticities for each country from the Cobb-Douglas specification estimated
using the Blundell and Bond (2000) method.

bias have positive signs, these biases do not cancel each other and markup estimates are

expected to have upward bias with Hicks-neutral productivity. The next section presents

markup estimates to quantify this bias.

8 Empirical Results: Markups

I estimate markups using the estimated output elasticities and investigate whether the

form of the production function systematically affects the markup estimates. Then, I

focus on the change in markups in the US and study how the production functions affect

markup trends.

8.1 Testing the Cobb-Douglas Specification using Markups

As discussed in Section 7, testing the equality of markups from labor and materials serves

as a specification test. This section applies this test to the Cobb-Douglas production

function.

I use the output elasticity estimates produced by the Blundell and Bond (2000)

method for markup estimation. Figure 4 plots the distributions of markup estimates

inferred from the labor and materials elasticities. If the model is correct, the two distri-

butions should overlap. However, the distributions are substantially different, with labor

generating a more dispersed distribution than materials. Moreover, both distributions

indicate that many firms have markups below one. These results provide strong evidence

against the Hicks-neutral production functions.34

34Another reason markup estimates would be different is adjustment cost in labor. To test
this hypothesis, Raval (2020) estimates markups from materials and energy inputs and finds
different markups. From this result, he concludes that misspecification of the input type is
not the main driver of conflicting markup estimates.
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Figure 5: Average Markups Comparison
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Notes: Comparison of sales-weighted markups produced by Cobb-Douglas (CD), (ii)
Translog with Hicks-neutral productivity (Translog), (iii) CES with labor-augmenting
productivity (CES-FA), and (iv) nonparametric production function with factor-
augmenting productivity (FA). For each year and industry, sales-weighted averages
are calculated, and then simple averages are taken over years. The error bars indicate
95% confidence intervals calculated using bootstrap (100 iterations).

Since I reject the Cobb-Douglas specification with two flexible inputs, I estimate an-

other production function with a single flexible input for comparison purposes, following

De Loecker et al. (2020): yit = βktkit + βvtvrit + ωHit + εit. Here, vrit is the combined

flexible input of labor and materials, defined as the deflated sum of labor and materials

cost. I estimate this model and calculate markups as µit = βvt/α
V
it . For my model, I

use the sum of flexible input elasticity divided by flexible input’s revenue share as the

markup measure.

8.2 Markups Comparison: Level

This section compares the aggregate markups produced by my method and other pro-

duction functions considered in Section 6.1. For each country, I first calculate the annual

sales-weighted markup and then take the average over the sample period.35 Figure 5

displays the aggregate markups from four functional forms: CD, Translog, CES-FA, and

FA, along with the 95% confidence interval. The FA generates aggregate markups sig-

nificantly smaller than the CD estimates in all countries. The difference ranges from 0.1

to 0.2, an important magnitude when markups are interpreted as a measure of market

power. The differences between markup estimates are statistically significant, as reported

in Online Appendix Figure G.5. We can see the contribution of functional form flexibil-

ity and labor-augmenting productivity by looking at results from Translog and CES-FA.

35I also report cost-weighted estimates in Online Appendix G and find similar results.
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Table 2: Sales-Weighted Average Markups for the Three Largest Industries

Industry 1 Industry 2 Industry 3
CD TR CES FA CD TR CES FA CD TR CES FA

(311, 381, 321)

Chile 1.35 1.33 1.29 1.21 1.43 1.42 1.39 1.28 1.32 1.29 1.31 1.27
(0.01) (0.01) (0.02) (0.04) (0.02) (0.03) (0.04) (0.06) (0.02) (0.03) (0.04) (0.06)

(311, 322, 381)

Colombia 1.29 1.24 1.25 1.25 1.39 1.34 1.39 1.31 1.4 1.35 1.33 1.22
(0.00) (0.01) (0.02) (0.02) (0.01) (0.01) (0.03) (0.03) (0.01) (0.02) (0.04) (0.06)

(230, 265, 213)

India 1.2 1.2 1.14 1.15 1.17 1.16 1.17 1.16 1.42 1.44 1.33 1.26
(0.01) (0.01) (0.01) (0.02) (0.00) (0.02) (0.01) (0.02) (0.01) (0.01) (0.02) (0.02)

(321, 311, 322)

Turkey 1.26 1.25 1.19 1.16 1.37 1.31 1.29 1.24 1.3 1.22 1.34 1.15
(0.01) (0.05) (0.02) (0.03) (0.01) (0.05) (0.02) (0.02) (0.02) (0.03) (0.02) (0.04)

(33, 32, 31)

US 1.59 1.42 1.4 1.32 1.4 1.37 1.3 1.26 1.27 1.19 1.25 1.24
(0.03) (0.07) (0.11) (0.07) (0.02) (0.04) (0.05) (0.04) (0.01) (0.02) (0.03) (0.02)

Notes: Sales-weighted average markup estimates for the three largest industries in each coun-
try. The estimates are obtained from Cobb-Douglas (CD), Translog (TR), CES with labor-
augmenting productivity (CES), and nonparametric labor-augmenting productivity (FA). For
each year and industry, sales-weighted averages are calculated, and then simple averages are
taken over years. Standard errors are obtained using bootstrap. Industry codes are given in
parantheses. The corresponding industry names can be found in Supplemental Materials Sec-
tion A.

The estimates from these specifications fall between the CD and FA estimates, reducing

the bias from 20 to 80 percent depending on the country, but they do not eliminate it.

Industry-level markup estimates reported in Table 2 confirm these findings. This

table reports the average sales-weighted markups in the three largest industries in each

country. We see that except for a few industries, CD gives the highest markup estimates,

FA gives the lowest markup estimates, and Translog and CES-FA markup estimates are

between the two. These results clearly show the importance of both forms of flexibility in

production functions when estimating markups: (i) functional form and (ii) unobserved

heterogeneity. Allowing for only functional form flexibility or labor-augmenting produc-

tivity is not sufficient to eliminate biases in markups. Therefore, one needs both types of

heterogeneity to estimate markups correctly. Furthermore, drawing similar conclusions

from different datasets provides strong evidence that these results are robust to sample

periods and country-specific characteristics.
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Figure 6: Decomposition of the Difference between Aggregate Markups
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Notes: This figure decomposes the difference between the aggregate log markups
produced by my method and the Cobb-Douglas model.

Differences in markup estimates when using more flexible production functions raise

an important question: what drives these differences in markup estimates? My analysis

in Section 7.2 suggested two mechanisms: (i) average output elasticities are estimated

incorrectly, and (ii) output elasticity estimates do not capture heterogeneity in firms’

production technology. To quantify the role of these mechanisms, I decompose the

difference between markups estimated by CD and FA. According to Equation (7.2), the

difference between the log aggregate markup estimates is decomposed as the difference

between average elasticities and the covariances of firm size and elasticities. I plot this

decomposition in Figure 6, which shows the difference between average output elasticities

(gray) and the difference between covariance terms (black). The figure highlights two

key reasons for the difference in markup estimates between the two methods. First,

the Cobb-Douglas production function overestimates the variable input elasticity in all

countries except Chile. Second, Cobb-Douglas does not capture the negative relationship

between firm size and flexible input elasticity. This negative covariance is not surprising

because both the literature and my analysis in Section 6 suggested that large firms are

more capital-intensive and less flexible input-intensive, leading to a negative correlation

between firm size and flexible input elasticity. Both of these factors generate upward

bias in the Cobb-Douglas markup estimates.

After showing important differences in the level of markups across estimation meth-

ods, I now turn to the change in markups over time.

8.3 Markups Comparison: Trend

This section investigates the evolution of the aggregate markup in the US manufacturing

sector. The estimates for other countries are reported in Online Appendix Figure G.6.
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Figure 7: Change of Aggregate Markup in the US
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Notes: The evolution of markups in the US manufacturing industry. The dotted
lines report the 5-95th percentile of the bootstrap distribution (100 iterations).

I focus on the US because there has been recent interest in understanding the change

in market power in the US by measuring the change in markups over time. Figure 7

plots the sales-weighted aggregate markup from 1960 to 2012 along with the 5–95th

percentile confidence band. In the 1960s, the aggregate markup is about 30 percent

over marginal cost. It remains flat until 1970 and then declines gradually between 1970

and 1980, falling to about 15 percent in 1980. Then, markups start to rise with some

cyclical patterns and reach 40 percent at the end of the sample period. We also see that

the markup tends to decline during recessions. Overall, the manufacturing industry’s

aggregate markup has risen from 1.3 to 1.45 during the sample period.

Next, I compare my results with the Cobb-Douglas estimates. Cobb-Douglas and

other Hicks-neutral production functions have been used in the literature to estimate

markups, and the results suggest a dramatic rise in markups in the US economy since

the 1960s (De Loecker et al. (2020)). I aim to study how estimating a labor-augmenting

production function affects this conclusion. Figure 8 reports both markup measures, from

Cobb-Douglas specification (red) and from nonparametric labor-augmenting production

function (black). The Cobb-Douglas estimates suggest that markups rose more than 30

percentage points between 1960 and 2012, mirroring the findings in the literature. The

markup estimates from the labor-augmenting production function also suggest a rise in

markup, albeit a more modest one: around 15 percentage points between 1960 and 2012.

The difference between the two series is statistically significant at the 95% confidence

level as reported in Online Appendix Figure G.6. The two series are similar until the ’70s

and then start to diverge. The markup from the labor-augmenting production function
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Figure 8: Sales-Weighted Markup (Compustat)
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Notes: Comparisons of the evolution of markups in the US manufacturing industry
produced by my method and the Cobb-Douglas production function.

declines in the ’70s and then starts to rise, but reaches only 1.4. In contrast, Cobb-

Douglas markup estimates indicate a steady rise in markups from the ’80s to today,

reaching 1.6.

This result is consistent with other evidence on markups from manufacturing in-

dustries. For example, Hsieh and Rossi-Hansberg (2019) find that in manufacturing,

concentration has fallen rather than increased. Foster et al. (2021) find that the increase

in the average sales-weighted markup declines across many industries when allowing for

output elasticities that vary more flexibly. Some markup estimates from the demand ap-

proach also support this finding. For example, Grieco et al. (2021) estimate the change

in markups in the US auto industry by estimating demand, and they find no increase

in the average markups. Finally, it is important to note that these results are specific

to the manufacturing industry and should not be extrapolated to the entire economy.

The specific forces that affect market power likely vary by industry, and they should be

analyzed separately.

9 Robustness Checks and Extensions

This section discusses robustness checks and extensions provided in Online Appendix.

9.1 Robustness Check: Quantity Production functions

Most production datasets include revenue, not output quantity. If there is imperfect

competition and unobserved heterogeneity firm’s residual demand function, output elas-

ticities estimated from revenues may fail to identify markups (Flynn et al. (2019), Bond
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Figure 9: Markup Estimates from Quantity Production Functions
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et al. (2021)). In this section, I investigate the robustness of my results to estimating a

quantity production function.

I use data from seven industries in India that produce homogeneous products. These

products include Brick Tiles, Cotton Shirts, Biri Cigarettes, Black Tea, Parboiled Non-

Basmati Rice, Boxes, and Raw Non-Basmati Rice. I construct a sample of plants that

derive at least 75 percent of their revenue from one of these products. For these firms,

I observe the quantity of output produced, the quantity of materials consumed, and

their prices. I estimate the production functions and calculate markups using these

inputs and output measures. The estimates from this specification are reported in Figure

9. Factor-augmenting production functions suggest lower markup estimates than the

Hicks-neutral production functions, and using a parametric labor-augmenting production

function reduces bias only partially. The results mirror my main findings in Section 8.2,

suggesting that the comparison results are robust to estimating quantity production

functions. The details of this estimation procedure, the list of industries, and additional

results are reported in Online Appendix Section F.1.

9.2 Robustness Check: Measurement Error in Capital

A concern in production function estimation is measurement error in capital and not

observing capacity utilization, which could be more severe in a nonparametric model.

To mitigate these concerns, I perform two exercises in Supplemental Materials Section

C.1. First, using a simulation exercise, I show that measurement error cannot explain

my results. Second, assuming capital and energy are perfect complements, I recover

capacity utilization and show that it does not change the results.
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9.3 Extension: Heterogeneous Input Prices

My model assumes that input prices are homogeneous, a standard assumption, mostly

because traditional production datasets lack information on input prices. However, input

prices are increasingly available in more recent datasets. To accommodate this case, I

develop an extension where firms face different input prices in Online Appendix Section

B.1. This extension requires incorporating heterogeneous input prices into input demand

functions and accounting for them when constructing the control variables.36

10 Conclusions

Production function estimation plays a critical role in many policy discussions, including

misallocation of inputs, rise in market power, and welfare effects of trade. Given this

prevalence, it is increasingly important that our production functions capture the im-

portant aspects of production technology and firm behavior. This paper takes a step in

this direction by comprehensively analyzing production function estimation with labor-

augmenting productivity and documenting its impact on estimated output elasticities

and markups.

Methodologically, I introduce an identification and estimation framework for produc-

tion functions with labor-augmenting and Hicks-neutral productivity. Unlike previous

methods, the identification strategy does not rely on parametric restrictions or varia-

tions in input prices. Empirically, I show that ignoring labor-augmenting productivity

and imposing parametric restrictions generate biased output elasticity and markup es-

timates. These biases are economically significant. The commonly used specifications

(i) underestimate capital elasticity, (ii) overestimate labor elasticity, and (iii) generate

an upward bias in both the level and growth of markups. The estimates also document

substantial firm-level heterogeneity in the output elasticities.

