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Abstract

I develop a new method for estimating production functions with labor-
augmenting technology and apply it to markup estimation. The method
imposes limited parametric restrictions and generalizes prior approaches
that rely on the CES production function. I first extend the canonical
Olley-Pakes framework assumptions to multidimensional productivity
and then develop an identification strategy based on a control variable
approach and first-order conditions. I use this method to estimate output
elasticities and markups in manufacturing industries in the US and four
developing countries. I find that neglecting labor-augmenting productivity
overestimates capital elasticity, underestimates variable input elasticity,
and overestimates markups in all countries.
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1 Introduction

Production functions play a central role in many areas of economics, including

research on firm productivity, input misallocation, and market power (Syverson

2011; Hsieh and Klenow 2009; De Loecker et al. 2020). Studying these topics

typically involves specifying a production function model and estimating it using

firm-level data. However, misspecified production functions can produce biased

estimates, which in turn lead to incorrect conclusions about various economic

questions. For example, biased capital elasticities might falsely suggest misalloca-

tion in an economy with efficient allocation (Haltiwanger et al. 2018), and biased

flexible input elasticities might generate incorrect markup estimates (Raval 2023).

Much of the empirical literature relies on factor-neutral productivity and para-

metric functional forms to estimate production functions (De Loecker and Syver-

son 2021). These assumptions impose theoretical restrictions that may not ade-

quately capture heterogeneity in firms’ production technologies. For instance, un-

der factor-neutral technology, productivity shocks do not generate any unobserved

heterogeneity in output elasticities. Similarly, the widely used Cobb-Douglas spec-

ification imposes a unitary elasticity of substitution among all input pairs.

In this paper, I develop a method to estimate gross production functions with

factor-augmenting productivity, and I examine its implications empirically. The

production function specification has two main features. First, it incorporates

labor-augmenting productivity in addition to the standard Hicks-neutral produc-

tivity. Second, it requires a minimal functional form assumption known as ho-

mothetic separability. Together, these features provide a flexible framework that

aims to capture heterogeneity in production technologies across firms.

To study factor-augmenting production functions, I make both methodological

and empirical contributions. Methodologically, I extend the canonical production

function estimation assumptions from Olley and Pakes (1996) to accommodate a

model with multidimensional productivity, and analyze this model’s identification

building on the existing literature (Doraszelski and Jaumandreu 2018; Raval 2019).

Empirically, I find that neglecting labor-augmenting productivity introduces biases

in output elasticities and markups across several datasets.

The paper establishes three main results in developing its identification strat-
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egy. First, I show that, under cost minimization, labor-augmenting productivity

can be expressed as a function of inputs by inverting firms’ flexible input demand

functions. This result extends the approach of Doraszelski and Jaumandreu (2018)

to a nonparametric framework and enables controlling for labor-augmenting pro-

ductivity. The key assumption underlying this result is homothetic separability, a

condition that accommodates many of the commonly used parametric production

functions (Shephard 1953; Clemhout 1968). Importantly, it is an economic rather

than a statistical restriction with clear implications for firm behavior.

Second, I develop a control variable approach for two-dimensional productiv-

ity, building on Imbens and Newey (2009). This approach exploits the timing as-

sumption for capital input and the Markov property of productivity shocks, both

of which are standard assumptions in the production function literature (Acker-

berg et al. 2015; Ackerberg et al. 2023). To implement the Imbens and Newey

(2009) approach, I show that under the modeling assumptions, the input demand

functions exhibit a triangular structure with respect to productivity shocks. This

structure overcomes the invertibility problems typically encountered in models

with multidimensional unobserved heterogeneity (Kasy 2011).

The third result provides an identification strategy for output elasticities. After

developing my control variable approach, I investigate which aspects of the pro-

duction function can be identified using input and output data. I first establish

that only the sum of the flexible input elasticities—rather than labor and mate-

rials elasticities separately—can be identified from variation in inputs and output

due to a functional dependence problem. To separately identify these elasticities,

I leverage the first-order conditions (FOCs) of firms’ cost minimization problem,

which imply that the ratio of the elasticities of two flexible inputs equals the ratio

of their revenue shares. Therefore, incorporating data on revenue shares of labor

and materials enables separate identification of the individual elasticities.

A notable advantage of using FOCs to identify the ratio of output elasticities

is that the resulting markup estimates from two different flexible inputs are identi-

cal. This feature addresses recent evidence that different flexible inputs often yield

conflicting markup estimates in Hicks-neutral production functions (Doraszelski

and Jaumandreu 2019; Raval 2023). I show that incorporating labor-augmenting

productivity into the production function provides a solution to this discrepancy.
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Models with only Hicks-neutral productivity may lack the flexibility needed to cap-

ture variation in input ratios across firms, leading to conflicting markup estimates

from different inputs. Labor-augmenting productivity introduces an additional di-

mension of unobserved heterogeneity and makes the model internally consistent.

In my empirical applications, I apply the proposed method to estimate out-

put elasticities in manufacturing industries using Compustat data for the US and

plant-level data for Chile, Colombia, India, and Turkey. I compare the estimates

against three alternative production functions with varying levels of flexibility in

terms of functional form and unobserved heterogeneity: (i) Cobb-Douglas, (ii)

Translog with only Hicks-neutral productivity, and (iii) CES with both Hicks-

neutral and labor-augmenting productivity. The results suggest that the Cobb-

Douglas model underestimates capital elasticity by 25.8% and overestimates flexi-

ble input elasticity by 11.1% on average. Although CES and translog specifications

reduce these biases, neither fully eliminates them, highlighting the importance of

both relaxing parametric restrictions and incorporating unobserved heterogeneity.

Output elasticities often serve as key inputs for measuring various economic

outcomes. A prominent example is the production approach to markup estimation,

which has gained popularity in recent years (De Loecker and Warzynski 2012; De

Loecker et al. 2020). In this approach, markup is given by the output elasticity of a

flexible input divided by that input’s revenue share. Having documented biases in

elasticity estimates, I analyze how these biases propagate into markup estimates.

I find that the Cobb-Douglas model systematically overestimates aggregate

markups by 6.3 to 13.4 percentage points (pp) across countries compared to the ho-

mothetic labor-augmenting production function. This difference persists, though

smaller in magnitude, with more flexible specifications than Cobb-Douglas, such

as the Hicks-neutral translog or labor-augmenting CES production functions. A

decomposition analysis suggests two key drivers behind these results: (i) the Cobb-

Douglas model overestimates the average level of flexible input elasticity in the

economy, and (ii) it fails to capture the inverse relationship between firm size and

flexible input elasticity, thereby leading to higher markup biases for larger firms.

Next, I examine how estimating a labor-augmenting production function affects

changes in markups by analyzing markup trends in US manufacturing. The results

suggest that the aggregate markup increased by 11.7 pp—from 1.26 in the 1960s to

3



1.38 in the 2010s—as opposed to the 25.2 pp increase implied by the Cobb-Douglas

specification. This result arises because the Cobb-Douglas model suggests min-

imal changes in production technology over time, whereas the labor-augmenting

production function indicates larger changes in flexible input elasticities.

Although this paper introduces unobserved heterogeneity in production func-

tions, several limitations remain. First, the model does not allow for unobserved

demand shocks, as they increase the dimensionality of unobserved heterogeneity

and violate the invertibility of input demand (Ackerberg and De Loecker 2024).

Despite this limitation, I show that the model is consistent with a broad range

of demand systems that follow an aggregative game structure (Nocke and Schutz

2018). Second, the paper does not address other key challenges in production

function estimation, such as multi-output firms, unobservability of input prices,

and distortions in input markets (De Loecker and Syverson 2021). Third, as Bond

et al. (2021) note, markup estimation requires data on physical output rather than

revenues, which are available only in one of my datasets. Nevertheless, by leverag-

ing the limited data on quantities and input prices as well as simulation exercises,

I provide empirical evidence suggesting that these concerns are unlikely to drive

the main patterns I observe when comparing production function models.

Contribution to the Literature. This paper extends the literature on pro-

duction function estimation with proxy variables by integrating factor-augmenting

productivity into the production function (Olley and Pakes 1996; Levinsohn and

Petrin 2003; Ackerberg et al. 2015; Gandhi et al. 2020). My approach builds on

these studies, but differs from them by using the FOCs of cost minimization and

employing the control variable method of Imbens and Newey (2009).1 The main

distinction in my use of FOCs compared to Gandhi et al. (2020) is that I require

two flexible inputs rather than one. Additionally, this paper relates closely to

Ackerberg et al. (2023) and Pan (2024), who apply the control variable approach

to production functions with a single but fully non-separable productivity shock.

Three recent papers have studied factor-augmenting technology and its impli-

cations (Doraszelski and Jaumandreu 2018; Raval 2019; Zhang 2019). Common
1The proxy and control variable approaches are sometimes used interchangeably in the literature.
In this paper, the proxy variable approach refers to the method of Ackerberg et al. (2015), while
the control variable approach refers to the Imbens and Newey (2009) approach.
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features of these papers are the CES production function and firm-level variation

in input prices. They exploit parameter restrictions between the production and

input demand functions, inverting the latter to recover factor-augmenting pro-

ductivity. I contribute to this literature by relaxing the CES assumption and

analyzing identification with or without input price variation.2

This paper also relates to the growing literature that studies the properties of

the production approach to markup estimation. Raval (2023) finds that different

flexible inputs produce conflicting markup patterns and suggests labor-augmenting

productivity as a potential solution. Using US Census data, Foster et al. (2024)

find evidence that production function estimation at a more granular level leads

to smaller increases in markups over time. Doraszelski and Jaumandreu (2023)

emphasize the importance of controlling for demand in production function esti-

mation. Finally, Bond et al. (2021) show that revenue data alone does not identify

markups, while De Ridder et al. (2025) argue that such data can inform markup

dispersion under certain assumptions. I contribute to this literature by analyzing

how allowing for labor-augmenting technology affects markup estimation.

2 Production Function Model

This section introduces a production function model and provides its assumptions.

2.1 Production Function with Labor-Augmenting Technology

Firm i produces output at time t using three inputs—capital, Kit; labor, Lit; and

materials, Mit—according to the following production function:

Yit = Ft(Kit, ω
L
itLit,Mit) exp(ωHit ) exp(εit), (2.1)

where Yit denotes the output produced by the firm. The production function

is industry-specific and time-varying, meaning that firms in the same industry

share a common functional form that can change over time. The production func-

tion includes two unobserved productivity terms: labor-augmenting productivity,

ωLit ∈ R+, which increases the effective unit of labor input, and Hicks-neutral

productivity, ωHit ∈ R, which raises the output level for any input composition.

Finally, εit ∈ R is a random shock to output.
2Another strand of literature uses a random coefficient model to introduce firm-level unobserved
heterogeneity in output elasticities (Li and Sasaki 2017; Balat et al. 2022; Kasahara et al. 2023).
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I assume that labor and materials are flexible inputs, meaning that the firm

chooses them each period after observing its productivity shocks, and their levels

do not affect future production.3 Capital, in contrast, is a predetermined input,

chosen one period ahead of production. Each period, the firm chooses its flexible

inputs to minimize production costs for a profit-maximizing target output, given

its information set Iit. The information set includes productivity, capital stock,

and other relevant variables observed by the firm. The shock εit is independent of

the information set and can be interpreted as an ex-post productivity shock.

I assume that firms are price-takers in the input market.4 In the output mar-

ket, the model allows for imperfect competition but imposes certain restrictions

on product market competition to reduce the dimensionality of unobserved het-

erogeneity, as discussed later in this section. The baseline model assumes uniform

input prices across firms for labor and materials (plt, p
m
t ), while Online Appendix

A extends the model to include heterogeneous input prices.

One limitation of the model is that it incorporates factor-augmenting pro-

ductivity only for labor, implying that there are no capital- or materials-specific

productivity terms in the production function. More broadly, the results in this

paper accommodate factor-augmenting productivity for only one flexible input. I

focus on labor-augmenting productivity because its variation can capture cross-

firm differences in labor productivity due to various factors, such as differences

in firms’ management practices (Bloom and Van Reenen 2010) and human cap-

ital (Dunne et al. 1997). Since these factors are often unobserved in production

datasets, it is natural to model them as unobserved heterogeneity.

Labor-augmenting productivity relaxes certain restrictions on firms’ produc-

tion technology imposed by Hicks-neutral production functions. For example, in

the case of the Cobb-Douglas form, revenue shares of flexible inputs must be uni-

form across firms (Jorgenson 1986). Even more flexible functional forms (e.g., the
3The flexible labor input assumption may be strong due to potential adjustment costs. Whether
labor is a flexible input depends on its measurement (e.g., hours worked vs. employees), specific
industry, and country, so the plausibility of this assumption depends on the specific setting. In
my empirical application to manufacturing, where the workforce mainly consists of production
workers, this assumption is more plausible than in industries dominated by white-collar workers.

4As observed by Rubens et al. (2025), this assumption is critical because otherwise, firm-
level markdowns introduce additional unobserved heterogeneity, making identification of factor-
augmenting productivity challenging.
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Hicks-neutral translog) can be restrictive as they do not allow for unobserved vari-

ation in output elasticities. Accounting for this variation is important because the

literature has shown large heterogeneity across firms and a decline over time in la-

bor share in many economies. These trends are linked to within-industry changes

(Autor et al. 2020; Kehrig and Vincent 2021), and heterogeneity in production

technology is proposed as a mechanism (Oberfield and Raval 2021).

2.2 Assumptions

This section presents assumptions and discusses their implications. The first as-

sumption introduces a homothetic separability restriction, while the subsequent

assumptions pertain to firm behavior and productivity shocks, extending the stan-

dard Markov and monotonicity assumptions to a setting with two-dimensional

productivity. Throughout the paper, I assume that all functions are continuously

differentiable as needed and all random variables have continuous and strictly

increasing distribution functions.

2.2.1 A Homothetic Separability Restriction

I start by providing a set of conditions under which labor-augmenting productivity

can be expressed as a function of firms’ inputs. Let σt(Kit, ω
L
itLit,Mit) represent

the elasticity of substitution between labor and materials.5

Assumption 2.1 (Homothetic Separability). Suppose that:

(i) The production function satisfies the following functional form

Yit = Ft
(
Kit, ht(Kit, ω

L
itLit,Mit)

)
exp(ωHit ) exp(εit). (2.2)

(ii) ht(Kit, ·, ·) is homogeneous of arbitrary degree for all Kit.

(iii) σt(Kit, ω
L
itLit,Mit) is everywhere greater than 1 or everywhere less than 1.