Although I focused on labor-augmenting productivity to introduce a richer hetero-

geneity in firm production, there are other dimensions of production and firm hetero-

geneity that might be equally important. Some examples include market power in the

input market, labor market frictions, quality differences in inputs and output, and flex-

ibly incorporating a demand model in the production framework. I believe that the

techniques developed in this paper can help address these dimensions and develop even

richer production function frameworks.

36Another important extension would be to account for firm exit. However, the selection problem
is particularly difficult to deal with in the presence of multi-dimensional heterogeneity. I leave
this as future work.
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A Other Identification Results

This section examines the identification of the other important features of the production

function. In particular, I ask what can be identified from (ft, h̄t) and the first-order

conditions. All proofs are provided in Online Appendix D.

Proposition A.1. Labor-augmenting productivity, the output elasticity of capital, and

the elasticity of substitutions are not identified from (ft, h̄t, θ
L
it, θ

M
it ).

The intuition behind this result is that the first-order conditions are only informative

about the flexible inputs’ output elasticities and do not help identify other features of

the production function. To solve this problem, I next ask what further restrictions are

required to identify the labor-augmenting productivity, the output elasticity of capital,

and the elasticity of substitutions.

A potential solution to non-identification results in the previous section is imposing

additional structure on the production function. In this section, I consider a slightly

more restrictive production function and establish that the capital elasticity and labor-

augmenting productivity are identified, but the elasticity of substitution is not identified.

Consider the following production function:

yit = ft
(
Kit, ht(ω

L
itLit,Mit)

)
+ ωHit + εit. (A.1)

This model differs from the main model in that h does not take Kit as an argument.

Since this is a special case, Proposition 2.1 applies to this production function with

ωLit = r̄t(M̃it). Substituting this into Equation (A.1), I obtain the reduced form for the

production function in Equation (A.1) as follows:

yit = ft
(
Kit, Lith̄t(M̃it)

)
+ ωHit + εit. (A.2)

Since Kit appears as an argument of f but not of h, this model is more convenient for

identifying the capital elasticity and ωLit than the main model. The next proposition

shows how to identify these objects.

Proposition A.2. If we replace the production function in Assumption 2.1 with Equa-

tion (A.1), the capital elasticity is identified and labor-augmenting productivity is iden-

tified up to scale from (ft1, h̄t, θ
L
it, θ

M
it ) as:

θKit = ft1(Kit, Lith̄t(M̃it)), log(ωLit) = log(r̄t(M̃it)) =

∫ M̃it

M̃
b(M̄it)dM̄it + a, (A.3)

where b(·) is a function provided in the proof, which depends on ft, h̄t, and the output

elasticities of flexible inputs. ftj is the derivative of ft with respect to its j-th argument
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and a is an unknown constant.

θKit is identified under the additional restriction because ωLit is not a function of

capital, implying that we can learn the capital elasticity from ft1. Identification of ωLit
relies on the idea that we can obtain information about the first derivatives of h from

the output elasticities of flexible inputs. In the proof, I show that information on the

derivatives of h from the first-order conditions can be mapped back to ωLit.

My final result states the non-identification of the elasticity of substitutions.

Proposition A.3. Under the conditions of Proposition A.2, the elasticity of substitutions

is not identified from (ft, h̄t, θ
L
it, θ

M
it ).

The first-order conditions are only informative about the first derivatives of the pro-

duction function, whereas the elasticity of substitution depends on the second derivatives

of the production function. Thus, we can identify the output elasticities but not the elas-

ticity of substitution.

This result extends the impossibility theorem of Diamond et al. (1978) to a model

with firm-level data. They show that if the production function is at the industry-

level, the elasticity of substitution is not identified from time series without exogenous

variation in input prices. My result is similar in spirit because my model does not assume

exogenous variation in input prices. In Online Appendix Section B.1, I extend my model

to have variation in input prices. In this extension, if prices are exogenous, the elasticity

of substitutions can potentially be identified.

An important implication of using first-order conditions for identification is that

the output elasticities can only be identified for values of (Lit, ω
L
it,Mit) on the surface

{(ωLit,Mit) | ωLit = r̄(M̃it)}. That is, I can identify the elasticities only at the observed

input values realized in equilibrium. As a result, it is not possible to conduct counter-

factual exercises, such as keeping ωLit constant and asking how a change in inputs affects

the output. Nevertheless, this is not an important limitation in practice because most

applications of production functions require elasticities and productivity only for the

firms observed in the data.

B Proofs

Proof of Proposition 2.1

This proof builds on a classic result by Shephard (1953). Throughout the proof, I

assume that the standard properties of production functions are satisfied (Chambers

(1988, p.9)), so that the cost function exists and Shephard’s Lemma holds. I also drop
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the time subscripts from functions for notational simplicity.

Part (i)

The firm minimizes the cost of flexible inputs for the level of planned output, Ȳit, which

can be written as:

min
Lit,Mit

pltLit + pmt Mit s.t. E
[
Ft
(
Kit, ht(Kit, ω

L
itLit,Mit)

)
exp(ωHit ) exp(εit) | Iit

]
> Ȳit.

Since the information set includes (ωLit, ω̃
H
it ), we can write the firm’s problem as:

min
Lit,Mit

pltLit + pmt Mit s.t. Ft
(
Kit, ht(Kit, ω

L
itLit,Mit)

)
exp(ωHit )Eit(Iit) > Ỹit, (B.1)

where Eit(Iit) := E[exp(εit) | Iit]. One can reformulate this problem as another cost

minimization, where the firm chooses the effective labor facing the quality-adjusted input

prices. To write this, let L̄it := ωLitLit denote the effective (quality-adjusted) labor and

p̄lit := plt/ω
L
it denote the quality-adjusted price of labor. Therefore, the cost minimization

problem in Equation (B.1) can be rewritten as

min
Mit,L̄it

p̄litL̄it + pmt Mt s.t. Ft
(
Kit, ht(Kit, L̄it,Mit)

)
exp(ωHit ) > Ȳit(Iit), (B.2)

where Ỹit(Iit) := Ȳit/Eit(Iit). This problems is equivalent to Equation (B.1) since the

firm takes ωLit as given. For what follows, I suppress (Iit) and keep it implicit in Ỹit.

I next derive the cost function from this problem. Letting p̄it = (p̄lit, p
m
t ) denote the

(quality-adjusted) input price vector, the cost function is:

Ct(Ỹit,Kit,ω
H
it , p̄it)

= min
L̄it,Mit

{
p̄litL̄it + pmt Mit : Ỹit 6 Ft

(
Kit, ht(Kit, L̄it,Mit)

)
exp(ωHit )

}
,

= min
L̄it,Mit

{
p̄litL̄it + pmt Mit : F−1

t (Ỹit/ exp(ωHit ),Kit) 6 ht(Kit, L̄it,Mit)
}
,

= min
L̄it,Mit

{
F−1
t (Ỹit/ exp(ωHit ),Kit)

(
p̄litL̄it + pmt Mit

)
: 1 6 ht

(
Kit, L̄it,Mit

)}
,

=F−1
t (Ỹit/ exp(ωHit ),Kit) min

L̄it,Mit

{(
p̄litL̄it + pmt Mit

)
: 1 6 ht

(
Kit, L̄it,Mit

)}
,

≡C1t(Kit, Ỹit, ω
H
it )C2t(Kit, p̄

l
it, p

m
t ). (B.3)

The second line follows by the assumption that Ft(·, ·) is strictly monotone in its second

argument. The third line uses ht(Kit, Ft(·)L̄it, Ft(·)Mit) = Ft(·)ht(Ỹit/ exp(ωHit ),Kit)

due to homogeneity of h and the linearity of cost functions. The fourth lines follows

from the exogeneity of (Kit, Ỹit, ω
H
it ). In the last line, I define two new functions that

characterize the cost function. By Shephard’s Lemma, the firm’s optimal demands for

flexible inputs are given by the derivatives of the cost function with respect to the input
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prices. Using this, the ratio of materials to effective labor can be obtained as:

Mit

L̄it
=
∂C2t(Kit, p̄

l
it, p

m
t )/∂pmt

∂C2t(Kit, p̄lit, p
m
t )/∂p̄lit

≡ Cm(Kit, p̄
l
it, p

m
t )

Cl(Kit, p̄lit, p
m
t )

,

which does not depend on (Ỹit, ω
H
it ). Using L̄it = Litω

L
it, Mit/Lit is given by:

Mit

Lit
=
Cm(Kit, p̄

l
it, p

m
t )ωLit

Cl(Kit, p̄lit, p
m
t )

.

This function depends only on capital, ωLit, and input prices. Hence

M̃it ≡ rt(Kit, ω
L
it, p

m
t , p

l
t) ≡ rt(Kit, ω

L
it), (B.4)

for some function rt(Kit, ω
L
it). This completes the first part of the proof.

Part (ii)

In the second part of the proof, I will show that

∂rt(Kit, ω
L
it)/∂ω

L
it > 0 for all (Kit, ω

L
it) or ∂rt(Kit, ω

L
it) ∂ω

L
it < 0 for all (Kit, ω

L
it).

By the properties of the cost function, Cm(·) and Cl(·) are homogenous of degree of zero

with respect to input prices (Chambers (1988, p.64)), implying that input ratio can be

written as a function of quality-adjusted labor and materials prices:

M̃it ≡
C̃m(Kit, p̃it)ω

L
it

C̃l(Kit, p̃it)
, (B.5)

where p̃it := p̄lit/p
m
t , C̃m(Kit, p̃it) := Cm(Kit, p̃it, 1), and C̃l(Kit, p̃it) := Cl(Kit, p̃it, 1).

Taking the logarithm of Equation (B.5), I obtain

log(M̃it) = log(C̃l(Kit, p̃it)/C̃m(Kit, p̃it)) + log(ωLit).

Taking the derivative of log(M̃it) with respect to log(ωLit), I obtain

∂ log(M̃it)

∂ log(ωLit)
=
∂ log

(
C̃l(Kit, p̃it)/C̃m(Kit, p̃it)

)
∂ log(p̃it)

(
∂ log(p̃it)

∂ log(ωLit)

)
+ 1,

=
∂ log

(
C̃l(Kit, p̃it)/C̃m(Kit, p̃it)

)
∂ log(p̃it)

+ 1 ≡ −σ(K,ωLL,M) + 1,

where the last line follows by the fact that the elasticity of substitution between two

inputs equals the negative derivative of the logarithm of input ratio with respect to the

logarithm of input price ratio (Chambers (1988, p.94)). To see this, note that the elastic-

ity of substitution between two inputs is defined as elasticity of input ratio with respect

to marginal rate of technical substitution: σ = ∂ log(X1/X2)/∂ log(F1/F2). Since by

cost minimization, we have F1/F2 = p1/p2, we obtain σ = −∂ log(X1/X2)/∂ log(p1/p2).

By Assumption 2.1(iv), σ(K,ωLL,M) < 1 or σ(K,ωLL,M) > 1. From this I conclude

that the flexible input ratio is strictly monotone in ωLit.
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Proof of Lemma 3.1

By Assumption 2.2, we have that ωLit ⊥⊥ Iit−1 | ωLit−1, ω
H
it−1. Substituting ωLit from

Equation (3.1), I obtain

g(ωLit−1, ω
H
it−1, u

1
it) ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1. (B.6)

Since g(ωLit−1, ω
H
it−1, u

1
it) is strictly monotone in u1

it, Equation (B.6) implies

u1
it ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1. (B.7)

By normalization, u1
it is uniformly distributed conditional on (ωLit−1, ω

H
it−1) and by timing

assumption (Kit,Wit−1, ω
L
it−1, ω

H
it−1) ∈ Iit−1. Thus, Equation (B.7) implies

u1
it | Kit,Wit−1, ω

L
it−1, ω

H
it−1 ∼ Uniform(0, 1).

(ωLit−1, ω
H
it−1) are functions of Wit−1 by Equations (2.5) and (2.6). Using this

u1
it | Kit,Wit−1, r̃t(Kit−1, M̃it−1), s̃t(Kit−1, M̃it−1,Mit−1) ∼ Uniform(0, 1),

u1
it | Kit,Wit−1 ∼ Uniform(0, 1).

Therefore, u1
it is uniformly distributed conditional on (Kit,Wit−1).

Proof of Lemma 3.2

By Assumption 2.2, we have that (ωLit, ω
M
it ) ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1. Using the represen-

tations of productivity shocks in Equations (3.1) and (3.5) yields

g1(ωLit−1, ω
H
it−1, u

1
it), g2(ωLit−1, ω

H
it−1, u

1
it, u

2
it) ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1.

Monotonicity of g1 and g2 with respect to their last arguments and Lemma D.1 in the

Online Appendix imply

u2
it ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1, u

1
it. (B.8)

It follows from Equation (B.8), the fact that u2
it is uniformly distributed conditional on

(ωLit−1, ω
H
it−1, u

1
it), and (Kit,Wit−1) ∈ Iit−1 that

u2
it | Kit,Wit−1, ω

L
it−1, ω

H
t−1, u

1
it ∼ Uniform(0, 1).

(ωLit−1, ω
H
it−1) are functions of Wit−1 by Equations (2.5) and (2.6). Using this

u2
it | Kit,Wit−1, u

1
it ∼ Uniform(0, 1).
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A Data and Estimation

This section describes the datasets. The summary statistics for each dataset is

presented in the Supplemental Materials Section A.