Assumption (i-ii) is called homothetic separability (Shephard 1953), and it

is the key assumption of the paper. It states that the production function is

separable in Kit and a composite input ht(Kit, ω
L
itLit,Mit) that is homogeneous

of arbitrary degree in labor and materials. Homothetic separability commonly

appears in models of consumer preferences and production functions (Lewbel and

Linton 2007). It has two main economic implications. First, production can be
5The formal definition of elasticity of substitution appears in Equation (A.7) of Appendix A.
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conceptualized in two stages, where ht(·) is treated as an ‘intermediate input’

with its own production function. Second, the homotheticity of ht(·) implies that

jointly scaling labor and materials inputs is equivalent to scaling ht(·). Therefore,
instead of jointly optimizing labor and materials, the firm can first choose the

optimal materials-to-labor ratio and then determine the optimal scale of ht(·).
This two-stage optimization simplifies the firm’s cost minimization problem.

Assumption 2.1(iii) states that labor and materials are either everywhere sub-

stitutes or everywhere complements. In a nonparametric production function, the

degree of substitutability among inputs can vary with their levels, so this assump-

tion rules out cases where labor and materials switch between substitutes and

complements. Next, I provide two parametric forms that satisfy Assumption 2.1.

Examples (CES and Nested CES). The CES production function is given by:

Yit =
(
βkK

ρ
it + βl[ω

L
itLit]

ρ + (1− βk − βl)Mρ
it

)v/ρ
exp(ωHit ) exp(εit).

Assumption 2.1 nests the CES production function with ht(·) = βl
[
ωLitLit

]ρ
+ (1−

βk−βl)Mρ
it, which is homogeneous of degree one and has elasticity of substitution

σ = 1/(1 − ρ). The CES specification has been widely used in the literature to

study factor-augmenting technology (Doraszelski and Jaumandreu 2018). A more

flexible functional form with homothetic separability is the nested CES:

Yit =
(
βkK

ρ
it + (1− βk)

(
βl
[
ωLitLit

]ρ1 + (1− βl)Mρ1
it

)ρ/ρ1 )v/ρ
exp(ωHit ) exp(εit),

where labor and materials are nested with elasticity of substitution 1/(1− ρ1).6,7

Assumption 2.2 (Cost Minimization). The firm minimizes static production

costs of producing target output Ȳit with respect to (Lit,Mit) given Kit, produc-

tivity shocks (ωLit, ω
H
it ), and input prices (plt, p

m
t ).

min
Lit,Mit

pltLit + pmt Mit s.t. Ft
(
Kit, ht(Kit, ω

L
itLit,Mit)

)
exp(ωHit )Eit > Ȳit (2.3)

where Eit := E[exp(εit) | Iit].8 Under cost minimization, the firm chooses its level
6Note that in this example, as ρ1 → −∞ the production function approaches Leontief in materials
and labor, so the model can approximate the Leontief production function.

7Homothetic separability is not satisfied by all parametric production functions. For example,
the CES production function with nested capital and labor violates this property. Nadiri (1982)
provides additional examples and discusses properties of non-homothetic production functions.

8Since εit is independent of Iit, E[exp(εit)|Iit] becomes constant and does not affect the cost
minimization problem of the firm.
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of flexible inputs to minimize the cost of producing its profit-maximizing target

output Ȳit, which can deviate from observed output Yit due to the unanticipated

shock εit. The firm determines Ȳit by setting marginal revenue equal to marginal

cost, so it depends on factors affecting marginal revenue, such as demand shocks

(Doraszelski and Jaumandreu 2023; Ackerberg and De Loecker 2024). As I discuss

later, this dependence imposes certain restrictions on product market competition.

Proposition 2.1.

(i) Under Assumptions 2.1(i-ii) and 2.2, the optimal flexible input ratio, denoted

by M̃it = Mit/Lit, depends only on Kit and ωLit through an unknown function rt(·):

M̃it ≡ rt(Kit, ω
L
it). (2.4)

(ii) Under Assumption 2.1(iii), rt(Kit, ω
L
it) is strictly monotone in ωLit.

The proof is provided in Appendix A. Part (i) of the proposition states that

the firm’s cost-minimizing flexible input ratio is a function of only Kit and labor-

augmenting productivity ωLit. This result follows directly from the homotheticity

assumption: the relative marginal product of materials and labor depends only on

their ratio, not on their levels, and it is unaffected by the Hicks-neutral produc-

tivity ωHit . Note also that M̃it depends on the input price ratio, which is captured

by the time subscript in rt(·) as input prices are assumed constant across firms.9

Part (ii) establishes that rt(Kit, ω
L
it) is strictly monotone in ωLit. Strict mono-

tonicity implies that as labor-augmenting productivity ωLit increases, the materials-

to-labor ratio consistently moves in a single direction. This direction is determined

by the elasticity of substitution, as changes in ωLit alter the relative marginal prod-

ucts of materials and labor. Since these inputs are assumed to be either substitutes

or complements everywhere, an increase in ωLit affects their ratio monotonically.10

To relate these results to parametric production functions, note that under

CES, rt(Kit, ω
L
it) has a log-linear form in ωLit: log(M̃it) = γ + σ log(p

l/m
t ) + (σ −

1) log(ωLit), where p
l/m
t is the input price ratio and γ is a constant that depends

on the parameters (β, σ). The literature commonly uses this relationship to

estimate labor-augmenting productivity, exploiting the linear separability of ωLit
9For M̃it function under time-varying input prices, see Equation (OA-1) in Online Appendix A.

10Another common assumption in production functions is Leontief, where inputs are perfect com-
plements. In this case, rt(·) becomes a multiplicative function of ωLit conditional on Kit.
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in the input demand function under the CES form and variation in input prices

(Doraszelski and Jaumandreu 2018; Raval 2019). Thus, this paper extends the

CES framework to an arbitrary functional form (subject to Assumption 2.1) and

shows that invertibility holds under more general conditions.11,12

2.2.2 Other Assumptions

The remaining assumptions extend the commonly used production function esti-

mation assumptions to accommodate labor-augmenting technology.

Assumption 2.3 (First-Order Markov). Productivity shocks follow an exogenous

joint first-order Markov process: P (ωLit, ω
H
it | Iit−1) = P (ωLit, ω

H
it | ωLit−1, ω

H
it−1).

This assumption extends the standard first-order Markov property to a joint one

to accommodate two-dimensional productivity. Importantly, it does not constrain

the joint distribution of productivity shocks or their first-order dynamics, allowing

productivity shocks to be arbitrarily correlated with one another.

Assumption 2.4 (Timing). The firm’s capital stock evolves according to Kit =

(1− δ)Kit−1 + Iit−1, where Iit−1 denotes investment made by firm i during period

t− 1 and δ denotes the depreciation rate.

Firms choose their capital one period ahead, before observing current productivity.

Thus, Kit belongs to the firm’s information set in period t−1, that is, Kit ∈ Iit−1.

Assumption 2.5 (Monotonicity). Firms’ materials demand is given by

Mit = st(Kit, ω
H
it , ω

L
it), (2.5)

where st(Kit, ω
H
it , ω

L
it) is an unknown function that is strictly increasing in ωHit .

Introduced by Levinsohn and Petrin (2003), this assumption states that holding

all else constant, more productive firms have higher materials demand. Moreover,

the input demand function depends only on capital stock and productivity shocks.
11CES may not be restrictive for certain empirical questions—for example, when studying the
elasticity of substitution—as it provides a first-order approximation to any production function
with separability (Doraszelski and Jaumandreu 2018).

12Note that rt(·) is not completely unknown, as it is derived from the production function (see
Equation (A.5) in Appendix A). In my model, unlike in a parametric setting, the relationship
between rt(·) and the production function is complex, involving inverse functions. This com-
plexity prevents the application of additional restrictions on rt(·) that a parametric specification
could allow. For example, under the CES assumption, the estimation of rt(·) gives the elasticity
of substitution parameter, whereas this is not possible in my specification.
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To understand the underlying conditions under which this assumption holds,

consider the firm’s cost minimization problem in Equation (2.3). Under cost min-

imization, the firm’s input demand depends on its profit-maximizing output level,

Ȳit, which itself is influenced by demand shifters and the form of competition in

the product market. Therefore, a natural question is under which product market

assumptions the firm’s profit-maximizing output Ȳit depends solely on its own cost

determinants (Kit, ω
H
it , ω

L
it), thereby ensuring that Assumption 2.5 holds.

I examine this question in Online Appendix B and show that firms’ materi-

als demand follows the form in Equation (2.5) under two conditions. The first

condition requires the competition game to be symmetric (up to observables if

one conditions on them). Symmetry implies that there is no unobserved firm-

level heterogeneity in firms’ residual demand; otherwise, the materials demand

function would involve firm-specific unobserved demand shocks, violating the two-

dimensional unobserved heterogeneity structure required for identification.

The second condition requires the competition game to be aggregative (Jensen

2018; Nocke and Schutz 2018). Even in symmetric competition games, a firm’s

output choice Ȳit may depend on competitors’ productivity shocks, violating the

assumption of two-dimensional unobserved heterogeneity in material demand. Ag-

gregative games, however, have the property that a firm’s profit depends on its

rivals’ actions only through industry-level aggregate variables. By leveraging this

property, I show that when the game is aggregative, a firm’s profit-maximizing

output depends solely on firm-specific cost factors (Kit, ωLit, ωHit ) and industry-

level aggregates common to all firms, represented by the time index t in materials

demand function st(·). I further show that some standard imperfect competition

models—symmetric Cournot, Bertrand competition with logit and CES demand

systems, and monopolistic competition—can be formulated as aggregative games,

leading to the materials demand function in Equation (2.5).13 A key condition for

these results is a weakly convex static cost function, which allows for non-constant

marginal cost and is empirically supported by the estimates reported in Section 6.

The class of symmetric aggregative games is quite restrictive, as it excludes
13The application of aggregative game theory to imperfect competition models is used extensively
in the literature (Caplin and Nalebuff 1991; Anderson et al. 2020). My analysis relies on these
papers and extends some of their results to non-constant marginal costs.
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many prominent demand models in industrial organization (IO), including random

coefficient logit models (Berry et al. 1995). However, tools from aggregative game

theory have proven useful in IO recently to reduce the dimension of many complex

problems (Garrido 2022; Nocke and Whinston 2022; Caradonna et al. 2025). In-

corporating imperfect competition into production function estimation remains an

active area of research; see Ackerberg and De Loecker (2024) for a full treatment

of various imperfect competition models in production function estimation.14

2.3 Invertibility: Expressing Productivity Shocks Using Inputs

Proposition 2.1 provides the sufficient conditions—monotonicity and scalar unob-

served heterogeneity—to invert out ωLit using the flexible input ratio:

ωLit = r−1
t (Kit, M̃it) ≡ r̄t(Kit, M̃it). (2.6)

Similarly, Assumption 2.5 provides a monotonicity condition for ωHit using the

materials demand function in Equation (2.5). Inverting Equation (2.5) yields

ωHit = s−1
t (Kit,Mit, ω

L
it). Substituting for ωLit from Equation (2.6) gives:

ωHit = s−1
t (Kit,Mit, r̄t(Kit, M̃it)) ≡ s̄t(Kit,Mit, M̃it). (2.7)

Equations (2.6) and (2.7) demonstrate that, under the modeling assumptions and

optimal firm behavior, unobserved productivity shocks can be written as unknown

functions of inputs. Invertibility is a common feature in the production function

literature, which uses observables, such as investments or materials, to control for

unobserved productivity (Ackerberg et al. 2015). In the next section, I apply these

invertibility results to develop a control variable approach to address endogeneity.

3 A Control Variable Approach to Production Functions

This section uses the Markov and timing assumptions to construct a control vari-

able for each productivity shock. I build on the identification method proposed by

Imbens and Newey (2009) for non-separable models with a scalar unobservable,

which has recently been applied to production function estimation (Ackerberg

et al. 2023; Pan 2024). I extend this control variable approach to accommodate
14Another key element of Assumption 2.5 is monotonicity of materials demand in ωHit . The re-
lationship between input demand and productivity is complex because it depends on both the
demand curve and the firm’s cost function. Biondi (2022) provides a recent analysis of the
relationship between factor demand and productivity under variable markups.
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multi-dimensional productivity by leveraging two insights. First, the Markov and

timing assumptions imply a statistical independence condition that is necessary to

apply the Imbens and Newey (2009) approach. Second, the triangular structure of

the input demand functions in Equations (2.4) and (2.5) enables the use of control

variables in the presence of multidimensional productivity.

3.1 Control Variable for Labor-Augmenting Productivity

We can relate labor-augmenting productivity to lagged productivity as follows:

ωLit = gL(ωLit−1, ω
H
it−1, u

1
it), u1

it | ωLit−1, ω
H
it−1 ∼ U(0, 1). (3.1)

This representation of ωLit holds without loss of generality and follows from the Sko-

rohod representation of random variables (Chernozhukov and Hansen 2008). Here,

gL(ωLit−1, ω
H
it−1, τ) represents the τ -th conditional quantile of ωLit given (ωLit−1, ω

H
it−1),

so u1
it can be interpreted as firm i’s productivity rank among firms with the same

lagged productivity. Another way to interpret u1
it is as the unanticipated innova-

tion to ωLit. Unlike the standard definition of “innovation” to productivity in the

production function literature (Ackerberg et al. 2015)—where the innovation is

separable from and mean-independent of lagged productivity—u1
it is non-separable

and fully independent of lagged productivity.

Recall from the previous section that M̃it = rt(Kit, ω
L
it). By substituting ωLit

from Equation (3.1) into this expression and using Equations (2.6-2.7), we obtain

M̃it = rt
(
Kit, gL(ωLit−1, ω

H
it−1, u

1
it)
)
,

= rt
(
Kit, gL

(
r̄t−1(Kit−1, M̃it−1), s̄t−1(Kit−1,Mit−1, M̃it−1), u1

it

))
,

≡ r̃t
(
Kit,Wit−1, u

1
it

)
, (3.2)

for an unknown function r̃t(·) and Wit−1 := (Kit−1,Mit−1, Lit−1).15 Note that M̃it

is strictly monotone in u1
it because rt(·) is strictly monotone in ωLit by Proposition

2.1, and gL(·) is strictly monotone in u1
it by construction. Next, I establish the

statistical independence of u1
it from other variables in Equation (3.2).

Lemma 3.1. Under Assumptions 2.3 - 2.4, we have that u1
it⊥⊥(Kit,Wit−1).

See Appendix A for the proof. This lemma shows that the Markov and timing

assumptions provide the necessary independence condition for using the control
15Although rt(·) depends on M̃it−1, it is not included inWit−1 as it is a function of (Mit−1, Lit−1).
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variable approach. The intuition behind this result is as follows: once we condi-

tion on (ωLit−1, ω
H
it−1), the variables (Kit,Wit−1) provide no additional information

about current productivity due to the timing and Markov assumptions. Since

by construction Equation (3.1) implies that u1
it encapsulates all new information

about current productivity, it follows that (Kit,Wit−1) must be independent of u1
it.