A.1 Chile

Chile data are from the Chilean Annual Census of Manufacturing, Encuesta Na-

cional Industrial Anual (ENIA), covering the years 1979 through 1996. This

dataset includes all manufacturing plants with at least ten employees. I restrict

my sample to the industries with more than 250 firms per year. I drop observations

at the bottom and top 2% of the distribution of revenue share of labor or revenue

share of materials or combined flexible input for each industry to remove outliers.

I report each industry’s share in manufacturing in terms of sales and the number

of plants for the first, last, and midpoint year of the sample in the Supplemental

Materials Section A. The last row, labeled as “other industries”, provides infor-

mation about the industries excluded from the sample. After sample restrictions,

five industries remain, covering around 30% of the manufacturing sector.

A.2 Colombia

The data for Colombia are from the annual Colombian Manufacturing census

provided by the Departamento Administrativo Nacional de Estadistica, covering

the years 1981 through 1991. This dataset contains all manufacturing plants with

at least ten employees. I restrict my sample to the industries with more than 250

firms per year on average and follow the same steps as in the construction of the

Chile Data to remove outliers. The number of industries after applying the sample

restrictions is nine, larger than other datasets. The sample covers around 55% of

the manufacturing sector.

A.3 India

The Indian data was collected by the Ministry of Statistics and Programme Im-

plementation through the Annual Survey of Industries (ASI), which covers all

factories with at least ten workers and use electricity, or those that do not use

electricity but have at least 20 workers. The factories are divided into two cat-

egories: a census sector and a sample sector. The census sector consists of all
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large factories and all factories in states classified as industrially backward by

the government. From 2001 to 2005, a large factory is defined as one with 200

or more workers, whereas from 2006 onward, it was changed to one with 100 or

more workers. All factories in the census sector are surveyed every year. The

remaining factories constitute the sample sector, from which a random sample

is surveyed each year. India uses the National Industrial Classification (NIC) to

classify manufacturing establishments, a similar industrial classifications to those

used in other countries. The industry definition has changed multiple times over

the sample period. I follow Allcott et al. (2016) to create a consistent industry

definition at the NIC 87 level. For sample restrictions and data cleaning, I first

follow Allcott et al. (2016). Then, I restrict my sample to the Census sample to

be able to follow firms over time. My final sample includes industries with more

than 250 firms per year. I follow the same steps as in the Chilian Data to remove

outliers.

A.4 Turkey

Turkey data are provided by the Turkish Statistical Institute (TurkStat), which

collects plant-level data for the manufacturing sector. Periodically, Turkstat con-

ducts the Census of Industry and Business Establishments (CIBE), which collects

information on all manufacturing plants in Turkey. In addition, TurkStat conducts

the Annual Surveys of Manufacturing Industries (ASMI) that covers all establish-

ments with at least ten employees. The set of establishments used for ASMI is

obtained from the CIBE. I use a sample covering a period from 1983 to 2000. The

data include gross revenue, investment, the book value of capital, materials expen-

ditures, and the number of production and administrative workers. For variable

construction, I follow Taymaz and Yilmaz (2015). I restrict my sample to indus-

tries with more than 250 firms per year on average and private establishments. I

follow the same procedure as in Chilian Data to remove outliers.

A.5 Compustat

Compustat is obtained from Standard and Poor’s Compustat North America

database and covers the period from 1961 to 2012. Data after 2012 are avail-

able, but due to the unavailability of some deflators used in variable construc-
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tion, I restrict my sample from 1961 to 2012. Since Compustat is compiled from

firms’ financial statements, it requires more extensive data cleaning than the other

datasets. First, I drop the firms that are not incorporated in the US. Then, as is

standard in the literature, I drop financial and utility firms with industry codes be-

tween 4900-4999 and 6000-6999. I also remove the firms with negative or nonzero

sales, employment, cogs, xsga, and those with less than ten employees and firms

that do not report an industry code. Finally, the sample is restricted to only man-

ufacturing firms operating in industries with the NAICS codes 31, 32, and 33. To

construct the inputs and output, I follow Keller and Yeaple (2009), who explain the

procedure in detail in their Appendix B, page 831. Unlike other datasets, which

are plant-level, Compustat is firm-level and contains only public firms. Also, the

industry classification is based on NAICS, and industries are defined at the 2-digit

level. For Compustat, I drop observations at the bottom and top 1%, instead of

2%, of the distribution to preserve the sample size.

A.6 Variable Construction

Labor: For Chile, Colombia, Turkey, and the US, I use the number of production

workers as my measure of labor. For India, I use the total number of days worked.

For the labor’s revenue share, I use the sum of total salaries and benefits divided

by total sales during the year.

Materials: For Chile, Colombia, India, and Turkey, I calculate materials cost as

total spending on materials, with an adjustment for inventories by adding the dif-

ference between the end year and beginning year value of inventories. I deflate the

nominal value of total material cost using the industry-level intermediate input

price index. For Compustat, materials are calculated as the deflated cost of goods

sold plus administrative and selling expenses less depreciation and wage expendi-

tures. Materials’ revenue share is materials cost divided by total sales during the

year.

Capital: For Turkey, the capital stock series is constructed using the perpetual

inventory method where investment in new capital is combined with deflated capi-

tal from period t−1 to form the capital level in period t. For Compustat, capital is

calculated as the value of property, plant, and equipment and the net of deprecia-

tion deflated from the BEA satellite accounts. For India, the book value of capital
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is deflated by an implied national deflator calculated “Table 13: Sector-wise Gross

Capital Formation” from the Reserve Bank of India’s Handbook of Statistics on

the Indian Economy. For Chile and Colombia, I follow Raval (2020).

Output: The output is calculated as deflated sales. For Compustat, it is net sales

from the Industrial data file. For other countries, sales are total production value,

plus the difference between the end year and beginning year value of finished goods

inventories.

A.7 Estimation Algorithm

This section details the estimation algorithm. Apply the data cleaning and variable

construction steps described in Subsection A.1 and denote the resulting sample by

A. Remove the observations for which the previous period’s inputs are missing and

denote the resulting sample by B. Take the subset of observations in B that fall

into the rolling window τ and denote this sample by Btau. Estimate the control

variable u2
it for each it ∈ Btau as follows. Construct a grid that partitions the

support of Mit into 500 points so that each bin contains the same number of

observations. Denote the set of these points by Q. For each q ∈ Q, estimate

Prob(Mit 6 q | Kit = k,Wit−1 = w, u1
it = u) ≡ st(q, k, w, u)

using a logit model that includes third-degree polynomials. Then for each it ∈ Br,

obtain an estimate û2
it for u2

it = st(Mit, Kit,Wit, u
1
it) by linearly interpolating the

closest two points in Q to Mit. From this procedure obtain û2
it for all it ∈ Br.

For production function estimation, first approximate the logarithm of h̄t by using

third-degree polynomials

log( ̂̄ht(M̃it)) = a1t + a2tm̃it + a3tm̃
2
it + a4tm̃

3
it, (A.1)

where {ajt}4
j=1 are the parameters of the polynomial approximation. Set at1 = 0

to impose the normalization for ̂̄ht described in Section 4. Let Vit := Lit
̂̄ht(M̃it).

Approximate the production function as

f̂t(Kit, Lit
̂̄ht(M̃it)) = b1t + b2tkit + b3tk

2
it + b4tk

3
it + b5tvit + b6tv

2
it + b7tv

3
it (A.2)

+ b8tk
2
itvit + b9tkitv

2
it + b10tkitvit

where {bjt}10
j=1 are the parameters of the polynomial approximation. Approximate

the control functions c2t(·) and c3t(·) using third-degree polynomials similarly. For
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given values {ajt}4
j=1, {bjt}10

j=1, ĉ2t(·) and ĉ3t(·) construct the objective function

presented in Section 5.1.1. Minimize this objective function to estimate the pro-

duction function using the following two step procedure. In the inner loop, for

a candidate value of the parameter vector {ajt}4
j=1, estimate {bjt}10

j=1, ĉ2t(·) and

ĉ3t(·) using the least squares regression. In the outer loop use an optimization rou-

tine to estimate {aj}4
j=1. Minimizing the objective function requires optimization

over four parameters, so it is not computationally intensive. After estimating the

production function parameters, the next step is elasticity and markups estima-

tion.

Take the observations that are in the midpoint of the rolling window period

in sample A and denote that sample by Ac. For each it ∈ Ac, calculate output

elasticities and markups as follows. Obtain the estimates of ft and h̄t from the

estimates of the parameters {ajt}4
j=1 and {bjt}10

j=1 in Equations (A.1) and (A.2).

First, using the estimates of ft and h̄t, calculate the output elasticity of capital

and the sum of the materials and labor elasticities, given in Equations (4.5) and

(A.3) by taking numerical derivatives. Then given an estimate of θVit and revenue

shares of materials and labor, use Equations (4.6) to estimate the output elasticity

of labor and materials. Finally, estimate markups from θ̂Vit and the revenue share

of flexible input. For standard errors, resample firms with replacement from the

sample A, then repeat the estimation procedure above. I use the same proce-

dure to estimate the CES and Nested CES models after applying the appropriate

parametric restrictions.

A.8 Blundell and Bond Method Estimation

This subsection describes the Blundell and Bond (2000) estimation method that

is used to estimate the Hicks-neutral production functions. To apply the Blundell

and Bond (2000) dynamic panel estimation model, I assume that productivity

shock follows an AR(1) process: ωHit = ρωHit−1 + vit. Using this assumption and

taking the first difference of the production function, one can obtain

yit − ρyit−1 =βk(kit − ρkit−1) + βl(lit − ρlit−1) + βm(mit − ρmit−1)+

ωHit − ρωHit−1 + εit − εit−1.
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The composite error term νit := ωHit − ρωHit−1 + εit − εit−1 is orthogonal to firm’s

information set at t−1, that is, E[νit | Iit−1] = 0. To make use of this orthogonality

condition, construct a moment function as:

γ(βk, βl, βm, ρ) = yit − ρyit−1−βk(kit − ρkit−1) + βl(lit − ρlit−1) + βm(mit − ρmit−1).

The moment conditions to estimate the parameters are given by:

E
[
γ(βk, βl, βm, ρ)(kit, kit−1, lit−1,mit−1)′

]
= 0. (A.3)

The translog production function is estimated similarly after imposing the follow-

ing translog functional form.

yit = β1kit + β2lit + β3mit + β4k
2
it + β5l

2
it + β6m

2
it + β7kitmit + β8litmit + β9litkit + εit.

B Extensions

This section presents three extensions. All proofs are given in Section D.

B.1 Heterogeneous Input Prices

This extension assumes that input prices vary across firms. I denote labor and

materials prices by plit and pmit , respectively, and use p̄it to denote the input

price vector, so p̄it := (plit, p
m
it ). I also use pl/mit := (plit/p

m
it ) to denote the input

price ratio. Differently from the main model, Wit now includes input prices, so

Wit = (Kit, Lit,Mit, p̄it). I first modify the Markov and monotonicity assumptions

to incorporate the input prices into the model. With variation in input prices,

Assumptions 2.1 is replaced by the following assumption.

Assumption B.1. The distribution of productivity shocks and input prices obey:

P (ωLit, ω
H
it , p̄it | Iit−1) = P (ωLit, ω

H
it , p̄it | ωLit−1, ω

H
it−1, p̄it−1).

This assumption states that prices and productivity shocks jointly follow an ex-

ogenous first-order Markov process. Importantly, this assumption allows for a

correlation between productivity shocks and input prices. Since we expect that

more productive workers, as represented by higher ωLit, earn higher wages, the cor-

relation between input prices and productivity is important to accommodate. It

is possible to obtain stronger identification results with some additional structure,

such as independence between the innovations to productivity shocks and input

prices. However, I make minimal assumptions to develop a general framework.
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Assumption B.2. The firm’s materials demand is given byMit = st(Kit, ω
L
it, ω

H
it , p̄it),

and st(Kit, ω
L
it, ω

H
it , p̄it) is strictly increasing in ωHit .

This assumption is a natural extension of Assumption 2.4, as the materials demand

now depends on both input prices. This section maintains the other assumptions in

the model, namely Assumptions 2.2 and 2.3, and states the following proposition.

Proposition B.1.

(i) Under Assumptions 2.2(i-iv) and with heterogeneity in input prices, the flexible

input ratio, denoted by M̃it = Mit/Lit, depends on Kit, ωLit and p
l/m
it

M̃it = rt(Kit, ω
L
it, p

l/m
it ). (B.1)

(ii) Under the Assumption 2.2(v), rt(Kit, ω
L
it, p

l/m
it ) is strictly monotone in ωLit.

The proof of this Proposition is a straightforward extension of the proof of Propo-

sition 2.1, and therefore, is omitted. Compared to Proposition 2.1, the only dif-

ference is that the flexible input ratio depends also on the input price ratio. Note

that the ratio of prices, not the price vector, affects the flexible input ratio due to

the properties of cost functions. This property would reduce the dimension of the

control variables. With this result, ωLit is invertible once we condition on the input

price ratio and capital. By inverting the Equation (B.1), I can write productivity

shocks as:

ωLit = r̄t(Kit, M̃it, p
l/m
it ), ωHit = s̄t(Kit,Mit, M̃it, p̄it). (B.2)

The derivation of the control variables proceed similarly as in Section 3. I first

use the Skorokhod’s representation of ωLit to write:

ωLit = g1(ωLit−1, ω
H
it−1, p

l/m
it−1, p

l/m
it , u1

it), u1
it | ωLit−1, ω

H
it−1, p

l/m
it−1, p

l/m
it ∼ Uni.(0, 1).