We now have the two conditions needed to derive a control variable: mono-

tonicity of r̃t(·) in u1
it and independence of u1

it from (Kit,Wit−1). Given that the

distribution of u1
it is already normalized to a uniform distribution in Equation

(3.1), we can identify u1
it from the data using Equation (3.2) as follows:

u1
it = FM̃it|Kit,Wit−1

(M̃it | Kit,Wit−1), (3.3)

where FM̃it|Kit,Wit−1
denotes the CDF of M̃it conditional on (Kit,Wit−1).16 The

key insight is that if two firms, i and j, have the same capital stock and lagged

inputs but differ in their materials-to-labor ratios, then they must differ only in

their innovations to labor-augmenting productivity. Specifically, if Kit = Kjt and

Wit−1 = Wjt−1, then M̃it > M̃jt if and only if u1
it > u1

jt. Thus, u1
it can be recovered

from the firm’s conditional rank in the flexible input ratio. This relationship allows

us to express ωLit as a function of the control variable and lagged inputs:

ωLit = gL(ωLit−1, ω
H
it−1, u

1
it) = gL

(
r̄t−1(Kit−1, M̃it−1), s̄t−1(Kit−1,Mit−1, M̃it−1), u1

it

)
,

≡ c1t(Wit−1, u
1
it), (3.4)

where c1t(·) is an unknown function.

3.2 Control Variable for Hicks-Neutral Productivity

The control variable for ωHit can be derived similarly to that for ωLit. Writing the

Skorohod representation of ωHit :

ωHit = gH(ωLit−1, ω
H
it−1, u

1
it, u

2
it), u2

it | ωLit−1, ω
H
it−1, u

1
it ∼ U(0, 1). (3.5)

By following the same steps used to obtain Equation (3.2), and using the mono-

tonicity of materials in ωHit (Assumption 2.5), we can write materials demand as:

Mit ≡ s̃t
(
Kit,Wit−1, u

1
it, u

2
it

)
, (3.6)

16To simplify the exposition, I assume M̃it is strictly increasing in u1it. This is without loss of
generality because u1it only needs to be identified up to a monotonic transformation.
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where s̃t(·) is an unknown function. Note that s̃t (Kit,Wit−1, u
1
it, u

2
it) is strictly

increasing in u2
it because st(Kit, ω

L
it, ω

H
it ) is strictly increasing in ωHit by Assumption

2.5, and gH(ωLit−1, ω
H
it−1, u

1
it, u

2
it) is strictly increasing in u2

it by construction.

Lemma 3.2. Under Assumptions 2.3 - 2.4, we have that u2
it⊥⊥(Kit,Wit−1, u

1
it).

See Appendix A for the proof. We can now use Equation (3.6) to identify u2
it as:

u2
it = FMit|Kit,Wit−1,u1it

(Mit | Kit,Wit−1, u
1
it). (3.7)

Using this result, we can express ωHit as follows:

ωHit ≡ c2t(Wit−1, u
1
it, u

2
it) (3.8)

for an unknown function c2t(·). Together, this result and Equation (3.4) imply

that lagged inputs and two control variables can control for productivity shocks.

A related study by Ackerberg et al. (2023) also uses control variables in pro-

duction function estimation. Their model has a single productivity shock in an

unrestricted manner, whereas my approach incorporates two productivity shocks

within a homothetic separability structure. Another difference lies in the construc-

tion of the control variables: Ackerberg et al. (2023) use lagged inputs, whereas

I use the input demand functions. These approaches complement each other, as

the plausibility of the underlying assumptions depends on the specific context.

4 Identification

This section examines the identification properties of the production function. I

first establish a functional dependence problem that prevents the identification

of individual output elasticities and labor-augmenting productivity using only in-

puts and output data. However, the sum of flexible input elasticities remains

identifiable, and by combining this sum with revenue shares of inputs, the FOCs

enable separate identification of labor and materials elasticities. I then consider a

stronger form of homothetically separable production function and show that all

elasticities and labor-augmenting productivity are identified under this form.

4.1 A Non-identification Result

The production function can be written in logarithmic form as:

yit = ft
(
Kit, ht(Kit, ω

L
itLit,Mit)

)
+ ωHit + εit,
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where yit = log(Yit) and ft(·) = log(Ft). Since ht(·) is homogeneous in its second

and third arguments, we can rewrite the production function as follows:

yit = ft
(
Kit, Litht(Kit, ω

L
it, M̃it)

)
+ ωHit + εit. (4.1)

This reformulation is useful because it isolates ωLit as a direct argument of ht(·).
By substituting ωLit = r̄t(Kit, M̃it) into Equation (4.1), we obtain:

yit = ft
(
Kit, Litht

(
Kit, r̄t(Kit, M̃it), M̃it

))
+ ωHit + εit.

This representation of the production function reveals an identification problem.

Proposition 4.1. Without further restrictions, ht(·) cannot be identified from

variations in (Yit, Kit, Lit,Mit).

Proof. For fixed values of (Kit, M̃it), the second argument of the function ht(·)
is uniquely determined. Thus, the data provide no independent variation in

(Kit, r̄t(Kit, M̃it), M̃it) to trace out all dimensions of ht(·), even if r̄t(·) is known.

This implies that ht(·) is not identified from variations in (Yit, Kit, Lit,Mit).17

This result reveals a fundamental identification problem, as many potential

objects of interest, such as output elasticities, are functions of ht(·). To see this,

the output elasticities can be written as (suppressing function arguments):

θKit := (ft1 + ft2ht1)Kit, θLit := ft2ht2Litr̄t(Kit, M̃it), θMit := ft2ht3Mit,

where ftk denotes the derivative of ft with respect to its k−th argument and θXit
denotes the output elasticity of input X. Observe that all the output elastici-

ties depend on the derivatives of ht(·), which is not identified from variations in

inputs and output. However, if there is firm-level variation in input prices, then

r̄t(Kit, M̃it) becomes a function of the input price ratio as well, which could resolve

the functional dependence problem. This case is analyzed in Online Appendix A.

To make progress toward the identification of elasticities, I define another func-

tion, h̄t(Kit, M̃it) ≡ ht(Kit, r̄t(Kit, M̃it), M̃it), and rewrite the production function

as:

yit = ft
(
Kit, Lith̄t(Kit, M̃it)

)
+ ωHit + εit. (4.2)

17Online Appendix C.1 illustrates this identification problem in a parametric setting using the CES
production function. In that case, estimating a reduced form of the CES production function
recovers a parameter corresponding to the sum of labor and materials elasticities.
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This formulation provides a reduced form representation of the production func-

tion, where h̄t(·) captures the combined effects of ωLit and M̃it in production through

the firm’s input demand function r̄t(Kit, M̃it). Even though this function differs

from the structural function ht(·), it can still be useful for identifying certain ob-

jects of interest. Thus, the remainder of this section focuses on what can be iden-

tified from reduced form functions h̄t(·) and ft(·), while the next section examines

the identification of these functions after specifying the moment conditions.

4.2 Identification of Output Elasticities

The functional dependence problem presented in Section 4.1 implies that output

elasticities are not identified from variation in inputs and output alone. However,

the assumption of cost minimization can provide additional identifying information

through the relationship between the production function and the firm’s flexible

input choices. The FOCs derived from the cost minimization in Equation (2.3)

are given by FtX(·) exp(ωHit )E[exp(εit)|Iit]λit = pXt for X ∈ {M,L}. Here, FtX(·)
denotes the derivative of Ft(·) with respect to input X, and λit represents the

Lagrange multiplier. Multiplying both sides by Xit/(Yitpit) and rearranging yields:

FtX
(
Kit, ω

L
itLit,Mit

)
Xit

Ft
(
Kit, ωLitLit,Mit

)︸ ︷︷ ︸
Elasticity(θXit )

E[exp(εit) | Iit]λit
exp(εit)pit

=
Xitp

X
t

Yitpit
,︸ ︷︷ ︸

Revenue Share of Input(αX
it )

(4.3)

where pit is the output price. Taking the ratio of this expression for labor (X = L)

and materials (X = M) yields:

θMit /θ
L
it = αMit /α

L
it. (4.4)

Thus, the cost minimization assumption identifies the materials-to-labor elasticity

ratio as the ratio of their revenue shares. Since revenue shares are observable in

most datasets, this elasticity ratio can be directly calculated from data without

any additional estimation.18

The use of FOCs in production function estimation has a long history, primarily

within parametric frameworks (Kmenta 1967; Doraszelski and Jaumandreu 2013;

Grieco et al. 2016). Gandhi et al. (2020) advance this literature by nonparametri-

cally using the FOC with respect to materials input in a Hicks-neutral production
18Doraszelski and Jaumandreu (2019) similarly exploit revenue shares to identify elasticity ratios.
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function with dynamic labor input. I instead restrict labor to be flexible, enabling

me to use FOCs for two inputs to accommodate labor-augmenting productivity.

This method of using FOCs of multiple flexible inputs has also been applied in

the literature to estimate buyer markdowns (Morlacco 2020; Yeh et al. 2022).

4.2.1 Identification of the Sum of Materials and Labor Elasticities

This section shows the identification of the sum of labor and materials elasticities

from the reduced-form representation of the production function in Equation (4.2).

Proposition 4.2. The sum of labor and materials elasticities is identified as

θVit := θMit + θLit = ft2
(
Kit, Lith̄t(Kit, M̃it)

)
Lith̄t(Kit, M̃it). (4.5)

Proof. From Equation (4.1), the labor and materials elasticities can be written as:

θMit = ft2ht3Mit, θLit = ft2(ht − ht3M̃it)Lit.

Summing the expressions for θMit and θLit implies that the derivative component of

ht(·) cancels out, leaving the combined elasticity dependent on the level of ht(·):

θVit = θMit + θLit = ft2htLit = ft2h̄tLit.

This proposition shows that identifying ft(·) and h̄t(·) is sufficient for recov-

ering the sum of flexible input elasticities. Notably, this identification does not

rely on knowledge of either the structural function ht(·) or the labor-augmenting

productivity. By combining this result with the elasticity ratio derived from the

FOCs in Equation (4.4), we can express the labor and materials elasticities as:

θLit = θVitα
L
it/α

V
it , θMit = θVitα

M
it /α

V
it , (4.6)

where αVit = αLit +αMit . Thus, labor and materials elasticities are separately identi-

fied. This result is especially important for markup estimation since flexible input

elasticity is the key element in the markup formula, as I will discuss in Section 7.

4.2.2 Identification of Capital Elasticity and Other Objects

This section analyzes whether capital elasticity, the elasticity of substitution, and

labor-augmenting productivity are identified and presents a negative result.
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Proposition 4.3. For the production function specified in Equation (2.2), labor-

augmenting productivity, the output elasticity of capital, and the elasticity of sub-

stitution between inputs are not identified from (ft, h̄t, α
L
it, α

M
it ).

See Online Appendix D for the proof. The intuition underlying this result is that

the FOCs reveal information primarily about the output elasticities of flexible

inputs, which are insufficient to identify other aspects of the production function.

4.3 Identification under Further Restrictions

A potential solution to the non-identification results is to impose additional struc-

ture on the production function. In this section, I consider a more restrictive

homothetic functional form:

yit = ft
(
Kit, ht(ω

L
itLit,Mit)

)
+ ωHit + εit, (4.7)

which I refer to as the “strongly homothetic” production function.19 This model

differs from the “weakly homothetic” production function presented in Equation

(2.2) because the function ht(·) no longer depends on Kit. Since this is a special

case, Proposition 2.1 applies with ωLit = r̄t(M̃it). Substituting this into Equation

(4.7) yields the following reduced form production function:

yit = ft
(
Kit, Lith̄t(M̃it)

)
+ ωHit + εit. (4.8)

Since Kit appears only in ft(·) and not in ht(·), this model offers a more tractable

functional form for identifying the capital elasticity and labor-augmenting produc-

tivity. The following proposition establishes the identification of these objects.

Proposition 4.4. Suppose that the production function has the strongly homo-

thetic separable form in Equation (4.7). Then, the capital elasticity is identified,

and labor-augmenting productivity is identified up to scale from (ft, h̄t, α
L
it, α

M
it ):

θKit = ft1(Kit, Lith̄t(M̃it))Kit, log(ωLit) =

∫ M̃it

M̃

bt(M̄)dM̄ + at, (4.9)

where ftj(·) denotes the derivative of ft(·) with respect to its j-th argument, at is

an arbitrary constant and M̃ is the lower bound of the support of M̃it. bt(·) is a

function defined in the proof, which depends only on (ft, h̄t, α
L
it, α

M
it ).

19This definition differs from the classical “strong separability” concept in production theory. For
different separability definitions, see Chambers (1988). Here, we also use the same function ht(·)
in both strong and weak homothetic functions with a slight abuse of notation.
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The proof is provided in Online Appendix D. Under strong homotheticity, θKit
is identified from the reduced form functions because ωLit is no longer a function

of capital, removing the confounding effects of r̄t(·) in the reduced form func-

tion. Identification of ωLit relies on the idea that the flexible input elasticities are

informative about ht(·), which can be mapped back to ωLit as shown in the proof.

The next result shows that the elasticity of substitution remains unidentified.

Proposition 4.5. Under the conditions of Proposition 4.4, the elasticity of sub-

stitution between labor and materials is not identified from (ft, h̄t, α
L
it, α

M
it ).

See Online Appendix D for the proof. The FOCs provide information only

about the first derivatives of the production function, whereas the elasticity of

substitution depends on the second derivatives. Thus, we can identify the output

elasticities but not the elasticity of substitution.20

An important implication of using FOCs for identification is that elasticities

can be identified only at values observed in the data, specifically within the set

{(ωLit,Mit, Lit) : ωLit = r̄t(M̃it)}. Although this restriction limits certain counterfac-

tual analyses—such as the impact of altering an input on output while holding ωLit
constant—it nonetheless allows for the identification of elasticities and productiv-

ity for the firms in the data, which are sufficient for most empirical applications.

5 Empirical Model and Data

This section presents the empirical model, outlines the estimation procedure, and

describes the data used for empirical applications.

5.1 Empirical Model

The purpose of the empirical model is to estimate output elasticities and markups.

Because the capital elasticity is not identified under weak homotheticity, and to

reduce data requirements, I use the strongly homothetic production function in

the empirical model. The resulting reduced form production function is given by:

yit = ft
(
Kit, Lith̄t(M̃it)

)
+ ωHit + εit. (5.1)

20This finding relates to Diamond et al. (1978)’s impossibility theorem, which states that without
exogenous variation in input prices, the elasticity of substitution cannot be identified using
time-series data. My paper extends this result to a setting with firm-level data. Under the
heterogeneous input price extension discussed in Online Appendix A, however, the elasticity of
substitution can be identified if input prices are exogenous.
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To control for Hicks-neutral productivity, I use the control function from Equation

(3.8), ωHit = c2t (Wit−1, u
1
it, u

2
it). Substituting this into Equation (5.1) yields:

yit = ft
(
Kit, Lith̄t(M̃it)

)
+ c2t

(
Wit−1, u

1
it, u

2
it

)
+ εit, E[εit | Wit,Wit−1, u

1
it, u

2
it] = 0.