(B.3)

Unlike Equation (3.1), I include the ratio of current and past input prices in g1(·).
This is because, as stated in Proposition B.1, the optimal input ratio depends on

the ratio of input prices. Using Equations (B.1), (B.2) and (B.3), we have

M̃it = rt
(
Kit, g1(ωLit−1, ω

H
it−1, p

l/m
it−1, p

l/m
it , u1

it), p̄it
)
≡ r̃t

(
Kit,Wit−1, p̄it, u

1
it

)
.

where r̃t(·) is strictly monotone in u1
it.

Lemma B.1. Under Assumptions 2.3, B.1, and B.2, u1
it is jointly independent of

(Kit,Wit−1, p̄it):
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With this lemma and monotonicity, u1
it can be identified as:

u1
it = FM̃it|Kit,Wit−1,p̄it

(M̃it | Kit,Wit−1, p̄it).

Next, we can use Equations (B.2) and (B.3) to write ωLit as: ωLit ≡ c1t(Wit−1, p
l/m
it , u1

it).

Note that unlike the main model, the CDF for u1
it is conditional on the price vector

p̄it and control function includes the price ratio pl/mit since prices are endogenous.

The derivation for the control function for ωHit is similar to that of ωLit. We use

ωHit = g2(ωLit−1, ω
H
it−1, p̄it−1, p̄it, u

1
it, u

2
it), u2

it | ωLit−1, ω
H
it−1, p̄it−1, p̄it, u

1
it,∼ Uni.(0, 1).

Following the same steps in Equation (3.2) in Section 3, materials demand function

can be obtained asMit ≡ s̃t
(
Kit,Wit−1, p̄it, u

1
it, u

2
it

)
, where s̃t(·) is strictly monotone

in u2
it.

Lemma B.2. Under Assumptions 2.3, B.1 and B.2, u2
it is jointly independent of

(Kit,Wit−1, p̄it, u
1
it):

By this lemma and monotonicity of Mit in u2
it, we can recover u2

it as

u2
it = FMit|Kit,Wit−1,p̄it,u1it

(Mit | Kit,Wit−1, p̄it, u
1
it),

and the control function is given by ωHit ≡ c2t (Wit−1, p̄it, u
1
it, u

2
it).

It follows that with variation in input prices control functions become ωLit =

c1t(Wit−1, p
l/m
it , u1

it) and ωHit = c2t (Wit−1, p̄it, u
1
it, u

2
it). The main difference is that

I must condition the current and previous period’s input prices to derive control

functions. The rest of the identification and estimation results remain the same

with these modifications in the control variables.

C Application to Parametric Production Functions

The nonparametric approach I propose accommodates five models that are nested

within each other. I list these models below, from least restrictive to most, to
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provide a complete picture.

yit = ft
(
Kit, ht(Kit, ω

L
itLit,Mit)

)
+ ωHit + εit (Homo. Sep.)

yit = ft
(
Kit, ht(ω

L
itLit,Mit)

)
+ ωHit + εit (Weak Homo. Sep.)

yit = vkit + ft
(
L̃itht(ω

L
it, M̃it)

)
+ ωHit + εit (Homogeneous)

yit =
v

σ
log
(
βkK

σ
it + (1− βk)

(
βl
[
ωLitLit

]σ1 + (1− βl)Mσ1

it

) σ
σ1

)
+ ωHit + εit (Nested CES)

yit =
v

σ
log
(
βkK

σ
it + βl

(
ωLitLit

)σ
+ (1− βl − βm)Mσ

it

)
+ ωHit + εit (CES)

This section describes how to apply the my method to parametric functional forms

and how to impose a returns to scale restriction.

C.1 Imposing Returns to Scale Restrictions

My model can accommodate a return to scale restriction on the production func-

tion. Restricting the return to scale to an unknown constant v, the production

function takes the form

yit = vtkit + ft
(
1, L̃itht(ω

L
it, M̃it)

)
+ ωHit + εit, (C.1)

where L̃it = Lit/Kit. The reduced form of this production function is

yit = vtkit + f̃t
(
L̃ith̄t(M̃it)

)
+ ωHit + εit, (C.2)

where f̃t = ft
(
1, L̃ith̄t(M̃it)

)
. My identification results apply to this model after

making the functional form restrictions.

C.2 Nested CES Production Function

This section studies the identification of the Nested CES production function in

Example 2. We maintain the assumptions in Section 2.2. The logarithm of this

production function is given by:

yit =
v

σ
log
(
βkK

σ
it + (1− βk)

(
βl
[
ωLitLit

]σ1 + (1− βl)Mσ1
it

)σ/σ1 )
+ ωHit + εit.

Using the homotheticity of Nested CES, we can rewrite the production function:

yit = vmit +
v

σ
log
(
βkK̃

σ
it + (1− βk)

(
βl
[
ωLitL̃it

]σ1 + (1− βl)
)σ/σ1)+ ωHit + εit

where K̃it := Kit/Mit and L̃it := Lit/Mit and mit := log(Mit). The FOCs of cost

minimization imply that ωLit = γL̃(1−σ1)/σ1 , where is γ is a constant that depends on

input prices and model parameters. Substituting this into the production function
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we obtain

yit = vmit +
v

σ
log
(
βkK̃

σ
it + (1− βk)γ1

(
L̃it + γ2

)σ/σ1)+ ωHit + εit,

where γ1 and γ2 are constants that depend on the model parameters. Note that ωLit
disappeared from the model. This is the parametric analog of my nonparametric

inversion result in Proposition 2.1. The parameters of the Nested CES functional

form can be estimated using the control functions I develop with the following

estimating equation:

yit = vmit +
v

σ
log
(
βkK̃

σ
it + (1− βk)γ1

(
L̃it + (1− βl)

)σ/σ1)+ ct(Wit−1, u
1
it, u

2
it) + εit.

One can estimate the model parameters using the objective function in Equation

(A.1). With some algebra, it is possible to show that the sum of the flexible input

elasticites are identified from the model parameters as:

θVit = v
(1− βk)γ1x

σ

(1− βk)γ1xσ + βkKσ
it

where xit = Mit(L̃it + γ2)1/σ1 . Note that (1 − βk)γ1 and βk are not separately

identified in the production function, but their ratio is identified. Therefore, θVit
is identified. This is the parametric analog of the non-identification result in

Proposition 4.1, where γ1 and βk are not identified separately but the variable

input elasticity is identified. Labor and materials elasticities are identified from

θVit using ratio of revenue shares as described in the paper. Finally, the output

elasticity of capital is identified as

θKit = v
βkK

σ
it

(1− βk)γxσit + βkKσ
it

.

C.3 CES Production Function

In this section, I consider the CES production function: Using homotheticity we

can divide all inputs by Mit and write the log production function as:

yit = vmit +
v

σ
log
(
(1− βl − βm)K̃σ

it + βl
[
ωLitL̃it

]σ
+ βm

)
+ ωHit + εit.

The FOCs of cost minimization imply that ωLit = γL̃
(1−σ)/σ
it , where γ is a constant

that depends on input prices and model parameters. Substituting this into the

production function, we can obtain the following:

yit = vmit +
v

σ
log
(
(1− βl − βm)K̃σ

it + γ1(L̃it + γ2)
)

+ ωHit + εit,
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where γ1 := γβl and γ2 := βm/γβl. Note that ωLit disappeared from the model.

The model parameters can be estimated using the control functions I developed.

The estimation equation is:

yit = vmit +
v

σ
log
(
(1− βl − βm)K̃σ

it + γ1(L̃it + γ2)
)

+ c(Wit−1, u
1
it, u

2
it) + εit,

with the same objective function as in Section 5. As in the Nested CES model,

one can again show that the sum of the flexible input elasticites is identified from

the model parameters as:

θVit = v
γ1x

σ
it

γ1xσit + (1− βl − βm)Kσ
it

,

where xit = Mit(L̃it + γ2). Note that (1−βl−βm) and γ1 are not separately iden-

tified from this production function but the ratio is identified. Since θVit depends

only on the ratio, the sum elasticity is identified. Labor and materials elasticities

are identified from θVit using the revenue shares as described in the paper. The

capital elasticity is identified as

θKit = v
(1− βl − βm)Kσ

it

γ1xσit + (1− βl − βm)Kσ
it

.

C.4 Cobb-Douglas Production Function

The control variable approach of this paper can be applied to Hicks-neutral pro-

duction functions. This section presents this application and compares it with

the proxy variable approach. Since the literature has shown that the gross Cobb-

Douglas production function with two flexible inputs is not identified, I use the

value-added production function studied in Ackerberg et al. (2015):

yit = βkkit + βllit + ωHit + εit

I consider the standard assumptions in the proxy variable literature: (i) the pro-

ductivity shock follow an exogenous first-order Markov process P (ωHit | Iit−1) =

P (ωHit | ωHit−1), (ii) capital is a dynamic input, and labor is static input opti-

mized every period, and (iii) the firm’s intermediate input decision is given by

mit = s(kit, ω
H
it ), which is strictly increasing in ωHit . Using these assumptions, I

construct a control variable using the steps in Section 3 as follows:

ωHit = g(ωHit−1, uit) uit | ωHit−1 ∼ Uniform(0, 1), (C.3)
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where g(ωHit−1, uit) is strictly increasing in uit. By the Markov Assumption we

have that ωHit ⊥⊥ Iit−1 | ωHit−1. Substituting ωHit using Equation (C.3) we have

g(ωHit−1, uit) ⊥⊥ Iit−1 | ωHit−1, which implies that uit ⊥⊥ Iit−1 | ωHit−1. Using this,

mit = s(kit, ωit) = s(kit, g(ωit−1, uit)) ≡ s̃(kit, kit−1,mit−1, uit).

Note that s(kit, ωit) is strictly increasing in ωit and g(ωit−1, uit) is also strictly

increasing in uit by construction. Therefore, s̃ is strictly increasing in uit. It

follows from Lemma 3.1 that

uit | kit,mit−1, kit−1 ∼ Uniform(0, 1). (C.4)

Using this, we can recover uit as the conditional CDF of mit: uit = Fmit
(mit |

kit,mit−1, kit−1). This suggests that we can use a function of (mit−1, kit−1, uit) to

proxy ωHit :

ωHit = g(ωHit−1, uit) = g(s−1(kit−1,mit−1), uit) ≡ c(mit−1, kit−1, uit).

With this result, I obtain a partially linear model:

yit = βkkit + βllit + c(mit−1, kit−1, uit) + εit, (C.5)

with E[εit | Iit] = 0. However, we can develop other moment restrictions using

the first-order Markov property of ωHit as standard in the literature (Ackerberg

et al. (2015)). In particular, using ωHit = c2(ωHit−1) + ξit with E[ξit | Iit−1] = 0,

yit = βkkit + βllit + c2(mit−1, kit−1) + ξit + εit, (C.6)

with E[ξit | Iit−1] = 0. We can estimate the parameters (βk, βl) and unknown

functions c1(·), c2(·) in Equation (C.5) and (C.6) using the following moments.

E[εit | kit, lit,mit,mit−1, kit−1, uit] = 0, E[ξit + εit | kit,mit−1, kit−1] = 0

In this estimation, the parameters might be identified even if labor is a flexi-

ble input and is written as lit = l(ωit, kit). The main distinction between this

approach and proxy variable approach is the conditioning variables in the estima-

tion. While the proxy variable approach conditions on an unknown function of

(kit,mit), my method conditions on uit, a known function of (kit,mit). Conditional

on the control variable uit, there might still be variation in lit linearly independent

of kit, which can identify the production function. To see this, if labor is flexible,

we can write it as lit = l(kit, ω
H
it ) = l

(
k(kit−1, ωit−1, νit−1), c(mit−1, kit−1, uit)

)
=
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l
(
k(kit−1, s

−1(kit−1,mit−1), νit−1)), c(mit−1, kit−1, uit)
)
, which gives lit =: l̃(kit−1,mit−1, uit, νit−1),

where νit−1 corresponds to a vector of random variables that affects the firm’s in-

vestment decision, such as investment prices and heterogeneous beliefs. So, in

this example, conditional (kit−1,mit−1, uit), νit−1 could generate variation in labor

independently of a linear function of capital depending on the data generating

process for lit = l(ωit, kit). It is important to note that this example is valid only

for Cobb-Douglas production function.

D Additional Proofs

Lemma D.1. Suppose x, y and z are scalar and continuous random variables

with a joint probability density function given by f(x, y, z). Assume that (x, y) are

jointly independent from z. Then x and z are independent conditional on y.

Proof. Let f(x | y) denote the conditional probability density function of x given

y. Independence assumption implies that f(x, y, z) = f(x, y)f(z). To achieve the

desired result, I need to show that f(x, z | y) = f(x | y)f(z | y). Using Bayes’s

rule for continuous random variables I obtain

f(x, z | y) =
f(x, y, z)

f(y)
=
f(x, y)f(z)

f(y)
=
f(x | y)f(y)f(z)

f(y)
= f(x | y)f(z),

= f(x | y)f(z | y),

where in the last line f(z | y) = f(z) follows by the independence assumption.