Because all the right-hand side variables are orthogonal to the error term εit, we can

estimate this equation by minimizing the sum of squared residuals. The modeling

assumptions, however, provide additional restrictions that we can use to augment

the moment conditions. Specifically, since capital input is predetermined, it is

orthogonal to productivity innovations ξit from the first-order Markov process:

ωHit ≡ c̄3t(ω
L
it−1, ω

H
it−1) + ξit, E[ξit | Iit−1] = 0. (5.2)

where c̄3t(·) is an unknown function and ξit denotes the innovation to Hicks-neutral

productivity. Unlike u2
it in Equation (3.5), this innovation term is mean indepen-

dent of (ωHit−1, ω
L
it−1) and separable, instead of being fully independent and non-

separable. This characterization of ωHit has been frequently used in the production

function literature for constructing moments (Ackerberg et al. 2015).

Since (ωLit−1, ω
H
it−1) can be expressed as a function of Wit−1, Equation (5.2) can

be written as ωHit ≡ c3t(Wit−1) + ξit, which yields another estimating equation:

yit = ft
(
Kit, Lith̄t(M̃it)

)
+ c3t(Wit−1) + ξit + εit.

The error term, ξit + εit, is orthogonal to the firm’s information set at time t− 1,

which includes Kit, so E[ξit+ εit | Kit,Wit−1] = 0. I now summarize the estimation

problem by combining the moment restrictions from two estimating equations:

yit = ft
(
Kit, Lith̄t(M̃it)

)
+ c2t(Wit−1, u

1
it, u

2
it) + εit, E[εit |Wit,Wit−1, u

1
it, u

2
it] = 0 (5.3)

yit = ft
(
Kit, Lith̄t(M̃it)

)
+ c3t(Wit−1) + ξit + εit, E[ξit + εit | Kit,Wit−1] = 0. (5.4)

The literature typically uses similar moment conditions in two stages when es-

timating parametric forms: first, identifying the elasticity of variable inputs, and

then the capital elasticity (Ackerberg et al. 2015). This two-step method is infeasi-

ble in a non-separable production function. Thus, I combine all moment conditions

into a single objective function, following the approach of Wooldridge (2009):

J(θ) =
1

TN

∑
i,t

ε̂1it(θ)
2 +

J∑
j=1

(
1

TN

∑
i,t

zj(Kit,Wit−1)[ξ̂it(θ) + ε̂2it(θ)]

)2

, (5.5)
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where θ = {ft, h̄t, c2t, c3t} collects all unknown functions to be estimated. For

each candidate θ, ε̂1it(θ) denotes the estimates of εit from Equation (5.3), while

ε̂2it(θ) and ξ̂it(θ) denote the estimates of εit and ξit from Equation (5.4). Finally,

{zj(Kit,Wit−1)}Jj=1 denote a set of J instruments.

The identification of output elasticities requires identifying the functions (ft,

h̄t) through the moment restrictions in Equations (5.3) and (5.4). I next show the

identification of these functions. Define gt(Kit,Mit,Wit−1, u
1
it) as the conditional

distribution function FMit|Kit,Wit−1,u1it
(Mit | Kit,Wit−1, u

1
it) and let gtj(·) denote the

derivative of gt(·) with respect to its j-th arguments. The following proposition

establishes that moment conditions in Equation (5.3) identify (ft, h̄t).

Proposition 5.1. Suppose that (i) (ft, h̄t, c2t, gt) are twice continuously differen-

tiable and have non-zero derivatives almost everywhere, (ii) the joint distribution

function of (Kit, M̃it,Mit,Wit−1) is absolutely continuous with positive density ev-

erywhere on its support, (iii) Var
(
gt1(Kit,Mit,Wit−1, u

1
it)/gt2(Kit,Mit,Wit−1, u

1
it) |

Kit,Mit, u
1
it

)
> 0. Then h̄t(·) is identified up to a scale, and ft(·) is identified up

to a constant by the moment conditions in Equation (5.3).

See Appendix B for the proof.21,22 Conditions (i) and (ii) are regularity conditions

that ensure sufficient variation in the data. Condition (iii) rules out special cases

that create functional dependence, a concept known as generic identification in the

literature (Lewbel 2019). Since the moments in Equation (5.3) identify the target

functions, the moment restrictions in Equation (5.4) provide efficiency gains.23

5.2 Estimation Procedure

This section outlines the estimation procedure, while the technical details are

provided in Online Appendix E. I estimate separate production functions for each

industry, based on the classifications provided in Table 1. Given the relatively

small sample sizes in many industries, estimating the production function using

a single year of data leads to noisy estimates. As a result, following De Loecker

et al. (2020), I adopt a rolling window sample strategy, using an eight-year window

for the Compustat data and a three-year window for the other datasets.
21Online Appendix D.1 presents the corresponding identification results for the weakly homothetic
production functions given in Equation (2.2).

22Even though h̄t(·) is identified up to scale, θVit is uniquely identified (see Proposition 4.2).
23Ideally, one would analyze the identification properties of the moment restrictions in Equations
(5.3) and (5.4) jointly. I focus on Equation (5.3) due to the complexity of a joint analysis.
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The estimation proceeds in two stages. In the first stage, I identify the control

variables by estimating the CDF in Equation (3.7) through partitioning the sup-

port of Mit into 500 equally sized grids and fitting a logit model with third-degree

polynomials at each grid point.24 In the second stage, I estimate the production

function using polynomial approximations. Specifically, I first approximate the

logarithm of h̄t(·) with a third-degree polynomial:

log(̂̄ht(M̃it)) = a1t + a2tm̃it + a3tm̃
2
it + a4tm̃

3
it, (5.6)

where {ajt}4
j=1 are the parameters of the polynomial approximation and m̃it =

log(M̃it). I define Vit := Lit
̂̄ht(M̃it) and approximate the production function as:

f̂t(Kit, Vit) = b1t + b2tkit + b3tk
2
it + b4tk

3
it + b5tvit + b6tv

2
it + b7tv

3
it

+ b8tk
2
itvit + b9tkitv

2
it + b10tkitvit, (5.7)

where {bjt}10
j=1 are the polynomial parameters.25 I approximate c2t(·) and c3t(·) in

the objective function similarly using third-degree polynomials.

Estimating c2t(·) and c3t(·) is computationally simple, as they can be partialled

out for a given (f̂t,
̂̄ht). Thus, the estimation reduces to finding the function f̂t(·)

and ̂̄ht(·) that minimize the objective function given in Equation (5.5). After

obtaining these estimates, I compute the output elasticities according to Equations

(4.5), (4.6), and (4.9). For standard errors, I implement a bootstrap procedure

with 250 replications, treating firms as independent observations in each resample.

5.3 Datasets

I use panel data from manufacturing industries in Chile, Colombia, India, Turkey,

and the US. Table 1 presents descriptive statistics for each dataset, including the

sample period, the number of industries, and the number of firms per year. Further

details and additional descriptive statistics are provided in Online Appendix F.

5.3.1 Chile, Colombia, India, and Turkey

For Chile, Colombia, India, and Turkey, the data come from plant-level production

information collected through manufacturing censuses. The Chilean dataset covers
24Under the strongly homothetic production function in Equation (4.7), u1it corresponds to the
CDF of M̃it, so it does not need to be estimated in the first stage conditional on other variables.

25For the US, the third-degree polynomials give unstable estimates due to small sample size,
especially in the early period. To address this, I use second-degree polynomials for the US.
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Table 1: Descriptive Statistics on Datasets

US Chile Colombia India Turkey

Sample Period 1961-2018 1979-96 1978-91 1998-2014 1983-2000
Num. of Industries 3 5 9 5 8
Industry Level 2-dig NAICS 3-dig SIC 3-dig SIC 3-dig NIC 3-dig SIC
Num. of Obs/Year 1247 2115 3918 2837 4997

Notes: This table provides descriptive statistics for each dataset. The number of industries reflects
those included in the empirical estimation. Sample periods vary based on data availability.

plants with more than 10 employees for the period 1979–1996. Similarly, the

Colombian data include all plants with more than 10 employees from 1981 to

1991. The Turkish dataset is based on the Annual Surveys of Manufacturing

Industries and covers all establishments with 10 or more employees from 1983 to

2000. Finally, the source for Indian data is the Annual Survey of Industries, which

includes plants with 100 or more employees from 1998 to 2014.

From each dataset, I construct input and output measures to estimate the

production functions. Materials input is calculated by deflating materials cost with

the appropriate deflators. Labor is measured by either the number of worker-days

or the number of workers. Capital is derived using the perpetual inventory method

or by deflating its book values. See Online Appendix F.6 for further details.

5.3.2 US

The Compustat sample comprises all publicly traded US manufacturing firms from

1961 to 2018. It includes data from financial statements, such as sales, total input

expenditures, and number of employees. From these variables, I derive capital,

labor, materials, and output measures. Output is measured as net deflated sales,

and labor is measured by the number of employees. Because Compustat does not

separately report expenditures on materials, I follow Keller and Yeaple (2009) and

estimate them as the difference between “cost of goods sold and administrative and

selling expenses” and the sum of depreciation and labor costs.

While the Compustat dataset is derived from financial accounting data rather

than manufacturing censuses, it offers broader coverage across industries and over

time. This wider coverage makes it particularly useful for studying changes in

markups and has contributed to the growing evidence on the rise of market power

in the US (Basu 2019; De Loecker et al. 2020).
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5.3.3 Discussion of the Datasets

An important limitation of these datasets is that I mainly observe revenues and

input expenditures rather than physical quantities, which could lead to biases if

prices reflect firm-level demand heterogeneity (Doraszelski and Jaumandreu 2019,

2023; Bond et al. 2021). While some recent datasets include physical output and

firm-level price indexes, I use several widely employed production datasets to pro-

vide systematic evidence across different empirical contexts. However, as a robust-

ness check in Section 9, I use the quantity-based output measures and plant-level

input prices from seven Indian industries that produce relatively homogeneous

products. This analysis suggests that the paper’s main results—comparing esti-

mates between the labor-augmenting production function and alternative specifi-

cations—are robust to using quantities and controlling for input prices.

6 Empirical Results: Production Function

This section presents the production function estimates and emphasizes two main

findings: (i) output elasticities vary systematically depending on whether labor-

augmenting productivity is included in the specification, and (ii) there is substan-

tial heterogeneity in output elasticities across firms, with larger firms being more

capital-intensive than smaller firms.

6.1 Output Elasticities

I estimate output elasticities using four specifications with varying degrees of

flexibility: (i) Cobb-Douglas (CD), (ii) Translog with Hicks-neutral productivity

(TR), (iii) CES with both Hicks-neutral and labor-augmenting productivity (CES-

FA), and (iv) the strongly homothetic production function with Hicks-neutral

and labor-augmenting productivity (FA) introduced in Section 5.26 Comparing

these models allows me to evaluate two main features of the FA specification:

its flexible functional form and its unobserved heterogeneity introduced through

labor-augmenting productivity. In particular, because CES-FA embeds labor-
26Since Ackerberg et al. (2015) show that gross production functions with two flexible inputs are
not identified using proxy variables, I estimate CD and TR using the Blundell and Bond (2000)
dynamic panel method. I estimate CES-FA using procedures described in Section 5.2 after
imposing the CES functional form assumption. The details of these estimation procedures are
given in Online Appendix C.2 and Online Appendix E.2.
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Figure 1: Average Elasticity Estimates Across Production Function Models
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Notes: Comparison of sales-weighted average elasticities obtained from (i) Cobb-Douglas (CD), (ii)
Translog with Hicks-neutral productivity (TR), (iii) CES with Hicks-neutral and labor-augmenting
productivity (CES-FA), and (iv) the strongly homothetic production function with Hicks-neutral
and labor-augmenting productivity (FA). For each year and industry, sales-weighted averages are
calculated, and then simple averages of these industry-year estimates are taken over the years. The
error bars indicate 95% confidence intervals calculated using bootstrap (250 resamples).

26



augmenting productivity within a parametric structure, the comparison between

FA and CES-FA isolates the contribution of functional form flexibility. Conversely,

TR offers functional form flexibility without labor-augmenting productivity, so

comparing FA with TR isolates the role of labor-augmenting productivity.27

Figure 1 displays the sales-weighted average output elasticities for capital, la-

bor, and variable input in each country.28 Panel (a) shows that the CD specifica-

tion consistently estimates lower capital elasticities than the FA model, with the

bias ranging from -4.4% (US) to -37.7% (Turkey). When examining more flexi-

ble specifications, we observe that TR reduces this bias by an average of 57.1%,

whereas CES-FA yields capital elasticities close to those obtained from CD. To-

gether, these results indicate that functional form flexibility has a greater impact

on capital elasticity estimation than allowing for labor-augmenting productivity.

Panel (b) reveals a contrasting pattern for labor elasticities: the CD specifi-

cation systematically yields higher estimates than the FA model, indicating an

upward bias ranging from 46.0% in Chile to 113.2% in Turkey. Unlike the capital

elasticity results, CES-FA proves more effective than TR at reducing these bi-

ases (by 95.8% on average), suggesting that labor-augmenting productivity plays

a greater role than functional form flexibility in estimating labor elasticity.

Moving to variable input elasticity in Panel (c), the estimates consistently

decrease as the specification becomes more flexible—from CD to FA—in every

country. Although both TR and CES-FA mitigate the bias present in the CD

estimates, neither specification eliminates it entirely. The findings therefore point

to roles for both functional form flexibility and unobserved heterogeneity in es-

timating variable input elasticity. Because variable input elasticity is central to

markup estimation, this evidence also implies that incorporating labor-augmenting

productivity could affect markup estimates, a topic I explore in the next section.

While this section focused on average elasticities, it is also important to ex-

amine the estimates in greater detail to evaluate their validity. For this purpose,

Table OA-1 in Online Appendix H reports average elasticities for the three largest
27To be precise, CES-FA also adds functional form flexibility relative to CD by allowing for non-
unitary elasticity of substitution. I choose the CES as the parametric form with labor-augmenting
productivity because in the CD model, all productivity shocks are factor-neutral (Raval 2011).