Proof of Proposition A.1

For this proof, I drop the time subscripts from all functions for notational simplic-

ity. One can assume that all functions are indexed by t. The proof consists of two

parts. First, I will show that two different set of structural functions, lead to same

(θLit, θ
M
it , h̄, f). Then, I will show that labor-augmenting productivity, the output

elasticity of capital, and the elasticity of substitutions depend on the structural

functions h and r̄, and, therefore, can not be identified. Looking at the elasticities

first, θLit and θMit depend on the production function in the following way:

θLit = f2h2(Kit, r̄(Kit, M̃it), M̃it)r̄(Kit, M̃it)Lit, (D.1)

θMit = f2h3(Kit, r̄(Kit, M̃it), M̃it)Mit, (D.2)
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where arguments of the derivatives of f are omitted. Next, the derivatives of the

reduced form function h̄ can be written as:

h̄2(Kit, M̃it) = h2(Kit, r̄(Kit, M̃it), M̃it)r2(Kit, M̃it) + h3(Kit, r̄(Kit, M̃it), M̃it),

h̄1(Kit, M̃it) = h1(Kit, r̄(Kit, M̃it), M̃it) + h2(Kit, r̄(Kit, M̃it), M̃it)r1(Kit, M̃it).

So the right-hand side of these equations are identified from h̄ and the output elas-

ticities θLit and θMit are identified from h̄ the revenue shares. To give an intuition for

the identification problem note that we have four equations, but structural func-

tions h(Kit, r̄(Kit, M̃it), M̃it) and r̄(Kit, M̃it) include five dimensions in total. This

suggests that it might not be possible to identify h and r̄ from (θLit, θ
M
it , h̄, f). More

formally, consider two sets of functions (h1, h2, h3, r̄1, r̄2) and (h′1, h
′
2, h
′
3, r̄
′
1, r̄
′
2) such

that

r̄′(Kit, M̃it) = r̄(Kit, M̃it)T (Kit),

h′2(Kit, r̄(Kit, M̃it), M̃it) = h2(Kit, r̄(Kit, M̃it), M̃it)/T (Kit),

h′1(Kit, r̄(Kit, M̃it), M̃it) = h1(Kit, r̄(Kit, M̃it), M̃it)− r̄(Kit, M̃it)T1(Kit)/T (Kit),

h′3(Kit, r̄(Kit, M̃it), M̃it) = h3(Kit, r̄(Kit, M̃it), M̃it),

where T (Kit) is an arbitrary function and T1(Kit) denotes the derivative of T (Kit)

with respect to Kit. These functions are equivalent for identification purposes

since they lead to the same (θLit, θ
M
it , h̄, f) as I show below

θLit = f2h
′
2(Kit, r̄

′(Kit, M̃it), M̃it)r
′(Kit, M̃it)Lit = f2h2(Kit, r̄(Kit, M̃it), M̃it)r(Kit, M̃it)Lit,

θMit = f2h
′
3(Kit, r̄

′(Kit, M̃it), M̃it)Mit = f2h3(Kit, r̄(Kit, M̃it), M̃it)Mit,

h̄2(Kit, M̃it) = h′2(Kit, r̄
′(Kit, M̃it), M̃it)r

′
2(Kit, M̃it) + h′3(Kit, r̄

′(Kit, M̃it), M̃it),

= h2(Kit, r̄(Kit, M̃it), M̃it)r2(Kit, M̃it) + h3(Kit, r̄(Kit, M̃it), M̃it),

h̄1(Kit, M̃it) = h′1(Kit, r̄
′(Kit, M̃it), M̃it) + h′2(Kit, r̄

′(Kit, M̃it), M̃it)r
′
1(Kit, M̃it),

= h1(Kit, r̄(Kit, M̃it), M̃it) + h2(Kit, r̄(Kit, M̃it), M̃it)r1(Kit, M̃it).

This implies that we cannot distinguish between (h1, h2, r̄1, r̄2) and (h′1, h
′
2, r̄
′
1, r̄
′
2)

from (θLit, θ
M
it , h̄, f). Next, I will show that labor-augmenting productivity, capital

elasticity and elasticity of substitutions depend on (h1, h2, r̄1, r̄2), so they cannot

be recovered from (θLit, θ
M
it , h̄, f). Since ωLit = r̄(Kit, M̃it), non-identification of

r̄(Kit, M̃it) immediately implies that ωLit is not identified. The output elasticity of
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capital is

θKit = f1 + f2h1(Kit, r̄(Kit, M̃it), M̃it).

Since h1 is not identified, θKit is not identified. Finally, to see that the elasticity of

substitution is not identified note that it is defined as σML
it = ∂ log(Lit/Mit)/∂ log(FM/FL).

It depends on the ratio of marginal products, which can be written

FL
FM

=
h(Kit, r̄(Kit, M̃it), M̃it)

h3(Kit, r̄(Kit, M̃it), M̃it)
− M̃it

Using this, the elasticity of substitution is given by

σML
it =

h3(Kit, r̄(Kit, M̃it), M̃it)
2 − h(Kit, r̄(Kit, M̃it), M̃it)h33(Kit, r̄(Kit, M̃it), M̃it)

h3(Kit, r̄(Kit, M̃it), M̃it)2
− 1

which depends on h33(Kit, r̄(Kit, M̃it), M̃it). This function is not identified because

r̄(Kit, M̃it) and h are not identified. Therefore, σML
it is not identified. The elasticity

of substitutions for other input pairs can similarly be derived and it can be shown

that they depend on the derivatives of h.

Proof of Proposition A.2

For this proof, I drop the time subscripts from all functions for notational sim-

plicity. If production function takes the form given Equation (A.1) the output

elasticities with respect to labor and materials, as a function of f and h, can be

written as

θLit = f2h1(r̄(M̃it), M̃it)r(M̃it)Lit, θMit = f2h2(r̄(M̃it), M̃it)Mit.

Since I already showed in Equation (4.6) that θLit and θMit are identified, the right-

hand sides of these equations are identified. The identification of θMit immediately

implies that h2(r̄(M̃it), M̃it) is identified from (f2, θ
M
it ). Taking the derivative of

the reduced form function h̄ and using h̄(M̃it) = h(r̄(M̃it), M̃it), I obtain

h̄1(M̃it) = h1(r̄(M̃it), M̃it)r̄
′(M̃it) + h2(r̄(M̃it), M̃it), (D.3)

where r̄′(M̃it) denotes the derivative of r̄(M̃it). Therefore, the right-hand side

of Equation (D.3) is identified from h̄(M̃it). Taking the ratio of θLit/Lit and

f2h̄1(M̃it)− θMit /Mit gives

b(M̃it) :=
θLit/Lit

f2h̄1(M̃it)− θMit /Mit

=
f2h1(r̄(M̃it), M̃it)r

′(M̃it)

f2h1(r̄(M̃it), M̃it)r(M̃it)
=
r̄′(M̃it)

r̄(M̃it)
=
∂ log(r̄(M̃it))

∂M̃it

.

Hence, the derivative of log(r(M̃it)) with respect to M̃it are identified from (θLit, θ
M
it , h̄, f)
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as b(M̃it). So, we can recover log(r(M̃it)) up to a constant by integrating b(M̃it):

log(r(M̃it)) =

∫ M̃it

M̃it

b(M̃it)dM̃it + a.

Since ωLit = r(M̃it), and log(r(M̃it)) is identified up to a constant, ωLit is identified

up to a scale. Identification capital elasticity is easy to show since it depends on

f and h̄ only. We can recover the output elasticity of capital from f and h̄ as:

θKit = f1(Kit, Lith̃(M̃it))

Proof of Proposition A.3

If production function takes the form in Equation (A.1), we can derive σML
it as

σML
it =

h2(r̄(M̃it), M̃it)
2 − h(r̄(M̃it), M̃it)h2(r̄(M̃it), M̃it)

h22(r̄(M̃it), M̃it)2
− 1,

which depends on h22. Since h22 is not identified, σML
it is not identified. The

elasticity of substitutions for other input pairs can similarly be derived and it can

be shown that they depend on the second derivatives of h, which are not identified.

Proof of Lemma B.1

This proof closely follows the proof of Lemma 3.1. By Assumption B.1 we have

(p̃it, ω
L
it) ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1, p̄it−1,

p̃it, g1(ωLit−1, ω
H
it−1, p̃it, p̄it−1, u

1
it) ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1, p̄it−1.

Monotonicity of g1 with respect to its last argument and Lemma D.1 imply

u1
it ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1, p̃it, p̄it−1.

Since u1
it has a uniform distribution conditional on (ωLit−1, ω

H
it−1, p̃it, p̄it−1) by nor-

malization and (Kit,Wit−1) ∈ Iit−1 we have

u1
it | Kit,Wit−1, ω

L
it−1, ω

H
it−1, p̃it, p̄it−1 ∼ Uniform(0, 1).

Using Equations (2.5) and (2.6) we substitute (ωLit−1, ω
H
it−1) as functions of (Wit−1)

to obtain

u1
it | Kit,Wit−1, p̃it ∼ Uniform(0, 1).

Proof of Lemma B.2
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This proof closely follows the proof of Lemma 3.2. By Assumption B.1 we have

(p̄it, ω
L
it, ω

H
it ) ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1, p̄it−1,

p̄it, g1(ωLit−1, ω
H
it−1, p̃it, p̄it−1, u

1
it), g2(ωLit−1, ω

H
it−1, p̄it−1, p̄it, u

1
it, u

2
it) ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1, p̄it−1.

Monotonicity of g1 and g2 with respect to their last arguments and Lemma D.1

imply that

u2
it ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1, p̄it, p̄it−1, u

1
it.

Since u2
it has a uniform distribution conditional on (ωLit−1, ω

H
it−1, p̄it, p̄it−1, u

1
it) by

normalization and (Kit,Wit−1) ∈ Iit−1 we have

u2
it | Kit,Wit−1, ω

L
it−1, ω

H
it−1, p̄it, u

1
it ∼ Uniform(0, 1).

Using Equations (2.5) and (2.6) to substitute (ωLit−1, ω
H
it−1) as functions of Wit−1,

I obtain

u2
it | Kit,Wit−1, p̃it, u

1
it ∼ Uniform(0, 1).

Proof of Lemma C.2

By Assumption C.1 we have that

ωHit ⊥⊥ Iit−1 | ωLit−1, ω
H
it−1.

Using the Skorokhod representation of ωHit in Equation (C.1) we write

g2(ωLit−1, ω
H
it−1, u

2
it) ⊥⊥ Iit−1, g1(ωLit−1, ω

H
it−1, u

1
it) | ωLit−1, ω

H
it−1. (D.4)

By monotonicity of g1 and g2 in their last arguments, u2
it is (conditionally) inde-

pendent of (Iit−1, u
1
it)

u2
it ⊥⊥ Iit−1, u

1
it | ωLit−1, ω

H
it−1.

It follows from Equation (D.4) and the fact that u2
it is uniformly distributed con-

ditional on (ωLit−1, ω
H
it−1)

u2
it | Iit−1, ω

L
it−1, ω

H
it−1, u

1
it ∼ Uniform(0, 1).

Since (Kit,Wit−1) ∈ Iit−1 we have u2
it | Kit,Wit−1, ω

L
it−1, ω

H
it−1, u

1
it ∼ Uniform(0, 1),

which implies

u2
it | Kit,Wit−1, u

1
it ∼ Uniform(0, 1). (D.5)
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Next, I use the monotonicity condition for materials demand function to write

Mit = s
(
Kit, ω

H
it , ω

L
it

)
= s

(
Kit, g2

(
ωLit−1, ω

H
it−1, u

2
it

)
, c1

(
Wit−1, u

1
it

))
,

= s
(
Kit, g2

(
r̃ (Wit−1) , s̃ (Wit−1) , u2

t

)
, c1

(
Wit−1, u

1
it

))
≡ s̄

(
Kit,Wit−1, u

1
it, u

2
it

)
. (D.6)

The intuition is similar to that of Lemma 3.1. Employing strict monotonicity of s̄

in u2
it and Equation (D.5), we can use Equation (D.6) to identify u2

it.

u2
it = FMit|Kit,Wit−1,u1it

(Mit | Kit,Wit−1, u
1
it), (D.7)

where FMit|Kit,Wit−1,u1it
denotes the CDF of Mit conditional on (Kit,Wit−1, u

1
it).

Therefore, u2
it is identified from data and ωHit can be written as ωHit ≡ c2 (Wit−1, u

2
it) .

E Identification

In this section, I show that the homogeneous and weak homothetic separable

production functions are generically identified using the moment in Equation (5.3).

First, I will present auxiliary lemmas and then analyze these cases separately.

Lemma E.1. Let f : R2
+ → R and h : R+ → R+ are differentiable functions. If

there exists a differentiable function p : R3
+ → R with f(w, zh(x)) = p(w, x, z),

then h(x) can be recovered from p(w, x, z) up to a scale.

Proof. Taking the derivatives of the both sides of f(w, zh(x)) = p(w, x, z) with

respect to z and x yields

f2(w, zh(x))h(x) = p2(w, z, x), f2(w, zh(x))zh′(x) = p3(w, z, x).

Taking the ratio between the two gives

log′
(
h(x)

)
=
p2(w, z, x)z

p3(w, z, x)
. (E.1)

Thus, log(h(x)) is identified up to a constant and h(x) is identified up to a scale.

Lemma E.2. Consider the following model

y = f
(
zh(x)

)
+ g(x) + ε, E[ε | z, x] = 0.

where (y, x, z) are observed random variables and f : R+ → R, h : R+ → R+ and

g : R+ → R are unknown functions. Let (f0, h0, g0) denote the true functions. As-
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sume that (i) h′0(x) > 0 for all x in the support, where h′0(x) denotes the derivative

of h0, (ii) functions (f0, h0, g0) are continuously differentiable and have non-zero

derivatives almost everywhere, (iii) the joint distribution function of (y, z, x) is

absolutely continuous with positive density everywhere on its support.