28In Online Appendix H, Figure OA-1 reports materials elasticity and returns to scale estimates,
and Figure OA-3 reports standard errors for differences between FA and other estimates.
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industries in each country, while Supplementary Appendix B illustrates the dis-

tributions of first and second derivatives as well as the shapes of the estimated

production functions.29 The results align with the principles of production theory:

capital elasticities are seldom negative (4.5%), first derivatives are predominantly

positive (97.5%), and second derivatives are generally negative (89.4%), confirming

the concavity of the estimated production functions (Shephard 1953).30

In summary, this section demonstrates how different sources of flexibility in the

production function affect output elasticity estimates. For capital elasticity, func-

tional form flexibility matters more than labor-augmenting technology, whereas for

labor elasticity, labor-augmenting technology has a greater impact. Both types of

flexibility, however, are important for estimating variable input elasticity.

6.2 Heterogeneity in Output Elasticities

This section explores firm-level heterogeneity in output elasticities and its rela-

tionship with firm size. While extensive research has shown substantial variation

in various firm outcomes such as productivity, labor share, and management prac-

tices (Syverson 2011; Van Reenen 2018; Kehrig and Vincent 2021), comparatively

little is known about heterogeneity in production technology.

To quantify this heterogeneity, I calculate the coefficient of variation (CV)

of output elasticities within each industry-year and plot the average CV in each

country along with the 10th–90th percentile range in Figure 2. Elasticities vary

substantially across firms in all countries, with CV estimates ranging from 0.25

to 1.01. Labor elasticity shows the greatest dispersion, consistent with evidence

of large heterogeneity in labor’s revenue share (Autor et al. 2020). The wide

interdecile ranges confirm that these patterns are pervasive rather than driven

by a handful of industries. Finally, returns to scale estimates show only modest

variation—a reasonable finding since large heterogeneity in this parameter would

imply some firms operate with implausibly strong scale economies.31

29The FA model generates reasonable output elasticities that align with previous literature: ma-
terials have the highest elasticity, ranging from 0.50 to 0.67 across industries and countries. The
average labor and capital elasticities range from 0.22 to 0.52 and 0.04 to 0.16, respectively. The
returns to scale estimates range from 0.93 to 1.1, indicating that firms, on average, operate close
to constant returns to scale.

30The small number of negative elasticities can be partly explained by estimation error, as elas-
ticities are not consistently estimated at the firm-level.

31The heterogeneity in output elasticities can arise from two sources: (i) observed heterogeneity
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Figure 2: Average Coefficient of Variation Estimates of Output Elasticities
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Notes: This figure shows the means (gray) and 10th and 90th percentiles (red) of the distribution
of the average coefficient of variation across industries and years for different output elasticities.

The heterogeneity in output elasticities complements the well-documented dis-

persion in other firm-level outcomes. Yet another key question is whether this het-

erogeneity is correlated with observable firm characteristics. Figure 3 addresses

this question by plotting average capital, labor, and variable input elasticities

across firm-size deciles. Consistently across all countries, larger firms exhibit

higher capital elasticities but lower labor and variable input elasticities. The dif-

ferences are notable: firms in the largest-decile are about twice as capital-intensive

as those in the smallest-decile, whereas the smallest-decile firms are roughly twice

as labor-intensive as those in the largest. Overall, this section highlights the pres-

ence of substantial variation in output elasticities, which potentially reflects both

observed and unobserved heterogeneity in production technologies across firms.32

due to different levels of inputs and (ii) unobserved heterogeneity due to labor-augmenting
productivity. This analysis does not distinguish between these sources.

32For comparison, Figures SA-1 and SA-2 in Supplementary Appendix B report the corresponding
results under the CES-FA and TR specifications (by construction, CD does not allow hetero-
geneous elasticities). Although these production functions yield some heterogeneity for certain
inputs and countries, they do not generate a consistent pattern across inputs and countries.

29



Figure 3: Average Output Elasticity Estimates by Firm Size Deciles
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Notes: This figure displays average output elasticity estimates across firm size deciles. For each
country, I first estimate the average elasticity within each decile for each industry-year pair, then
average these industry-year estimates within each country.

7 How Production Function Specification Affects Markups

Building on Hall (1988), De Loecker (2011) and De Loecker and Warzynski (2012)

develop a production-based method for estimating markups under two assump-

tions: (i) firms minimize their static costs with respect to at least one flexible

input, and (ii) they are price takers in the input market for that flexible input.

Under these conditions, a firm’s markup equals the output elasticity of a flexible

input divided by that input’s cost share in total revenue, µit := θVit/α
V
it .33 Because

the revenue shares of flexible inputs are typically observable in the data, a flexible

input’s output elasticity is sufficient to recover markups. This production-based

approach to estimating markups has been widely adopted in recent studies of

market power (Shapiro and Yurukoglu 2025; Miller 2025).

Because output elasticity enters directly into the markup formula, any bias
33As De Loecker and Warzynski (2012) note, the revenue share is with respect to planned output,
which requires correcting for exp(εit). I implement this correction when estimating markups.
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in its estimation translates into biased markups. This makes markup estimates

sensitive to the choice of production function specification. Indeed, Van Biese-

broeck (2008) finds that elasticity estimates can vary significantly across different

estimation methods.34 Motivated by this observation, this section analytically ex-

amines how biases in output elasticities impact the estimates of aggregate markup,

followed by empirical evidence presented in the next section.

7.1 Conflicting Markup Estimates from Different Flexible Inputs

If firms minimize production costs with respect to two flexible inputs, the markup

estimates derived from each input should coincide up to estimation error. How-

ever, empirical studies that rely on Hicks-neutral production functions often report

systematic differences between markup measures based on different inputs (Do-

raszelski and Jaumandreu 2019; Raval 2023). These studies suggest that certain

misspecifications in the underlying production model generate discrepancies in

markup values, and they point to a lack of factor-augmenting productivity.35

A notable feature of the labor-augmenting production function and this paper’s

identification strategy is that markup estimates based on labor and materials are

identical. This equivalence follows directly from the use of FOCs (Equation (4.4))

in estimation, which links the ratio of revenue shares to the ratio of elasticities:

θLit
θMit

=
αLit
αMit

=⇒ µLit =
θLit
αLit

=
θMit
αMit

= µMit , (7.1)

where µLit and µMit denote labor- and materials-based markups, respectively. The

inclusion of labor-augmenting productivity is key for achieving this equivalence.

Without labor-augmenting productivity, the identity in Equation (7.1) fails to hold

empirically (as confirmed by Figure OA-2 in Online Appendix H), indicating a po-

tential misspecification. Labor-augmenting productivity introduces an additional

dimension of unobserved heterogeneity. This in turn leads to exactly-identified

output elasticities (see Section 4.2), resulting in an internally consistent model
34This is in contrast to productivity estimates, which are found to be robust to production function
specification (Van Beveren 2012; Blackwood et al. 2021).

35Raval (2023) tests the production function approach by comparing markup estimates from two
flexible inputs. His analysis reveals that labor-based and materials-based markup measures are
negatively correlated in the cross-section and time series. He then examines possible mechanisms
for this discrepancy, including production function heterogeneity, labor adjustment costs, and
measurement error. He concludes that the most plausible explanation is the inability of the
standard production functions to account for heterogeneity in production technology.
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and identical markup estimates from labor and materials.

While conflicting markup estimates can also come from other misspecifications

(e.g., adjustment costs or input market power), factor-augmenting productivity

provides a theoretically grounded solution, particularly when the main concern is

insufficient unobserved heterogeneity in the production function (Raval 2023).36

7.2 Decomposing Markups: The Role of Production Functions

This section performs a decomposition analysis to investigate how biases in out-

put elasticities influence aggregate markup estimates. The analysis identifies two

distinct channels: (i) bias in the average output elasticity and (ii) bias in the

correlation between output elasticities and firm size. To illustrate these chan-

nels, I apply the Olley and Pakes (1996) decomposition (OP) to the aggregate

log-markup, defined as µ̃t =
∑
i

wit log(µit) =
∑
i

wit log(θit)−
∑
i

wit log(αit), where

wit denotes the aggregation weight, typically a measure of firm size. The OP

decomposition separates a weighted average into its unweighted mean and the co-

variance between the weights and the variable of interest, resulting in the following

decomposition:

µ̃t = E[log(θit)]︸ ︷︷ ︸
Avg. Elas (1)

+ Cov(wit, log(θit))︸ ︷︷ ︸
Heterogeneity in Elasticity (2)︸ ︷︷ ︸
Estimation

− E[log(αit)]︸ ︷︷ ︸
Avg. Share (3)

− Cov(wit, log(αit))︸ ︷︷ ︸
Heterogeneity in Shares (4)︸ ︷︷ ︸
Data

(7.2)

The aggregate log markup breaks down into four distinct components: two aris-

ing from output elasticities and two from revenue shares. This structure cleanly

separates the estimated elements (output elasticities) from the observable quanti-

ties (revenue shares), enabling us to trace how biases in output elasticities affect

aggregate markups.

Bias from the Average Output Elasticity. The first component of the de-

composition is the mean output elasticity. Misspecifications in the production

function can bias this term, directly affecting the aggregate markup. The elastic-

ity estimates in Section 6.1 indicate that Hicks-neutral production functions tend

to overestimate the flexible input elasticity. Accordingly, we expect this compo-

nent of the bias to be positive.
36An important limitation of my approach is that it requires two flexible inputs as opposed to only
one. This is particularly limiting if some inputs are subject to adjustment costs.
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Bias from Heterogeneity in Production Technology. The second compo-

nent reflects the covariance between firm size and the flexible input elasticity.

Bias in this component occurs when elasticities vary systematically with firm size,

yet the estimation fails to capture this relationship. The estimates presented in

Section 6.2 indicate an inverse relationship between flexible input elasticity and

firm size, implying that neglecting this pattern likely introduces a positive bias.

Therefore, the decomposition analysis indicates that both sources of bias in the

aggregate markup are likely positive and do not offset each other. Finally, these

biases can influence not only the level of markups but also their trends—for ex-

ample, if large firms increase their capital intensity over time and the estimation

approach fails to account for this shift in production technology.

8 Empirical Results: Markups

This section compares markup estimates across alternative production function

specifications. I first analyze how these specifications influence markup levels and

then examine markup trends within the US manufacturing sector.

When estimating markups under Hicks-neutral production functions, I use a

specification that includes capital and a single flexible input. I adopt this approach

for two reasons. First, I observe that markup estimates derived from Hicks-neutral

production functions using labor and materials differ markedly between the two

inputs—often falling below one—as shown in Figure OA-2 and consistent with

findings by Raval (2023). Second, the single flexible input specification facilitates

comparisons with recent markup studies, which often use a single flexible input.37

8.1 Markups Comparison: Level

I compute sales-weighted markups for each country by averaging firm-level markup

estimates derived from the output elasticities presented in Section 6.1. Figure 4

displays the resulting aggregate markups for four production functions—CD, TR,
37See, for example, De Loecker et al. (2020) and Autor et al. (2020). To give more details of
the estimation, in the Cobb-Douglas case, I estimate the production function as yit = βktkit +
βvtvrit+ωHit + εit, where vrit combines labor and materials into a single flexible input. Markups
can then be calculated using the estimated flexible input elasticity, µit = βvt/α

V
it . Note that

in this estimation, the parameters are allowed to change over time, enabling the CD model
to capture shifts in the aggregate production technology. Thus, when comparing more flexible
specifications with the CD model, differences in estimates should be interpreted as reflecting the
additional flexibility offered by those specifications relative to the time-varying CD parameters.

33



Figure 4: Average Markup Estimates Across Production Function Models

1.0

1.1

1.2

1.3

1.4

1.5

Chile Colombia India Turkey US

M
ar

ku
p

Cobb−Douglas Translog CES−FA FA

Notes: Comparison of sales-weighted markups estimated using four production functions. Sales-
weighted averages are calculated for each industry-year and then averaged across years. Error bars
show 95% confidence intervals based on bootstrap (250 resamples).

Table 2: Average Markups for the Three Largest Industries in Each Country

Industry 1 Industry 2 Industry 3
CD TR CES-FA FA CD TR CES-FA FA CD TR CES-FA FA

(311, 381, 321)

Chile 1.35 1.33 1.29 1.21 1.43 1.42 1.39 1.28 1.32 1.29 1.31 1.27
(0.01) (0.01) (0.02) (0.04) (0.02) (0.03) (0.04) (0.05) (0.02) (0.03) (0.04) (0.05)

(311, 322, 381)

Colombia 1.29 1.24 1.25 1.29 1.39 1.34 1.39 1.36 1.40 1.35 1.33 1.22
(0.00) (0.01) (0.02) (0.03) (0.01) (0.01) (0.02) (0.04) (0.01) (0.02) (0.04) (0.08)

(230, 265, 213)

India 1.2 1.2 1.14 1.15 1.17 1.16 1.17 1.16 1.42 1.44 1.33 1.26
(0.01) (0.02) (0.01) (0.02) (0.00) (0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.03)

(321, 311, 322)

Turkey 1.26 1.11 1.19 1.16 1.37 1.31 1.29 1.24 1.30 1.22 1.34 1.32
(0.01) (0.05) (0.02) (0.02) (0.00) (0.05) (0.02) (0.02) (0.02) (0.03) (0.02) (0.04)

(33, 32, 31)

US 1.61 1.45 1.31 1.36 1.42 1.37 1.34 1.26 1.30 1.20 1.30 1.27
(0.03) (0.07) (0.10) (0.07) (0.02) (0.04) (0.04) (0.05) (0.01) (0.02) (0.03) (0.03)

Notes: This table reports sales-weighted average markup estimates across four production function
specifications: Cobb-Douglas (CD), Translog (TR), CES with Hicks-neutral and labor-augmenting
productivity (CES-FA), and strongly homothetic production function with Hicks-neutral and labor-
augmenting productivity (FA). The estimates are presented for the three largest industries in each
country. The average markups are calculated for each industry-year and then averaged over the
years. Standard errors are derived using bootstrap (250 resamples). Industry codes are shown in
parentheses, with corresponding names provided in Supplementary Appendix A.
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CES-FA, and FA. Across all countries, the FA specification consistently yields

lower markups than the CD specification, with differences ranging from 6.3 pp

to 13.4 pp—a meaningful gap when markups are interpreted as measures of mar-

ket power. Figure OA-4 in Online Appendix H, which reports the standard er-

rors of these differences, confirms that these differences are statistically signifi-

cant.38 Specifications that are more flexible than CD—namely TR and CES-FA—

demonstrate how functional form flexibility and labor-augmenting productivity

reduce these biases. These specifications yield estimates between CD and FA val-

ues, reducing the biases by 15.2% to 86.5% across countries, but not eliminating

them entirely.

Table 2, which presents markup estimates for the three largest industries in

each country, reinforces these findings. In nearly all industries, the CD specifi-

cation estimates the highest markups, while the FA specification estimates the

lowest, with TR and CES-FA estimates falling in between. These estimates high-

light the role of both functional-form flexibility and unobserved heterogeneity in

production functions when estimating markups. Moreover, the consistency of pat-

terns observed across various countries and industries indicates that the results

are not driven by specific time periods or country- and industry-specific factors.

What mechanisms explain the differences in markup estimates across produc-

tion functions? Section 7.2 highlighted two sources: (i) bias in average output

elasticities and (ii) failure to capture the correlation between output elasticities

and firm size. To quantify the relative importance of each mechanism, I parti-

tion the gap between CD and FA log-markup estimates (µ̃t
CD − µ̃tFA) into these

components using the decomposition method presented in Equation (7.2):

(
E[log(θCDit )]− E[log(θFAit )]

)
+
(

Cov
(
wit, log(θCDit )

)
− Cov

(
wit, log(θFAit )

))
(8.1)

Figure 5 presents this decomposition, reporting the average elasticity differences

(gray bars) and average covariance differences (black bars) as percentages of the to-

tal log-markup difference. Both components contribute roughly equally to markup

differences on average (49.1% vs 50.9%), although their relative importance varies
38Figure OA-5 in Online Appendix H presents the year-by-year markup estimates, showing that
the lower markup estimates from FA are not an artifact of averaging over time. The FA markup
estimates are consistently below the CD estimates across all years throughout the sample.
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Figure 5: Decomposition of the Difference between Aggregate Markups
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Notes: This figure presents the decomposition results from Equation (8.1). The grey bars represent
the percent contribution of elasticity differences (first term) to markup differences, while the black
bars represent the percent contribution of covariance differences (second term). The decomposition
is performed separately for each year and then averaged across years within each country.

across countries. The results highlight two key patterns. First, the CD specifi-

cation consistently overestimates the unweighted average flexible input elasticity

across all countries (as indicated by the positive gray bars). Second, it fails to cap-

ture the negative relationship between firm size and flexible input elasticity (as

indicated by the positive black bars). Markup bias therefore does not originate

from a single source, emphasizing the importance of accurately estimating both

the average elasticities in an industry and their heterogeneity across firms.

8.2 Markups Comparison: Trend

This section analyzes markup trends in US manufacturing, while corresponding

estimates for other countries are reported in Figure OA-5 of Online Appendix H.

The focus on the US is motivated by growing interest in using the production

approach to analyze changes in market power (Autor et al. 2020; De Loecker

et al. 2020). This line of research has generated substantial attention in both

the economic implications of rising market power and methodologies for markup

measurement (Berry et al. 2019; Miller 2025). I aim to contribute to this literature

by exploring how a more flexible production function specification influences the

estimates of markup changes.

Figure 6 plots the sales-weighted aggregate markup changes in US manufac-

turing from 1962 to 2018 based on CD and FA production functions. The FA

estimates show that the aggregate markup remained relatively stable around 25%

throughout the 1960s and mid-1970s, after which it experienced a gradual decline,

falling to about 1.15 by 1980. Markups then began to increase again, exhibiting
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Figure 6: Sales-Weighted Markup Trend Over Time in US Manufacturing
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Notes: This figure compares sales-weighted markup trends in US manufacturing derived from a
Cobb-Douglas (CD) production function versus a strongly homothetic production function with
Hicks-neutral and factor-augmenting productivity (FA).

cyclical fluctuations and ultimately reaching around 1.3 by the end of the sample.

When we compare the markup estimates obtained from the FA and CD speci-

fications, we observe that the CD estimates reveal an increase in markups of 26.4

pp (s.e.=3.1 pp) between the 1960s and 2010s. The FA specification also shows

a rise in markups, though more modest at around 11.7 pp (s.e.=9.9 pp) over the

same period.39,40 The two series closely match up to the 1970s, after which they

begin to diverge, with FA estimates peaking at 1.42 and CD estimates at 1.61 near

the end of the sample period.

As described in Section 7, decomposing markup variation into components

attributable to elasticities and revenue shares could provide insights into these

differences. Figure OA-6 in Online Appendix H shows that variations in output

elasticities account for only 1.3% of the variance in the aggregate markup under

the CD specification, whereas they account for 21.5% under the FA specification.

Thus, while revenue shares predominantly drive markup variation in both specifi-

cations, the FA approach indicates more variation in output elasticities over time

than the CD specification.

These results complement recent findings on markups and market power in US
39The corresponding markup changes from the CES and TR specifications are 39.3 pp and 20.6
pp, respectively. The difference between the CD and FA markups is statistically significant at
the 95% confidence level for most years after the 1980s, as reported in Figure OA-5 of Online
Appendix H.

40The magnitude of markup changes is somewhat sensitive to the comparison period, though the
direction remains consistent. Compared to the 1980s baseline period, when the FA estimate has
the lowest value, CD estimates suggest a 25.2 pp (s.e.=2.3 pp) increase in the aggregate markup,
whereas FA estimates suggest a 17.7 pp (s.e.=8.3 pp) increase.
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manufacturing. For instance, Foster et al. (2024) find stable or declining markups

using Census data when estimating the production function at the 4-digit industry

level. Other studies have adopted demand-based methods to measure markups in

various manufacturing industries. Grieco et al. (2023) find no rise in average

markups in the auto industry, while others identify rising markups, including

Miller et al. (2023) in the cement industry, Döpper et al. (2024) in consumer

packaged goods, and De Loecker and Scott (2024) in the beer industry.

In concluding this section, it is important to note that these findings are specific

to the manufacturing sector and should not be generalized to the entire economy.

The drivers of market power likely vary across sectors, with industry-specific re-

search showing distinct patterns of markups in different industries (Miller 2025).

This paper’s empirical results emphasize the importance of allowing for produc-

tion function flexibility when measuring markups using the production approach.

Moreover, this paper focuses on only one dimension of production function flex-

ibility through labor-augmenting productivity. Incorporating other dimensions

of flexibility—such as accounting for market power in input and output markets,

multi-product production, or adjustment costs— could further improve our under-

standing of markup measurement (Doraszelski and Jaumandreu 2023; Cairncross

et al. 2025; Rubens 2023; Ackerberg and De Loecker 2024).

9 Robustness Checks and Extensions

This section describes the robustness checks presented in Online Appendix G.

9.1 Quantity Production Functions

Most production datasets report revenue rather than physical output. In the

presence of unobserved demand shocks and imperfect competition, revenue-based

output elasticities may fail to accurately identify markups (Flynn et al. 2019; Bond

et al. 2021). To analyze the robustness of my findings to this concern, I estimate

production functions using physical output in six Indian manufacturing industries.

I focus on industries producing relatively homogeneous products: brick tiles,

cotton shirts, biri cigarettes, black tea, parboiled non-basmati rice, and raw non-

basmati rice.41 Following Raval (2023), the sample includes plants that obtain at
41Using physical quantities in production functions presents its own challenges, such as account-
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least 75% of their revenue from one of these products. Using this sample, I measure

output in physical units and then repeat the estimation procedure described in

Section 5. The results presented in Figure OA-7a of Online Appendix H indicate

that relying on revenues instead of physical quantities introduces an upward bias

in average capital elasticity (7.6%) and a downward bias in average labor elasticity

(12.0%). However, the main findings in Section 8.1 on markup comparisons across

production function models remain robust when using quantity data.

9.2 Heterogeneous Input Prices

Although my baseline empirical analysis assumes uniform input prices due to limi-

tations of traditional production datasets, new datasets increasingly provide input

price information. Not accounting for heterogeneous input prices may introduce

biases into production function estimates. To address this concern, I utilize wage

and intermediate input price data from a subset of Indian industries that pre-

dominantly rely on a single intermediate input. Following the extension outlined

in Online Appendix A, I estimate output elasticities while controlling for input

prices in the input demand functions. Results in Figure OA-7b of Online Ap-

pendix H show that in this empirical setting, failing to control for input prices

results in small negative biases (0.3%–2.3%) in output elasticities and markups;

however, the comparison findings across production function specifications remain

robust. This analysis also serves as an example of how additional control variables

can be incorporated into the estimation, which could be useful in other empirical

contexts.

9.3 Multi-Product Firms

Another potential concern is that many firms across different industries produce

multiple products, even though many production function estimation methods,

including this paper, model single-product firms (Orr 2022; Valmari 2023). To

evaluate the impact of this concern, I repeat the estimation procedure using only

single-product firms from Indian manufacturing industries. Results in Figure OA-

7c of Online Appendix H indicate some biases in output elasticities ranging from

76.4% for capital elasticity to -10.7% for labor elasticity. However, the markup

ing for quality differences, aggregating different units for multi-product firms, and comparing
different units across firms. By focusing on homogeneous products, I aim to address these issues.
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comparison findings from single-product firms are qualitatively similar to the main

findings of the paper.

9.4 Measurement Error and Utilization in Capital

Another challenge in production function estimation is the potential measure-

ment error in capital input and the unobservability of capital utilization, which

can be exacerbated in nonparametric production functions (Collard-Wexler and

De Loecker 2020). To assess whether these concerns explain this paper’s findings, I

perform two analyses described in Online Appendix G.3. First, a simulation exer-

cise suggests that measurement error introduces a larger downward bias in capital

elasticity for the labor-augmenting production function than for the Cobb-Douglas

specification—a result inconsistent with my findings. Second, by assuming capi-

tal and electricity inputs are perfect complements, I derive capital utilization in

Chilean and Turkish data and re-estimate the production function using utilized

capital. While this correction affects the levels of elasticities and markups, the

results are qualitatively similar to the main empirical findings.

10 Concluding Remarks

Production function estimation is central to analyzing various economic questions

related to firm behavior. For an accurate understanding of firm behavior, it is

important that our production functions capture the heterogeneity in production

technologies among firms. This paper takes a step in this direction by developing a

method for estimating production functions with factor-augmenting productivity

and by demonstrating its impact on output elasticities and markup estimates.

Methodologically, I propose an approach that identifies output elasticities from

a production function that includes both labor-augmenting and Hicks-neutral pro-

ductivity. This approach imposes a functional form structure known as homothetic

separability and exploits the cost minimization assumption to develop control vari-

ables for productivity shocks. Empirically, I demonstrate across five datasets that

neglecting labor-augmenting productivity and imposing parametric restrictions

can lead to biased estimates of output elasticities and markups.
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A Proofs of Main Results

Proof of Proposition 2.1

This proof builds on the classic result of Shephard (1953). Throughout, I assume

that the standard properties of production functions hold (Chambers (1988, p.9)),

which guarantees that the cost function exists and Shephard’s Lemma holds.

Part (i)

The firm minimizes the cost of flexible inputs to produce the planned output, Ȳit:

min
Lit,Mit

pltLit + pmt Mit s.t. E
[
Ft
(
Kit, ht(Kit, ω

L
itLit,Mit)

)
exp(ωHit ) exp(εit) | Iit

]
> Ȳit.

Since the information set includes (Kit, ω
L
it, ω

H
it ), we can write this problem as:

min
Lit,Mit

pltLit + pmt Mit s.t. Ft
(
Kit, ht(Kit, ω

L
itLit,Mit)

)
exp(ωHit )Eit(Iit) > Ȳit, (A.1)

where Eit(Iit) := E[exp(εit) | Iit]. Because the firm treats ωLit as fixed, this problem

can be recast as a cost minimization problem where the firm chooses effective labor

while facing quality-adjusted input prices. To see this, let L̄it := ωLitLit denote the

effective (quality-adjusted) labor and p̄lit := plt/ω
L
it denote the quality-adjusted

wage. The cost minimization problem in Equation (A.1) can be rewritten as

min
Mit,L̄it

p̄litL̄it + pmt Mit s.t. Ft
(
Kit, ht(Kit, L̄it,Mit)

)
exp(ωHit ) > Ỹit(Iit), (A.2)

where Ỹit(Iit) := Ȳit/Eit(Iit). I will suppress (Iit) in Ỹit since Eit(Iit) is a constant

due to independence of εit from Iit. Next, I derive the cost function from Equation

(A.2). Letting p̄it = (p̄lit, p
m
t ) denote the input prices, the cost function becomes:

Ct(Ỹit, Kit,ω
H
it , p̄it)

= min
L̄it,Mit

{
p̄litL̄it + pmt Mit : Ỹit 6 Ft

(
Kit, ht(Kit, L̄it,Mit)

)
exp(ωHit )

}
,

= min
L̄it,Mit

{
p̄litL̄it + pmt Mit : F−1

t (Kit, Ỹit/ exp(ωHit )) 6 ht(Kit, L̄it,Mit)
}
,

= min
L̄it,Mit

{
F−1
t (Kit, Ỹit/ exp(ωHit ))

(
p̄litL̄it + pmt Mit

)
: 1 6 ht

(
Kit, L̄it,Mit

)}
,

=F−1
t (Kit, Ỹit/ exp(ωHit )) min

L̄it,Mit

{(
p̄litL̄it + pmt Mit

)
: 1 6 ht

(
Kit, L̄it,Mit

)}
,

≡C1t(Kit, Ỹit, ω
H
it )C2t(Kit, p̄

l
it, p

m
t ). (A.3)

where F−1
t (·) is the inverse function of F (·) with respect to its second argu-

ment. The second line follows from the assumption that Ft(·, ·) is strictly mono-

tone in its second argument. In the third line, we exploit the homogeneity of
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ht and the linearity of the cost function to rewrite ht
(
Kit, Ft(·)L̄it, Ft(·)Mit

)
as

Ft(·)ht
(
Kit, L̄it,Mit

)
. The fourth line follows because firms take (Kit, Ỹit, ω

H
it ) as

given. In the last line, the factorization in the previous step allows me to introduce

two new functions—C1t(·) and C2t(·)—which together describe the cost function.

By Shephard’s Lemma, the firm’s optimal demands for flexible inputs are given

by the derivatives of the cost function with respect to the input prices. Applying

this result yields the following ratio of materials to effective labor:

Mit

L̄it
=
∂C2t(Kit, p̄

l
it, p

m
t )/∂pmt

∂C2t(Kit, p̄lit, p
m
t )/∂p̄lit

≡ Cmt(Kit, p̄
l
it, p

m
t )

Clt(Kit, p̄lit, p
m
t )

,

where Cmt(·) and Clt(·) are the derivatives of the function C2t(·) with respect to

pmt and p̄lit, respectively. Because L̄it = ωLitLit, we can express Mit/Lit as:

Mit

Lit
=
Cmt(Kit, p̄

l
it, p

m
t )ωLit

Clt(Kit, p̄lit, p
m
t )

. (A.4)

The resulting function depends on Kit, ωLit, and industry-specific input prices:

M̃it = r̄t(Kit, ω
L
it, p

m
t , p

l
t) ≡ rt(Kit, ω

L
it), (A.5)

for some function rt(Kit, ω
L
it). This completes the first part of the proof.