Let Ω be is the set of functions that obey the model restrictions and assumptions,

so (f0, h0, g0) ∈ Ω = Ωf × Ωh × Ωg. Define the set of log-linear functions as

Ωlog = {f(x) : f(x) = a log(x) + b, (a, b) ∈ R2} and assume that they are excluded

from Ωf , i.e., Ωlog ∩ Ωf = ∅.
I next provide some definitions based on Matzkin (2007). (f, h, g) ∈ Ω and

(f̃ , h̃, g̃) ∈ Ω are observationally equivalent if and only if

f
(
zh(x)

)
+ g(x) = f̃

(
zh̃(x)

)
+ g̃(x),

for all (z, x) ∈ X × Z.(f0, h0, g0) ∈ Ω are identifiable if no other member of Ω is

observationally equivalent to (f, h, g). If identification holds except in special or

pathological cases the model is generically identified.

Based on these definitions and under my assumptions, g is identified up to a

constant, h is identified up to a scale, and f is identified up to a constant and a

normalization specified below in the proof. Since identification fails only in special

cases, we say that the functions, (f, h, g), are generically identified. The special

cases where identification fails are testable.

Proof. Note that from E[ε | z, x] = 0, we have

E[y | z, x] = f
(
zh(x)

)
+ g(x)

Since E[y | z, x] is identified from the distribution of observables, we can take it as

known for identification purposes. This conditional expectation captures all the

information from data based on the assumption of ε.

Assume there exists (f, h, g) ∈ Ω and (f̃ , h̃, g̃) ∈ Ω are observationally equiva-

lent. Using the definition of identification given above, we have:

f
(
zh(x)

)
+ g(x) = f̃

(
zh̃(x)

)
+ g̃(x). (E.2)

I will show that if Equation (E.2) holds, then (f, h, g) and (f̃ , h̃, g̃) have to obey

the normalization restrictions below

f(x) = f̃(λx) + a, h(x) = h̃(x)/λ, g(x) = g̃(x)− a,
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for λ ∈ R and a ∈ R. To show this, I will take the derivatives of Equation (E.2)

with respect to x and z. Taking derivative with respect to z yields

f ′
(
zh(x)

)
h(x) = f̃ ′

(
zh̃(x)

)
h̃(x). (E.3)

Next, taking derivative with respect to x gives

f ′
(
zh(x)

)
zh′(x) + g′(x) = f̃ ′

(
zh̃(x)

)
zh̃′(x) + g̃′(x).

Rearranging this to collect similar terms, I obtain

f ′
(
zh(x)

)
zh′(x)− f̃ ′

(
zh̃(x)

)
zh̃′(x) = g̃′(x)− g′(x).

Dividing and multiplying the two terms on the left hand side by h(x) and h̃(x),

respectively,

f ′
(
zh(x)

)
zh(x)

h′(x)

h(x)
− f̃ ′

(
zh̃(x)

)
zh̃(x)

h̃′(x)

h̃(x)
= g̃′(x)− g′(x).

Further rearranging and denoting h′(x)/h(x) by log′(h(x)), using assumption (i),

we have

z
(
f ′
(
zh(x)

)
h(x) log′(h(x))− f̃ ′

(
zh̃(x)

)
h̃(x) log′(h̃(x))

)
= g̃′(x)− g′(x).

By Equation (E.3) we have that f ′
(
zh(x)

)
h(x) = f̃ ′

(
zh̃(x)

)
h̃(x). Using this

z
(
f ′
(
zh(x)

)
h(x) log′(h(x))− f ′

(
zh(x)

)
h(x) log′(h̃(x))

)
= g̃′(x)− g′(x)

zf ′
(
zh(x)

)
h(x)

(
log′(h(x))− log′(h̃(x))

)
= g̃′(x)− g′(x). (E.4)

Now as a contradiction suppose h(x) 6= h̃(x)/λ for x ∈ X̃ such that Pr(x ∈ X̃ ) > 0.

Then

f ′
(
zh(x)

)
=

g̃′(x)− g′(x)(
log′(h(x))− log′(h̃(x))

)
zh(x)

,

which gives a differential equation. The only solution to this differential equation

is

f ′
(
zh(x)

)
=

a

zh(x)
and

g̃′(x)− g′(x)

h′(x)/h(x)− h̃′(x)/h̃(x)
=

1

a
,

for some constant a. This solution gives

f(w) = a log(w) + b,

which was excluded from Ωf by assumptions. Thus, we cannot have h(x) 6=
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h̃(x)/λ, implying

log′(h(x)) = log′(h̃(x)), g̃′(x) = g′(x).

Next, Equation (E.4) and log′(h(x)) = log′(h̃(x)) imply that

g̃′(x) = g′(x). (E.5)

Integrating this, there exists λ and a such that

h(x) = h̃(x)/λ, g(x) = g̃(x)− a.

Now using these results and Equation (E.3) we solve for f
(
zh(x)

)
and f̃

(
zh(x)

)
f
(
zh(x)

)
= f̃

(
zh̃(x)

)
+ g̃(x)− g(x) = f̃

(
zλh(x)

)
+ a. (E.6)

which obeys the stated normalization f(x) = f̃(λx) + a. Therefore, I conclude

that observationally equivalent functions (f, h, g) ∈ Ω and (f̃ , h̃, g̃) ∈ Ω should

satisfy

f(x) = f̃(λx) + a, h(x) = h̃(x)/λ, g(x) = g̃(x)− a.

In this part of the proof, I will show that the assumption that f 6∈ Ωlog is testable.

To see this, note that f ∈ Ωlog if and only if conditional expectation has the

following form

y(x, z) := E[y | z, x] = λ log z + h(x) + g(x), (E.7)

which is testable by estimating E[y | z, x]. If part is trivial. To show the only

if part, by the fundamental theorem of calculus, Equation (E.7) implies that

∂t(x, z)/∂ log z = λ. Hence
∂t(x, z)

∂ log z
= z

∂t(x, z)

∂z
= zf ′(zh(x))h(x) = λ =⇒ f ′(zh(x))h(x) = λ/z

The only solution to this equation is f(w) = λ log(w) + a, which belongs to Ωlog.

Thus, f ∈ Ωlog is testable by simply testing whether the derivative of E[y | z, x]

with respect to log(z) is constant.

Identification of Homogeneous Production Function

Under homotheticity assumption, the production function takes the following form

yit = vkit + f̃
(
L̃ith̄(M̃it)

)
+ ωHit + εit.
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Substituting an unknown function of control variables for ωHit gives

yit = vkit + f
(
L̃ith̄(M̃it)

)
+ g
(
Wit−1, u

1
it, u

2
it)
)

+ εit, E[εit | kit,Mit, M̃it,Wit−1] = 0.

Under homothetic model the control variables are u1
it = M̃it and u2

it = FMit|Kit,Wit−1,u1it
(Mit |

Kit,Wit−1, u
1
it). Substituting these, I obtain

yit = vkit + f
(
L̃ith̄(M̃it)

)
+ c2

(
Wit−1, M̃it, s̃(Kit,Mit, M̃it,Wit−1)

)
+ εit,

where s̃(·) equals the CDF given above, α and (f, h̄, g) are unknown parameter

and functions to be estimated. Note that under the modelling assumptions, none

of the random variables in (Kit,Mit, M̃it,Wit−1) are functionally dependent on

others. To see this, note that, the inputs can be expressed as

Mit = s(Kit, c2(Wit−1, M̃it, u
2
it), r̄(M̃it)), Kit = k(Kit−1, c(Wit−1), ηit−1),

Lit = s2

(
Kit, s

−1(Kit,Mit, c1(Wit−1, u
1
it)), c1(Wit−1, u

1
it)
)
,

where ηit−1 is a vector of random variables that affect the firm’s investment decision

besides the productivity shocks, (s, r̄, c1, c2) are functions defined in the main text,

and (k, s2) are capital and labor decision functions of the firm. This implies that

there is variation in an input conditional on all other inputs. By transforming the

arguments of s̃, we can rewrite this equation as:

yit = vkit + f
(
L̃ith̄(M̃it)

)
+ c2

(
Wit−1, M̃it, s(kit, L̃it, M̃it,Wit−1)

)
+ εit,

where s̃(x1, x2, x3, x4) = s(log(x1), x2/(x3x1), x3, x4). To simplify the notation I

relabel (kit, L̃it, M̃it,Wit−1) as (w, z, x, t), relabel h̄ by h, and drop the indices from

the random variables. This gives

y = αw + f
(
zh(x)

)
+ g
(
x, t, s(w, z, x, t)

)
+ ε, E[ε | w, z, x, t] = 0.

By the moment restriction in Equation (5.3), we have

E[y | w, z, x, t] = αw + f
(
zh(x)

)
+ g
(
x, t, s(w, z, x, t)

)
.

Therefore, the data identify E[y | w, z, x, t]. Let Ω denote the set of functions

that satisfy the restrictions imposed on the true parameter and functions, so

(α0, f0, h0, g0) ∈ Ω. Using this, we say that (α, f, h, g) ∈ Ω and (α̃, f̃ , h̃, g̃) ∈ Ω are
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observationally equivalent if and only if

αw + f
(
zh(x)

)
+ g
(
x, t, s(w, z, x, t)

)
= α̃w + f̃

(
zh̃(x)

)
+ g̃
(
x, t, s(w, z, x, t)

)
.

(E.8)

We say that (α0, f0, h0, g0) ∈ Ω are identifiable if no other member of Ω is obser-

vationally equivalent to (α0, f0, h0, g0). The following proposition establishes the

generic identification of (α0, f0, h0, g0).

Proposition E.1. Suppose that (i) Functions (f0, h0, g0) are twice continuously

differentiable and have non-zero derivatives almost everywhere, (ii) The joint dis-

tribution function of (w, z, x, t) is absolutely continuous with positive density ev-

erywhere on its support, (iii) h′0(x) > 0 almost everywhere, (iv)f0 6∈ Ωlog, where

Ωlog is defined in Lemma E.2, and (v) the matrix defined below is full rank almost

everywhere  s2
1(w, z, x, t) s11(w, z, x, t)

s1(w, z, x, t)s2(w, z, x, t) s12(w, z, x, t)

 .
Then g0 is identified up to constant, h0 is identified up to scale and f0 is identified

up to constant and normalization given in Lemma E.2, and α0 is identified.

Proof. I will show that if there exists observationally equivalent (α, f, h, g) and

(α̃, f̃ , h̃, g̃), then they equal each other up to normalization described in the propo-

sition. The proof adopts the notation that ri() denotes the derivative of function

r with respect to its i-th argument and r′ to denote the derivative if function r

takes a single argument. To simplify the exposition, I will treat t as scalar, so the

derivative with respect t should be considered as the derivative with respect to

each element in t.

Taking the derivative of Equation (E.8) with respect to w we obtain

α + g3

(
x, t, s(w, z, x, t)

)
s1(w, z, x, t) = α̃ + g̃3

(
x, t, s(w, z, x, t)

)
s1(w, z, x, t).

Rearranging this equation:

g3

(
x, t, s(w, z, x, t)

)
s1(w, z, x, t)− g̃3

(
x, t, s(w, z, x, t)

)
s1(w, z, x, t) = α̃− α.

(E.9)

As a contradiction suppose α 6= α̃ and define ḡ3 = g3 − g̃3. We have that

ḡ3

(
x, t, s(w, z, x, t)

)
s1(w, z, x, t) = α̃− α. (E.10)
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Taking the derivatives of Equation (E.10) with respect to w and z

ḡ33

(
x, t, s(w, z, x, t)

)
s2

1(w, z, x, t) + ḡ3

(
x, t, s(w, z, x, t)

)
s11(w, z, x, t) = 0.

ḡ33

(
x, t, s(w, z, x, t)

)
s1(w, z, x, t)s2(w, z, x, t) + ḡ3

(
x, t, s(w, z, x, t)

)
s12(w, z, x, t) = 0.

By the full rank assumption in (v) ḡ3 = 0 is the only solution to this system of

equations everywhere in the support. Therefore, we obtain

α = α̃, g3

(
x, t, s(w, z, x, t)

)
− g̃3

(
x, t, s(w, z, x, t)

)
= 0. (E.11)

This shows that α and g3 are identified. Next, taking the derivative of Equation

(E.10) with respect to t gives

g2

(
x, t, s(w, z, x, t)

)
+ g3

(
x, t, s(w, z, x, t)s4(w, z, x, t) =

g̃2

(
x, t, s(w, z, x, t)

)
+ g̃3

(
x, t, s(w, z, x, t)s4(w, z, x, t).

Since I already showed that g3 = g̃3, this gives:

g2

(
x, t, s(w, z, x, t)

)
= g̃2

(
x, t, s(w, z, x, t)

)
. (E.12)

Therefore g2

(
x, t, s(w, z, x, t)

)
is also identified. Taking the derivative of Equation

(E.10) with respect to z to obtain

f ′
(
zh(x)

)
h(x) + g3

(
x, t, s(w, z, x, t)

)
s2(w, z, x, t) =

f̃ ′
(
zh̃(x)

)
h̃(x) + g̃3

(
x, t, s(w, z, x, t)

)
s2(w, z, x, t)

Using g3 = g̃3 obtained in Equation in (E.11) gives

f ′
(
zh(x)

)
h(x) = f̃ ′

(
zh̃(x)

)
h̃(x). (E.13)

Finally, taking the derivative of Equation (E.10) with respect to x, we have

f ′
(
zh(x)

)
h′(x)z + g′1

(
x, t, s(w, z, x, t)

)
= f̃ ′

(
zh̃(x)

)
h̃′(x)z + g̃′1

(
x, t, s(w, z, x, t)

)
.