Part (ii)

In the second part of the proof, I will show that

∂rt(Kit, ω
L
it)/∂ω

L
it > 0 for all (Kit, ω

L
it) or ∂rt(Kit, ω

L
it)/∂ω

L
it < 0 for all (Kit, ω

L
it).

By the properties of the cost functions, Cmt(·) and Clt(·) are homogeneous of

degree zero in input prices (Chambers (1988, p.64)). Thus, we can divide all

input prices by pmt in Equation (A.4) and express the input ratio as:

M̃it =
Cmt(Kit, p̄

l
it/p

m
t , 1)ωLit

Clt(Kit, p̄lit/p
m
t , 1)

≡ C̃mt(Kit, p
l/m
it )ωLit

C̃lt(Kit, p
l/m
it )

, (A.6)

where pl/mit := p̄lit/p
m
t , C̃mt(Kit, p

l/m
it ) := Cmt(Kit, p

l/m
it , 1), and C̃lt(Kit, p

l/m
it ) :=

Clt(Kit, p
l/m
it , 1). Taking the logarithm of Equation (A.6) yields

log(M̃it) = − log
(
C̃lt(Kit, p

l/m
it )/C̃mt(Kit, p

l/m
it )

)
+ log(ωLit).

Differentiating log(M̃it) with respect to log(ωLit) gives

∂ log(M̃it)

∂ log(ωLit)
= −

∂ log
(
C̃lt(Kit, p

l/m
it )/C̃mt(Kit, p

l/m
it )

)
∂ log(p

l/m
it )

(
∂ log(p

l/m
it )

∂ log(ωLit)

)
+ 1,

=
∂ log

(
C̃lt(Kit, p

l/m
it )/C̃mt(Kit, p

l/m
it )

)
∂ log(p

l/m
it )

+ 1 ≡ −σt(Kit, ω
L
itLit,Mit) + 1. (A.7)
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The last equality uses the fact that the elasticity of substitution equals minus the

derivative of the log input ratio with respect to the log input-price ratio (Cham-

bers (1988, p.94)).42 By Assumption 2.1(iv), σt(·) < 1 everywhere or σt(·) > 1

everywhere. Thus, the flexible input ratio is strictly monotone in ωLit. �

Lemma A.1. Let x, y, and z be scalar continuous random variables with joint

density f(x, y, z). Assume (x, y) are jointly independent of z. Then x and z are

independent conditional on y.

Proof. Let f(x | y) denote the conditional probability density function of x given y.

The independence assumption implies that f(x, y, z) = f(x, y)f(z). To complete

the proof, it suffices to show that f(x, z | y) = f(x | y)f(z | y). Using Bayes’ rule

for continuous random variables, I obtain

f(x, z | y) =
f(x, y, z)

f(y)
=
f(x, y)f(z)

f(y)
=
f(x | y)f(y)f(z)

f(y)
= f(x | y)f(z),

= f(x | y)f(z | y),

where f(z | y) = f(z) because joint independence of (x, y) from z implies that y

is independent of z.

Proof of Lemma 3.1

By Assumption 2.3, we have that ωLit ⊥⊥ Iit−1 | ωLit−1, ω
H
it−1. Substituting ωLit from

Equation (3.1), I obtain

g(ωLit−1, ω
H
it−1, u

1
it) ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1. (A.8)

Since g(ωLit−1, ω
H
it−1, u

1
it) is strictly monotone in u1

it, Equation (A.8) implies

u1
it ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1. (A.9)

By normalization, u1
it is uniformly distributed conditional on (ωLit−1, ω

H
it−1) and by

timing assumption (Kit,Wit−1, ω
L
it−1, ω

H
it−1) ∈ Iit−1. Thus, Equation (A.9) implies

u1
it | Kit,Wit−1, ω

L
it−1, ω

H
it−1 ∼ U(0, 1).

(ωLit−1, ω
H
it−1) are functions of Wit−1 by Equations (2.6) and (2.7). Using this

u1
it | Kit,Wit−1, r̄t−1(Kit−1, M̃it−1), s̄t−1(Kit−1,Mit−1, M̃it−1) ∼ U(0, 1),

42To see this, note that the elasticity of substitution between inputs (X1, X2) with prices (p1,
p2) is defined as σ = ∂ log(X1/X2)/∂ log(F1/F2). By cost minimization, F1/F2 = p1/p2, thus
σ = −∂ log(X1/X2)/∂ log(p1/p2).

43



which implies u1
it | Kit,Wit−1 ∼ U(0, 1). �

Proof of Lemma 3.2

By Assumption 2.3, we have that (ωLit, ω
H
it ) ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1. Using the

representations of productivity shocks in Equations (3.1) and (3.5) yields

gL(ωLit−1, ω
H
it−1, u

1
it), gH(ωLit−1, ω

H
it−1, u

1
it, u

2
it) ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1.

Monotonicity of gL(·) in u1
it, monotonicity gH(·) in u2

it, Lemma A.1 imply that

u2
it ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1, u

1
it. (A.10)

It follows from Equation (A.10), the fact that u2
it is uniformly distributed condi-

tional on (ωLit−1, ω
H
it−1, u

1
it), and (Kit,Wit−1) ∈ Iit−1 that

u2
it | Kit,Wit−1, ω

L
it−1, ω

H
it−1, u

1
it ∼ U(0, 1).

(ωLit−1, ω
H
it−1) are functions ofWit−1 by Equations (2.6)-(2.7). Using this, we obtain

u2
it | Kit,Wit−1, u

1
it ∼ U(0, 1). �

B Identification of Reduced Form Production Function

In this section, I show that the reduced form representation of strong homothetic

production (ft, h̄t) in Equation (4.7) is identified using the moment in Equation

(5.3). I begin by proving auxiliary lemmas and then present the main proof.

B.1 Auxiliary Lemmas

Lemma B.1. Suppose that w, z, x, s are continuous random variables and that

Var
(
s | w, z, x

)
> 0. Then, the functions f(w, z, x) and h(w, z, x) can be uniquely

identified from the relationship

y(w, z, x, s) = f(w, z, x)− h(w, z, x)s.

where y(w, z, x, s) is a known function.

Proof. Given that Var
(
s | w, z, x

)
> 0, it follows that there exist at least two

distinct values of s, say s1 and s2, with positive probability for each fixed (w, z, x).

Considering these two distinct values of s for the same (w, z, x), we can write

y1 = f(w, z, x)− h(w, z, x)s1, (B.1)

y2 = f(w, z, x)− h(w, z, x)s2. (B.2)
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Subtract Equation (B.1) from Equation (B.2) to eliminate f(w, z, x):

y2 − y1 = h(w, z, x)(s1 − s2).

which identifies h(w, z, x) as: h(w, z, x) = (y2 − y1)/(s1 − s2). Substituting h(·)
into Equation (B.1) and solving for f(w, z, x) identifies f(w, z, x).

Lemma B.2. Let p : R3
+ → R be a known, differentiable function. Suppose

there exist unknown differentiable functions f : R2
+ → R and h : R+ → R+ such

that for all w, x, z > 0, f(w, zh(x)) = p(w, x, z), then h(x) is identified up to a

multiplicative constant, and f(w, y) := f(w, zh(x)) (where y := zh(x)) is identified

up to a normalization given in the proof.

Proof. Taking derivatives of f(w, zh(x)) = p(w, x, z) with respect to z and x yields

f2(w, zh(x))h(x) = p3(w, x, z), f2(w, zh(x))zh′(x) = p2(w, x, z),

where the subscript k denotes the derivative of the function with respect to the kth

argument, e.g., f2(w, zh(x)) = ∂f(w, y)/∂y. Taking the ratio of these derivatives:
h′(x)

h(x)
=

p2(w, x, z)

p3(w, x, z)z
. (B.3)

Recognizing that h′(x)/h(x) = (d/dx) log h(x), we can identify log(h(x)) up to a

constant by integrating Equation (B.3). Hence, h(x) is identified up to a scale.

Then, f(w, y) is identified from f(w, zh(x)) = p(w, x, z) up to the following nor-

malization: f̃(w, y) = f(w, y/c) and h̃(x) = ch(x) with c > 0 such that if (f, h)

satisfy the conditions of the proposition then (f̃ , h̃) satisfy them too.

Lemma B.3. Suppose f(x, y) has continuous partial derivatives ∂f/∂x and

∂f/∂y. Then it is uniquely determined up to a constant by its derivatives.

Proof. Define f1(·) = ∂f(x, y)/∂x and f2(·) = ∂f(x, y)/∂y. Integrating f1(x, y):

f(x, y) =

∫
f1(x, y) dx+ g(y), (B.4)

where g(y) is an arbitrary function. Differentiating Equation (B.4) w.r.t. y:

f2(x, y) =
∂

∂y

(∫
f1(x, y) dx

)
+ g1(y).

Solving for g1(y):

g1(y) = f2(x, y)− ∂

∂y

(∫
f1(x, y) dx

)
. (B.5)
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Integrate Equation (B.5) with respect to y:

g(y) =

∫ [
f2(x, y)− ∂

∂y

(∫
f1(x, y) dx

)]
dy + C, (B.6)

where C is a constant. Substituting Equation (B.6) into Equation (B.4):

f(x, y) =

∫
f1(x, y) dx+

∫ [
f2(x, y)− ∂

∂y

(∫
f1(x, y) dx

)]
dy + C. (B.7)

Thus, f(x, y) is determined up to a constant by its partial derivatives.

B.2 Proof of Proposition 5.1

The strongly homothetic production function has the following reduced-form:

yit = ft
(
Kit, Lith̄t(M̃it)

)
+ ωHit + εit. (B.8)

Substituting the control function for ωHit we obtain:

yit = ft
(
Kit, Lith̄t(M̃it)

)
+ c2t(Wit−1, u

1
it, u

2
it) + εit, E[εit | Kit,Mit, M̃it,Wit−1, u

1
it, u

2
it] = 0.

Under strongly homothetic production function, the control variables are u1
it =

FM̃it
(M̃it) and u2

it = FMit|Kit,Wit−1,u1it
(Mit | Kit,Wit−1, u

1
it). Since FM̃it

(M̃it) is a

monotone transformation of M̃it, we can set u1
it to M̃it for the purposes of this

proof. Substituting u1
it and u2

it into the equation above gives:

yit = ft
(
Kit, Lith̄t(M̃it)

)
+ c2t

(
Wit−1, M̃it, s̃t(Kit,Mit, M̃it,Wit−1)

)
+ εit,

where s̃t(·) := FMit|Kit,Wit−1,u1it
(Mit | Kit,Wit−1, u

1
it). In this equation, (ft, h̄t, c2t)

are unknown functions to be estimated, and s̃t(·) can be treated as known in this

proof since it is identified from the data in the first stage.

I will next simplify the notation to present the proof in a compact form. First

I transform the arguments of s̃t(·) and can rewrite this equation as

yit = ft
(
Kit, Lith̄t(M̃it)

)
+ c2t

(
Wit−1, M̃it, st(Kit, Lit, M̃it,Wit−1)

)
+ εit, (B.9)

where s̃t(x1, x2, x3, x4) = st(x1, x2/x3, x3, x4). Second, I relabel

(Kit, Lit, M̃it,Wit−1) as (w, z, x, t), h̄t as h, c2t as g, and drop the time and

firm subscripts to obtain

y = f
(
w, zh(x)

)
+ g
(
t, x, s(w, z, x, t)

)
+ ε, E[ε | w, z, x, t] = 0.

Taking expectation of both sides conditional on (w, z, x, t), we obtain

E[y | w, z, x, t] = f
(
w, zh(x)

)
+ g
(
t, x, s(w, z, x, t)

)
. (B.10)
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Since the data identifies E[y | w, z, x, t] as a conditional expectation we must show

that f and h are identified from E[y | w, z, x, t]. Let Ω be the space of func-

tions satisfying our assumptions, where true functions (f0, h0, g0) ∈ Ω. Following

Matzkin (2007), (f̃ , h̃, g̃) ∈ Ω is observationally equivalent to (f0, h0, g0) if

f0

(
w, zh0(x)

)
+ g0

(
t, x, s(w, z, x, t)

)
= f̃

(
w, zh̃(x)

)
+ g̃
(
t, x, s(w, z, x, t)

)
. (B.11)

(f0, h0, g0) ∈ Ω are identifiable if no other member of Ω is observationally equiva-

lent to them. If identification holds except in special or pathological cases, then

the model is said to be generically identified (Lewbel 2019).

Proposition B.1. Suppose that (i) Functions (f0, h0, g0, s) are twice continuously

differentiable and have non-zero derivatives almost everywhere, (ii) The joint dis-

tribution function of (w, z, x, t) is absolutely continuous with positive density ev-

erywhere on its support, (iii) Var(s1(w, z, x, t)/s2(w, z, x, t) | w, z, x) > 0 where

s1 ≡ ∂s/∂w and s2 ≡ ∂s/∂z. Then g0 is identified up to a constant, h0 is identi-

fied up to a scale, and f0 is identified up to a normalization given in the proof.

Proof. I will show that if there exists observationally equivalent (f, h, g) and

(f̃ , h̃, g̃) as defined in Equation (B.11), then they must equal each other up to

the normalization given in the proposition. Let y(w, z, x, t) denote E[y | w, x, z, t].
Taking derivatives of y(w, z, x, t) with respect to w and z using Equation (B.10)

yields the following equations:

y1(w, z, x, t) = f1

(
w, zh(x)

)
+ g3

(
t, x, s(w, z, x, t)

)
s1(w, z, x, t), (B.12)

y2(w, z, x, t) = f2

(
w, zh(x)

)
h(x) + g3

(
t, x, s(w, z, x, t)

)
s2(w, z, x, t), (B.13)

where a function subscript k (e.g., f1) denotes the partial derivative of that

function with respect to its k-th argument. Multiplying Equation (B.13) by

s1(w, z, x, t)/s2(w, z, x, t) and subtracting equation (B.12) yields

y1(w,z, x, t)− y2(w, z, x, t)
(
s1(w, z, x, t)/s2(w, z, x, t)

)
=

f1

(
w, zh(x)

)
− f2

(
w, zh(x)

)
h(x)

(
s1(w, z, x, t)/s2(w, z, x, t)

)
(B.14)

The left-hand side of Equation (B.14) includes identified functions. Denote

it by ŷ(w, z, x, t) and define f̂1(w, z, x) := f1

(
w, zh(x)

)
and f̂2(w, z, x) :=

f2

(
w, zh(x)

)
h(x). With these functions, Equation (B.14) can be written as:

ŷ(w, z, x, t) = f̂1(w, z, x)− f̂2(w, z, x)ŝ(w, z, x, t) (B.15)
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where ŝ(·) = s1(·)/s2(·) By Assumption (iii), applying Lemma B.1 implies that

both f̂1(w, z, x) and f̂2(w, z, x) are identified from Equation (B.15). To separately

identify h(x) and f1

(
w, v

)
:= f1

(
w, zh(x)

)
from f̂1(w, z, x), we apply Lemma B.2.