Rearranging,

z
(
f ′
(
zh(x)

)
h′(x)− f̃ ′

(
zh̃(x)

)
h̃′(x)

)
= g̃1

(
x, t, s(w, z, x, t)

)
− g1

(
x, t, s(w, z, x, t)

)
.

Using Equation (E.13) we can substitute f ′
(
zh(x)

)
h′(x) and, with some algebra

z
(
f̃ ′
(
zh̃(x)

)
h̃(x)(log′(h(x))− log′(h̃(x))

))
= g̃1

(
x, t, s(w, z, x, t)

)
− g1

(
x, t, s(w, z, x, t)

)
.

(E.14)
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Taking the derivative with respect to w, we have

g13

(
x, t, s(w, z, x, t)

)
s1(w, z, x, t) = g̃13

(
x, t, s(w, z, x, t)

)
s1(w, z, x, t).

This implies that g13

(
x, t, s(w, z, x, t)

)
= g̃13

(
x, t, s(w, z, x, t)

)
. Taking the derivative

with respect to t

g12

(
x, t, s(w, z, x, t)

)
+ g13

(
x, t, s(w, z, x, t)

)
s4(w, z, x, t) =

g̃12

(
x, t, s(w, z, x, t)

)
+ g̃13

(
x, t, s(w, z, x, t)

)
s4(w, z, x, t)

Given that g13 = g̃13, we have g12

(
x, t, s(w, z, x, t)

)
= g̃12

(
x, t, s(w, z, x, t)

)
. Now using

these results and the fundamental theorem of calculus, we can define

ḡ1(x) ≡ g1

(
x, t, s(w, z, x, t)

)
− g′1

(
x, t, s(w, z, x, t)

)
(E.15)

Now as a contradiction suppose there exists with X̃ such that Pr(x ∈ X̃ ) > 0,

h(x) 6= h̃(x)/λ. Therefore, Equation (E.14) can be written as

f ′
(
zh̃(x)

)
=

ḡ′1
(
x
)

(log′(h(x))− log′(h̃(x)
)
h̃(x)z

.

The rest of the proof is an application of Lemma E.2 (see Equation E.4). Therefore,

we obtain the desired result

f(x) = f̃(λx) + a, h(x) = h̃(x)/λ, g(x) = g̃(x)− a, α = α̃.

Identification for Weak Homothetic Production Function

Under weak homothetic separability assumption, the function function takes the

following form:

yit = f
(
Kit, Lith̄(M̃it)

)
+ ωHit + εit. (E.16)

Substituting an unknown function of control variables for ωHit we obtain:

yit = f
(
Kit, Lith̄(M̃it)

)
+ c2

(
Wit−1, u

1
it, u

2
it)
)

+ εit, E[εit | kit,Mit, M̃it,Wit−1, u
1
it, u

2
it] = 0.

Under the weak homothetic separable model the control variables are u1
it = M̃it

and u2
it = FMit|Kit,Wit−1,u1it

(Mit | Kit,Wit−1, u
1
it). Substituting these into Equation

(E.16) gives:

yit = f
(
Kit, Lith̄(M̃it)

)
+ g
(
M̃it,Wit−1, s̃(Kit,Mit, M̃it,Wit−1)

)
+ εit,

where s̃(·) equals the CDF given above, (f, h̄, g) are unknown functions to be
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estimated. By transforming the arguments of s̃, we can rewrite this equation as

yit = f
(
Kit, Lith̄(M̃it)

)
+ g
(
M̃it,Wit−1, s(Kit, Lit, M̃it,Wit−1)

)
+ εit,

where s̃(x1, x2, x3, x4) = s(x1, x2/x3, x3, x4). To simplify the notation, I relabel

(Kit, Lit, M̃it,Wit−1) as (w, z, x, t), h̄ as h, and drop indices from the random vari-

ables to obtain

y = f
(
w, zh(x)

)
+ g
(
x, t, s(w, z, x, t)

)
+ ε, E[ε | w, z, x, t] = 0.

By the moment restriction in Equation (5.3), we have

E[y | w, z, x, t] = f
(
w, zh(x)

)
+ g
(
x, t, s(w, z, x, t)

)
.

From data, we can identify E[y | w, z, x, t]. Let Ω denote the set of functions that

satisfy the restrictions imposed on the functions, so (f0, h0, g0) ∈ Ω. Using this we

say (f, h, g) ∈ Ω and (f̃ , h̃, g̃) ∈ Ω are observationally equivalent if and only if

f
(
w, zh(x)

)
+ g
(
x, t, s(w, z, x, t)

)
= f̃

(
w, zh̃(x)

)
+ g̃
(
x, t, s(w, z, x, t)

)
. (E.17)

(f0, h0, g0) ∈ Ω are identifiable if no other member of Ω is observationally equiva-

lent to (f0, h0, g0).

Proposition E.2. Suppose that (i) Functions (f0, h0, g0, s) are twice continuously

differentiable and have non-zero derivatives almost everywhere, (ii) The joint dis-

tribution function of (w, z, x, t) is absolutely continuous with positive density every-

where on its support, (iii) h′0(x) > 0 almost everywhere. (iv) E[s1(w, z, x, t)/s2(w, z, x, t) |
w, z, x] > 0. (v) E[q2 | x, s, t] > 0 for all (x, s, t) where q is defined as q :=

s2(w, z, x, t) log′
(
h0(x)

)
z−s3(w, z, x, t). (vi) E[f1(w, zh(x))2 | w, z] > 0 or E[(f2(w, zh(x))h(x))2 |

w, z] > 0 . Then g0 is identified up to constant, h0 is identified up to scale and f0

is identified up to constant and normalization given in the proof.

Proof. I will show that if there exists observationally equivalent (f, h, g) and

(f̃ , h̃, g̃), then they equal each other up to normalization given in the proposi-

tion. Denote E[y | w, x, z, t] by y(w, z, x, t). Taking the derivative of y(w, z, x, t)
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with respect to (w, z, x, t) we have

y1(w, z, x, t) = f1
(
w, zh(x)

)
+ g2

(
x, s(w, z, x, t), t

)
s1(w, z, x, t), (E.18)

y2(w, z, x, t) = f2
(
w, zh(x)

)
h(x) + g2

(
x, s(w, z, x, t), t

)
s2(w, z, x, t), (E.19)

y3(w, z, x, t) = f2
(
w, zh(x)

)
h′(x)z + g2

(
x, s(w, z, x, t), t

)
s3(w, z, x, t) + g1

(
x, s(w, z, x, t), t

)
(E.20)

y4(w, z, x, t) = g2
(
x, s(w, z, x, t), t

)
s4(w, z, x, t) + g3

(
x, s(w, z, x, t), t

)
(E.21)

Multiplying Equation (E.19) by s1(w, z, x, t)/s2(w, z, x, t) and subtracting Equation

(E.18) yields

y2(w, z, x, t)
s1(w, z, x, t)

s2(w, z, x, t)
− y1(w, z, x, t) = f2

(
w, zh(x)

)
h(x)

s1(w, z, x, t)

s2(w, z, x, t)
− f1

(
w, zh(x)

)
The left-hand side of this equation is written in terms of identified functions. Now,

denote f̃1(w, z, x) := f1
(
w, zh(x)

)
and f̃2(w, z, x) := f2

(
w, zh(x)

)
h(x) and denote the

left-hand side by ỹ(w, z, x, t). This gives

ỹ(w, z, x, t) = f̃1(w, z, x)− f̃2(w, z, x)s̃(w, z, x, t)

By Assumption (iv) there is variation in s̃ conditional on (w, z, x). This implies

that f̃1(w, z, x) and f̃2(w, z, x) are identified from this equation. Using assumption

(iv) and by applying Lemma E.1 h(x) is identified up to a scale from f̃1(w, z, x).

Next, multiplying Equation (E.19) by log′ (h(x)
)
z and subtracting Equation (E.20)

we obtain

y2(w, z, x, t) log′ (h(x)
)
z − y3(w, z, x, t) =

g2
(
x, s(w, z, x, t), t)

(
s2(w, z, x, t) log′ (h(x)

)
z − s3(w, z, x, t)

)
− g1

(
x, s(w, z, x, t), t

)
.

(E.22)

The left-hand side of this equation is identified because we already showed that

log′ (h(x)
)
is identified and y2 and y3 are identified functions. By assumption (v),

conditional on (x, s, t) there is variation in
(
s2(w, z, x, t) log′ (h̃(x)

)
z − s3(w, z, x, t)

)
.

Therefore, g2
(
x, s(w, z, x, t), t

)
and g1

(
x, s(w, z, x, t), t

)
can be identified from Equa-

tion (E.22). Using this g3
(
x, s(w, z, x, t), t

)
is identified from Equation (E.21),

f1
(
w, zh(x)

)
is identified from Equation (E.18) and f2

(
w, zh(x)

)
is identified from

Equation (E.20). Therefore, we obtain

f(w, zh(x)) = f̃(w, λzh(x)) + a, h(x) = h̃(x)/λ, g
(
x, s, t

)
= g̃

(
x, s, t

)
− a.
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Table F.0: List of Products

Product Category Unit Obs Products Included (Code)
2000-09 (ASICC) 2010-14 (NPCMS)

Brick Tiles Tonnes 7500 29101 3732001
29102 3732007

Black Tea Kilograms 6902

12211 2391301
12212 2391302
12213 2391303
12214 2391308
12215

Rice, Parboiled
Non-Basmati Tonnes 6547 12311 2316107

2316202

Biri Cigarettes Number of Cig. 5735 15323 2509001

Rice, Raw
Non-Basmati Tonnes 5057 12312 2316108

2316203

Shirts, Cotton Number of Shirts 3515

63428 2822203
63428 2822299

2822406
2822408
2823499

Notes: This table presents the list of products that were used to estimate the quantity-based
production function. The second column shows the unit of measurement and the third column
shows the number of firm-year observations for each product. The final two columns list the
product codes that are included in each product category. The name of the products for each
code can be found here.

F Robustness Checks

F.1 Estimation with Quantity

In this section, I estimate production functions using data from six Indian homoge-

neous products for which I have the quantity produced and price of the good. The

products include Brick Tiles, Cotton Shirts, Biri Cigarettes, Black Tea, Parboiled

Non-Basmati Rice, and Raw Non-Basmati Rice. These products are relatively

homogeneous products that are produced by a large number of firms in India.
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Table F.0 lists the products, their units, and the product codes included in these

product classifications during two different periods. These products are selected

based on two different product classifications, ASICC and NPCMS, because the

National Statistical Office of India revised their product characteristics in 2011. 1

The second column displays the unit of output recorded in each product, and the

third column shows the number of firm-year observations for each product.

When forming the sample, I include the plants that earn at least 75% of their

revenues from one of these products. This mitigates the issue of allocating in-

puts across products for multi-product firms because I focus mostly on the single-

product firms. Following Raval (2020), I define the price of a product as the gross

value minus any reported expenses (excise duty, sales tax, and other expenses)

divided by the quantity sold. I then drop outlier plants whose price is greater

than five times, or less than 20%, of the median price for a given product in a

given year. Since the number of observations per industry is smaller than the

main sample, I use a five-year rolling-window estimation instead of three for this

estimation.

I estimate product-level quantity production functions for these products. The

main difference between this estimation and the one presented in the paper is that,

I control for input prices in the estimation because input prices are heterogeneous.

See Section B.1 for the details of the estimation procedure. The rest of the esti-

mation procedure follows Section A.7.

Figures F.1 and F.2 present the estimates of markup level and change from this

production function estimation. Focusing on Figure F.1, we see the same pattern

that we identified from other datasets: Hicks-neutral production functions esti-

mate the highest markups, and as we go from Cobb-Douglas to non-parametric

labor-augmenting productivity, the markup estimates decline. In Figure F.1, we

observe that the factor-augmenting production function suggests lower markup es-

timates from 2000 to 2014. Overall, these findings suggest that observing revenues

rather than quantities does not explain my main results.

1The product codes after 2010 can be found here. The crosswalk between the two product
categories can be found here.
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Figure F.1: Estimates from Quantity Production Function
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Notes: Estimates of aggregate markups from quantity production func-
tion in six Indian industries from 2000-2014.

Figure F.2: Estimates from Quantity Production Function (Change in Markup)
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Notes: Estimates of the change in aggregate markups from quantity
production function in six Indian industries from 2000-2014.
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G Additional Figures

Figure G.3: Elasticity Comparison
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(a) Materials Elasticity
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(b) Returns to Scale

Note: Comparison of sales-weighted average elasticities produced by Cobb-Douglas (CD), (ii)
Translog (TR), (iii) CES with labor-augmenting productivity (CES-FA), and (iv) nonparametric
production function with factor-augmenting productivity (FA). The difference between the two
averages is shown by the black bar. For each year and industry, sales-weighted averages are
calculated, and then simple averages are taken over years. The error bars indicate 95% confidence
intervals calculated using bootstrap (100 iterations).

Figure G.4: Difference of Markup Estimates from FA and Other Models
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Notes: Each bar shows the difference between the markups estimates from indicated method
and FA. The red bars report corresponding 95 percent confidence intervals. Standard errors
are calculated using bootstrap (100 iterations)
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Figure G.5: Difference of Elasticity Estimates from FA and Other Models
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Figure G.6: Confidence Bands for Difference between Markup Estimates
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Notes: This figure shows the evolution of the aggregate markups estimated from my method and
Cobb-Douglas on left panel and 10-90th percentile of the bootstrap distribution (100 iterations)
for the difference between the two estimates..
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A Descriptive Statistics

Table A.0: Descriptive Statistics - Chile

Share (Sales) Number of Plants

ISIC Industry 1979 1988 1996 1979 1988 1996

311 Leather Tanning and Finishing 0.17 0.19 0.20 1245 1092 983
381 Metal Products 0.04 0.04 0.04 383 301 353
321 Textiles 0.05 0.04 0.02 418 312 257
331 Repair Of Fabricated Metal Products 0.03 0.02 0.03 353 252 280
322 Apparel 0.02 0.02 0.01 356 263 216

Other Industries 0.69 0.69 0.69 2399 1957 1873

Note: Descriptive Statistics for Chile. Column 3-5 shows each industry share as a percentage of sales in the
entire manufacturing industry for the first and last year, and at the midpoint of the sample. Column 6-8 reports
the number of active plants. The last row provides information about the industries that are not included in the
sample.

Table A.1: Descriptive Statistics - Colombia

Share (Sales) Number of Plants

ISIC Industry 1978 1985 1991 1978 1985 1991

311 Leather Tanning and Finishing 0.21 0.21 0.20 971 840 976
322 Apparel 0.03 0.03 0.03 666 862 842
381 Metal Products 0.04 0.04 0.03 593 478 534
321 Textiles 0.11 0.09 0.08 467 398 428
342 Cutlery, Hand Tools, and General Hardware 0.02 0.03 0.02 325 315 342
382 Laboratory Instruments 0.02 0.02 0.02 285 266 307
352 Farm and Garden Machinery and Equipment 0.06 0.07 0.09 287 257 305
369 Miscellaneous Electrical Machinery 0.03 0.04 0.03 299 257 267
356 General Industrial Machinery 0.02 0.03 0.04 197 252 341

Other Industries 0.45 0.45 0.46 3893 3673 4001

Note: Descriptive Statistics for Colombia. Column 3-5 shows each industry share as a percentage of sales in the
entire manufacturing industry for the first and last year, and at the midpoint of the sample. Column 6-8 reports
the number of active plants. The last row provides information about the industries that are not included in the
sample.
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Table A.2: Descriptive Statistics - India

Share (Sales) Number of Plants

NIC Industry 1998 2007 2014 1998 2007 2014

230 Other non-metallic mineral products 0.09 0.05 0.08 596 1056 1386
265 Measuring and testing, equipment 0.01 0.02 0.02 272 877 750
213 Pharmaceuticals, medicinal chemical 0.01 0.01 0.01 186 479 670
304 Military fighting vehicles 0.04 0.03 0.07 118 383 704
206 Sugar 0.06 0.04 0.04 271 363 431

Other Industries 0.79 0.86 0.78 1172 2795 3510

Note: Descriptive Statistics for India. Column 3-5 shows each industry share as a percentage of sales in the entire
manufacturing industry for the first and last year, and at the midpoint of the sample. Column 6-8 reports the
number of active plants. The last row provides information about the industries that are not included in the
sample.

Table A.3: Descriptive Statistics - US

Share (Sales) Number of Firms

NAICS Industry 1961 1987 2014 1961 1987 2014

33 Manufacturing I 0.39 0.37 0.60 113 1092 752
32 Manufacturing II 0.51 0.53 0.25 84 392 222
31 Manufacturing III 0.10 0.10 0.15 36 138 104

Note: Descriptive Statistics for US. Column 3-5 shows each industry share as a percentage of sales in the entire
manufacturing industry for the first and last year, and at the midpoint of the sample. Column 6-8 reports the
number of active plants.

Table A.5: Descriptive Statistics - Turkey

Share (Sales) Number of Plants

ISIC Industry 1983 1991 2000 1983 1991 2000

321 Textiles 0.16 0.13 0.16 1017 945 1803
311 Food 0.12 0.12 0.11 1261 1120 1061
322 Apparel 0.02 0.05 0.04 300 831 800
381 Metal Products 0.04 0.04 0.04 650 542 834
382 Machinery 0.05 0.06 0.04 532 482 683
383 Electrical-Electronic Machinery 0.04 0.03 0.04 413 523 639
356 Plastic Products 0.08 0.07 0.07 309 312 402
352 Pharmaceuticals 0.08 0.09 0.12 331 286 428
371 Motor Vehicles and Motor Vehicle Equipment 0.02 0.02 0.03 287 261 383
312 Beverage and Tobacco Product Manufacturing 0.05 0.06 0.07 263 218 250

Other Industries 0.33 0.34 0.29 5100 5302 7033

Note: Descriptive Statistics for Turkey. Column 3-5 shows each industry share as a percentage of sales in the
entire manufacturing industry for the first and last year, and at the midpoint of the sample. Column 6-8 reports
the number of active plants. The last row provides information about the industries that are not included in the
sample.
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B Output Elasticities

Table C.6 presents the sales-weighted average elasticities for the three largest industries in
each country from three methods: (i) my approach (labeled “FA”), (ii) Cobb-Douglas es-
timated with Blundell and Bond (2000) and (iii) Cobb-Douglas estimated with OLS. My
model generates output elasticities that are precisely estimated and reasonable: they are
broadly in line with previous results, capital elasticities are positive, and returns to scales
are around one. Materials have the highest elasticity, ranging from 0.50-0.67, across indus-
try/county. The average labor and capital elasticities range from 0.22–0.52 and 0.04–0.16,
respectively. The returns to scale estimates, measured by the sum of the elasticities, range
from 0.93–1.1, indicating that firms, on average, operate close to constant returns to scale.

C Robustness Checks

This section considers four robustness checks. I look at how (i) measurement error in capital
and (ii) correction for capacity utilization.

C.1 Measurement Error in Capital

I analyze how measurement error in capital input affects my empirical estimates using a
simulation study. In particular, I assume that the observed data are generated from the
‘true’ data generating process, and then to understand the impact of measurement error, I
add independently distributed error to capital input. The error is drawn from a mean-zero
normal distribution whose standard deviation equals one-tenth of the standard deviation of
capital in the data. I simulate 100 datasets with measurement errors in capital, estimate
output elasticities and markups using these dataset and report the average over 100 estimates.

Figure C.6 reports the original estimates together with the average of 100 estimates
obtained from simulated data. As expected, measurement error in capital reduces the output
elasticity of capital and increases the output elasticity of labor in most simulations. This
observation suggests that the higher estimates of capital elasticity obtained using my model
and reported in Subsection 6.1 cannot be explained by potential measurement error in capital.

C.2 Capital Utilization

This section analyzes the effects of capacity utilization of capital on my estimates. For this
I use firms’ energy consumption under the assumption that capital energy takes a Leontief
form in the production function. Under this assumption, one can recover the true amount
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Figure C.6: Comparison of Estimates with and without Measurement Error
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Notes: This figure presents results from a simulation exercise to understand the
potential effects of measurement errors in the estimates. The white bars show
elasticity estimates when the data is treated as the ‘true’ model. The grey bar is
an average of 100 elasticity estimates that are obtained from datasets with added
error to capital.
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Table C.6: Sales-Weighted Average Output Elasticities for Three Largest Industries

Industry 1 Industry 2 Industry 3
CD TR FA CD TR FA CD TR FA

Chile (311, 381, 321)

Capital 0.04 0.08 0.09 0.1 0.07 0.09 0.11 0.04 0.12
(0.00) (0.01) (0.01) (0.01) (0.02) (0.03) (0.01) (0.03) (0.03)

Labor 0.14 0.09 0.1 0.23 0.25 0.18 0.32 0.25 0.19
(0.01) (0.01) (0.00) (0.02) (0.03) (0.01) (0.02) (0.03) (0.01)

Materials 0.86 0.88 0.79 0.72 0.72 0.65 0.7 0.75 0.69
(0.01) (0.01) (0.02) (0.02) (0.03) (0.04) (0.01) (0.03) (0.04)

Rts 1.04 1.05 0.98 1.04 1.03 0.93 1.13 1.03 1
(0.01) (0.01) (0.02) (0.01) (0.02) (0.06) (0.02) (0.02) (0.05)

Colombia (311, 322, 381)

Capital 0.06 0.1 0.13 0.13 0.1 0.12 0.08 0.3 0.19
(0.01) (0.01) (0.02) (0.02) (0.01) (0.02) (0.02) (0.03) (0.03)

Labor 0.18 0.14 0.11 0.47 0.3 0.3 0.34 0.3 0.25
(0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01)

Materials 0.79 0.81 0.78 0.56 0.72 0.63 0.54 0.52 0.56
(0.01) (0.01) (0.02) (0.02) (0.01) (0.02) (0.03) (0.03) (0.04)

Rts 1.03 1.05 1.01 1.16 1.12 1.05 0.96 1.12 1
(0.01) (0.01) (0.03) (0.01) (0.01) (0.02) (0.02) (0.02) (0.05)

India (230, 265, 213)

Capital 0.09 0.07 0.04 0.06 0.06 0.07 0.07 0.05 0.09
(0.02) (0.01) (0.00) (0.00) (0.00) (0.01) (0.01) (0.02) (0.01)

Labor 0.34 0.01 0.06 0.09 0.04 0.08 0.36 0.14 0.18
(0.02) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01) (0.02) (0.00)

Materials 0.57 0.93 0.82 0.85 0.91 0.82 0.57 0.79 0.67
(0.02) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01)

Rts 1 1.01 0.93 1 1.01 0.96 1 0.99 0.94
(0.02) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)

Turkey (321, 311, 322)

Capital 0.03 0.05 0.08 0.05 0.06 0.14 0.04 0.03 0.07
(0.00) (0.01) (0.02) (0.00) (0.01) (0.02) (0.01) (0.01) (0.02)

Labor 0.16 0.15 0.08 0.22 0.2 0.14 0.27 0.18 0.11
(0.00) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00)

Materials 0.83 0.86 0.83 0.81 0.81 0.7 0.71 0.86 0.86
(0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.02)

Rts 1.02 1.06 0.99 1.09 1.07 0.98 1.02 1.06 1.05
(0.01) (0.01) (0.03) (0.01) (0.01) (0.03) (0.01) (0.01) (0.03)

US (33, 32, 31)

Capital 0.3 0.47 0.29 0.24 0.19 0.22 0.21 0.27 0.24
(0.03) (0.05) (0.05) (0.02) (0.03) (0.04) (0.01) (0.02) (0.02)

Labor 0.47 0.25 0.21 0.47 0.32 0.21 0.52 0.32 0.28
(0.04) (0.06) (0.01) (0.04) (0.04) (0.01) (0.02) (0.03) (0.01)

Materials 0.25 0.32 0.56 0.31 0.5 0.61 0.27 0.39 0.58
(0.04) (0.05) (0.03) (0.05) (0.04) (0.03) (0.02) (0.02) (0.01)

Rts 1.02 1.05 1.05 1.01 1.02 1.04 1.01 0.98 1.09
(0.02) (0.03) (0.05) (0.01) (0.02) (0.04) (0.00) (0.01) (0.02)

Note: Comparison of sales-weighted average output elasticities produced by different methods. FA refers to
my estimates, BB refers to Blundell and Bond (2000) estimates and OLS is Cobb-Douglas estimated by OLS.
For each year and industry, sales-weighted averages are calculated, and then simple averages are taken over
years. Numbers in each panel correspond to the SIC codes of the three largest industries in each country.
Bootstrapped standard errors in parentheses (100 iterations).



of capital used by the firm using energy consumption as capital input and energy should be
proportional. I observe firms’ energy consumption only in two datasets, Chile and Turkey,
so I consider this robustness exercise only using dataset from those countries. For capacity
utilization corrected estimates, I first recover the true capital used by the firm and then
estimate output elasticities and markups.

Figure C.7 reports the original estimates together with the estimates obtained with capac-
ity utilization corrected capital. The results suggest that correcting for capacity utilization
affect only capital elasticities, and for other elasticities and markups, the estimates remain
the same with negligible differences. For the output elasticity of capital, correcting for ca-
pacity utilization changes the estimates in different directions in Chile and Turkey.

D Additional Analyses and Figures

D.1 Variance Decomposition of the Aggregate Markups

I decompose the time series variance of the aggregate log-markup into the variance of (1)+(2)
and variance of (3)+(4) in the decomposition exercise presented in Subsection 7.2, ignoring
the covariance between the two. Figure D.8 presents the results from this decomposition
for both production functions. Focusing on the Cobb-Douglas model, we see that a large
fraction of the variance is explained by the change in revenue shares. The result is particularly
striking for the US, where the contribution of the change in output elasticity is only 1%. The
decomposition from labor-augmenting productivity reveals a different picture. The change
in the elasticity explains a significant fraction of the change in markups in all countries.
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Figure D.8: Variance Decomposition of the Change in Markups
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Notes: This figure shows the results by decomposing the annual aggregate log markups time series
into the components obtained from elasticities (gray) and revenue shares (black). The covariance
between the two components are subtracted from the total variance so that the two components
sum to 100.
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Figure D.9: Decomposition of Markup: Elasticity vs Share
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Figure C.7: Comparison of Estimates with and without Capacity Utilization Correction
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Notes: This figure compares the original estimates with the ones obtained after capacity
utilization correction in capital input. See section C.2 for the details.
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