This lemma shows that h(x) is identified up to scale (h(x) = ch̃(x)) and f1

(
w, v

)
is identified from f̂1(w, z, x) up to a normalization (f̃(w, v) = f(w, v/c)). Once we

know h(x), the identification of f̂2(w, z, x) implies that f2

(
w, v

)
is also identified

up to the same normalization.

To proceed with the results, assume that c is fixed. Applying Lemma B.3

shows that the identification of its partial derivatives implies the identification of

f(w, v) up to a constant. Therefore, for a fixed c, h(x) is identified, and f(w, v) is

identified up to a constant. Since c > 0 can take any positive value, we have that

f(w, v) = f̃(w, v/c) + a, h(x) = ch̃(x).

Here, c and a are arbitrary constants representing the scale and additive shifts.

Therefore, all observationally equivalent functions satisfy these relationships,

which concludes the proof of Proposition B.1.

To finish the proof of Proposition 5.1, we need to map its conditions to the

conditions of Proposition B.1 as they are given in a different notation. The equiv-

alence of Conditions (i-ii) under Proposition 5.1 and Proposition B.1 is trivial. For

Condition (iii), Proposition 5.1 stated that Var(s̃1(x1, x2, x3, x4)/s̃2(x1, x2, x3, x4) |
x1, x2, x3) > 0 where s̃(x1, x2, x3, x4) = s(x1, x2/x3, x3, x4). This implies Proposi-

tion B.1 Condition (iii) since:
s̃1(x1, x2, x3, x4)

s̃2(x1, x2, x3, x4)
x3 =

s1(x1, x2/x3, x3, x4)

s2(x1, x2/x3, x3, x4)

based on the notation redefinition given in Equation (B.9). Taking the conditional

variance implies that condition (iii) of Proposition 5.1 is equivalent to condition

(iii) of Proposition B.1. Therefore, Proposition B.1 implies that Proposition 5.1

holds.

48



References
Ackerberg, Daniel A., Caves, Kevin, and Frazer, Garth. 2015. “Identifica-

tion Properties of Recent Production Function Estimators”. Econometrica 83
(6): 2411–2451.

Ackerberg, Daniel A. and De Loecker, Jan. 2024. “Production Function
Identification Under Imperfect Competition”. Working Paper.

Ackerberg, Daniel A., Hahn, Jinyong, and Pan, Qingsong. 2023. “Nonpara-
metric Identification Using Timing and Information Set Assumptions with an
Application to Non-Hicks Neutral Productivity Shocks”. Working Paper.

Anderson, Simon P., Erkal, Nisvan, and Piccinin, Daniel. 2020. “Aggrega-
tive Games and Oligopoly Theory: Short-Run and Long-Run Analysis”. The
RAND Journal of Economics 51 (2): 470–495.

Autor, David, Dorn, David, Katz, Lawrence F, Patterson, Christina,
and Van Reenen, John. 2020. “The Fall of the Labor Share and the Rise of
Superstar Firms”. The Quarterly Journal of Economics 135 (2): 645–709.

Balat, Jorge, Brambilla, Irene, and Sasaki, Yuya. 2022. “Heterogeneous
Firms: Skilled-Labor Productivity and the Destination of Exports”. Working
Paper.

Basu, Susanto. 2019. “Are Price-Cost Markups Rising in the United States? A
Discussion of the Evidence”. Journal of Economic Perspectives 33 (3): 3–22.

Berry, Steven, Gaynor, Martin, and Scott Morton, Fiona. 2019. “Do In-
creasing Markups Matter? Lessons from Empirical Industrial Organization”.
Journal of Economic Perspectives 33 (3): 44–68.

Berry, Steven, Levinsohn, James, and Pakes, Ariel. 1995. “Automobile
Prices in Market Equilibrium”. Econometrica: 841–890.

Biondi, Filippo. 2022. “Firm Productivity and Derived Factor Demand Under
Variable Markups”. Working Paper.

Blackwood, G Jacob, Foster, Lucia S, Grim, Cheryl A, Haltiwanger,
John, and Wolf, Zoltan. 2021. “Macro and Micro Dynamics of Productiv-
ity: From Devilish Details to Insights”. American Economic Journal: Macroe-
conomics 13 (3): 142–172.

Bloom, Nicholas and Van Reenen, John. 2010. “Why Do Management Prac-
tices Differ Across Firms and Countries?” Journal of Economic Perspectives
24 (1): 203–224.

Blundell, Richard and Bond, Stephen. 2000. “GMM Estimation with Per-
sistent Panel Data: An Application to Production Functions”. Econometric
Reviews 19 (3): 321–340.

Bond, Steve, Hashemi, Arshia, Kaplan, Greg, and Zoch, Piotr. 2021.
“Some Unpleasant Markup Arithmetic: Production Function Elasticities and
Their Estimation from Production Data”. Journal of Monetary Economics
121:1–14.

49



Cairncross, John, Morrow, Peter, Orr, Scott, and Rachapalli, Swapnika.
2025. “Multi-product Markups”. SSRN Working Paper 4903621.

Caplin, Andrew and Nalebuff, Barry. 1991. “Aggregation and Imperfect
Competition: On the Existence of Equilibrium”. Econometrica 59 (1): 25–59.

Caradonna, Peter, Miller, Nathan, and Sheu, Gloria. 2025. “Mergers, En-
try, and Consumer Welfare”. Forthcoming, American Economic Review: Mi-
croeconomics.

Chambers, Robert G. 1988. Applied Production Analysis: A Dual Approach.
Cambridge University Press.

Chernozhukov, Victor and Hansen, Christian. 2008. “Instrumental Variable
Quantile Regression: A Robust Inference Approach”. Journal of Econometrics
142 (1): 379–398.

Clemhout, Simone. 1968. “The Class of Homothetic Isoquant Production Func-
tions”. The Review of Economic Studies 35 (1): 91–104.

Collard-Wexler, Allan and De Loecker, Jan. 2020. “Production Function
Estimation and Capital Measurement”. NBER Working Paper w22437.

De Loecker, Jan. 2011. “Recovering Markups from Production Data”. Interna-
tional Journal of Industrial Organization 29 (3): 350–355.

De Loecker, Jan, Eeckhout, Jan, and Unger, Gabriel. 2020. “The Rise of
Market Power and the Macroeconomic Implications”. The Quarterly Journal
of Economics 135 (2): 561–644.

De Loecker, Jan and Scott, Paul. 2024. “Markup Estimation using Production
and Demand Data. An Application to the US Brewing Industry”. Working
Paper.

De Loecker, Jan and Syverson, Chad. 2021. “An Industrial Organization
Perspective on Productivity”. In Handbook of Industrial Organization, 4:141–
223. Elsevier.

De Loecker, Jan and Warzynski, Frederic. 2012. “Markups and Firm-Level
Export Status”. American Economic Review 102 (6): 2437–2471.

De Ridder, Maarten, Grassi, Basile, and Morzenti, Giovanni. 2025. “The
Hitchhiker’s Guide to Markup Estimation: Assessing Estimates from Financial
Data”. LSE Working Paper.

Diamond, Peter, McFadden, Daniel, and Rodriguez, Miguel. 1978. “Mea-
surement of the Elasticity of Factor Substitution and Bias of Technical
Change”, 2:125–147.

Döpper, Hendrik, MacKay, Alexander, Miller, Nathan H, and Stiebale,
Joel. 2024. “Rising Markups and the Role of Consumer Preferences”. NBER
Working Paper w32739.

Doraszelski, Ulrich and Jaumandreu, Jordi. 2013. “R&D and Productivity:
Estimating Endogenous Productivity”. Review of Economic Studies 80 (4):
1338–1383.

50



— . 2018. “Measuring the Bias of Technological Change”. Journal of Political
Economy 126 (3): 1027–1084.

— . 2019. “Using Cost Minimization to Estimate Markups”. Working Paper.
— . 2023. “Reexamining the De Loecker and Warzynski (2012) Method for Esti-

mating Markups”. Working Paper.
Dunne, Timothy, Haltiwanger, John, and Troske, Kenneth R. 1997.

“Technology and Jobs: Secular Changes and Cyclical Dynamics”. In Carnegie-
Rochester Conference Series on Public Policy, 46:107–178. Elsevier.

Flynn, Zach, Gandhi, Amit, and Traina, James. 2019. “Measuring Markups
with Production Data”. SSRN Working Paper 3358472.

Foster, Lucia, Haltiwanger, John, and Tuttle, Cody. 2024. “Rising Markups
or Changing Technology”. NBER Working Paper w30491.

Gandhi, Amit, Navarro, Salvador, and Rivers, David A. 2020. “On the
Identification of Gross Output Production Functions”. Journal of Political
Economy 128 (8): 2973–3016.

Garrido, Francisco. 2022. “An Aggregative Approach to Pricing Equilibrium
Among Multi-Product Firms with Nested Demand”. The RAND Journal of
Economics.

Grieco, Paul L E, Murry, Charles, and Yurukoglu, Ali. 2023. “The Evolu-
tion of Market Power in the U.S. Automobile Industry”. The Quarterly Journal
of Economics 139 (2): 1201–1253.

Grieco, Paul L. E., Li, Shengyu, and Zhang, Hongsong. 2016. “Production
Function Estimation with Unobserved Input Price Dispersion”. International
Economic Review 57 (2): 665–690.

Hall, Robert E. 1988. “The Relation between Price and Marginal Cost in U.S.
Industry”. Journal of Political Economy 96 (5): 921–947.

Haltiwanger, John, Kulick, Robert B, and Syverson, Chad. 2018. “Mis-
allocation Measures: The Distortion That Ate the Residual”. Becker Friedman
Institute for Economics Working Paper.

Hsieh, Chang-Tai and Klenow, Peter J. 2009. “Misallocation and Manufac-
turing TFP in China and India”. The Quarterly Journal of Economics 124 (4):
1403–1448.

Imbens, Guido and Newey, Whitney. 2009. “Identification and Estimation of
Triangular Simultaneous Equations Models Without Additivity”. Econometrica
77 (5): 1481–1512.

Jensen, Martin Kaae. 2018. “Aggregative Games”. In Handbook of Game Theory
and Industrial Organization, Volume I, 66–92. Edward Elgar Publishing.

Jorgenson, Dale W. 1986. “Econometric Methods for Modeling Producer Be-
havior”. In Handbook of Econometrics, 3:1841–1915. Elsevier.

51



Kasahara, Hiroyuki, Schrimpf, Paul, and Suzuki, Michio. 2023. “Identifica-
tion and Estimation of Production Function with Unobserved Heterogeneity”.
arXiv preprint, 2305.12067.

Kasy, Maximilian. 2011. “Identification in Triangular Systems Using Control
Functions”. Econometric Theory 27 (3): 663–671.

Kehrig, Matthias and Vincent, Nicolas. 2021. “The Micro-level Anatomy of
the Labor Share Decline”. The Quarterly Journal of Economics 136 (2): 1031–
1087.

Keller, Wolfgang and Yeaple, Stephen R. 2009. “Multinational Enterprises,
International Trade, and Productivity Growth: Firm-Level Evidence from the
United States”. The Review of Economics and Statistics 91 (4): 821–831.

Kmenta, Jan. 1967. “On Estimation of the CES Production Function”. Interna-
tional Economic Review 8 (2): 180–189.

Levinsohn, James and Petrin, Amil. 2003. “Estimating Production Functions
Using Inputs to Control for Unobservables”. The Review of Economic Studies
70 (2): 317–341.

Lewbel, Arthur. 2019. “The Identification Zoo: Meanings of Identification in
Econometrics”. Journal of Economic Literature 57 (4): 835–903.

Lewbel, Arthur and Linton, Oliver. 2007. “Nonparametric Matching and Ef-
ficient Estimators of Homothetically Separable Functions”. Econometrica 75
(4): 1209–1227.

Li, Tong and Sasaki, Yuya. 2017. “Constructive Identification of Heterogeneous
Elasticities in the Cobb-Douglas Production Function”. arXiv:1711.10031.

Matzkin, Rosa L. 2007. “Nonparametric Identification”. In Handbook of Econo-
metrics, 6:5307–5368. Elsevier.

Miller, Nathan H. 2025. “Industrial Organization and the Rise of Market
Power”. International Journal of Industrial Organization 98:103131.

Miller, Nathan, Osborne, Matthew, Sheu, Gloria, and Sileo, Gretchen.
2023. “Technology and Market Power: The United States Cement Industry,
1974-2019”. Georgetown McDonough School of Business Research Paper, no.
4041168.

Morlacco, Monica. 2020. “Market Power in Input Markets: Theory and Evidence
from French Manufacturing”. Working Paper.

Nadiri, M. Ishaq. 1982. “Producers Theory”. In Handbook of Mathematical Eco-
nomics, 2:431–490. Elsevier.

Nocke, Volker and Schutz, Nicolas. 2018. “Multiproduct-firm Oligopoly: An
Aggregative Games Approach”. Econometrica 86 (2): 523–557.

Nocke, Volker and Whinston, Michael D. 2022. “Concentration Thresholds
for Horizontal Mergers”. American Economic Review 112 (6): 1915–1948.

Oberfield, Ezra and Raval, Devesh. 2021. “Micro Data and Macro Technol-
ogy”. Econometrica 89 (2): 703–732.

52



Olley, G. Steven and Pakes, Ariel. 1996. “The Dynamics of Productivity
in the Telecommunications Equipment Industry”. Econometrica 64 (6): 1263–
1297.

Orr, Scott. 2022. “Within-Firm Productivity Dispersion: Estimates and Implica-
tions”. Journal of Political Economy 130 (11): 2771–2828.

Pan, Qingsong. 2024. “Identification of Gross Output Production Functions with
a Nonseparable Productivity Shock”. SSRN Working Paper 4899485.

Raval, Devesh. 2011. “Beyond Cobb-Douglas: Estimation of a CES Production
Function with Factor Augmenting Technology”. US Census Bureau Center for
Economic Studies Paper No. CES-WP-11-05.

— . 2019. “The Micro Elasticity of Substitution and Non-neutral Technology”.
The RAND Journal of Economics 50 (1): 147–167.

— . 2023. “Testing the Production Approach to Markup Estimation”. Review of
Economic Studies 90 (5): 2592–2611.

Rubens, Michael. 2023. “Market Structure, Oligopsony Power, and Productiv-
ity”. American Economic Review 113 (9): 2382–2410.

Rubens, Michael, Wu, Yingjie, and Xu, Mingzhi. 2025. “Exploiting or Aug-
menting Labor?” Working Paper.

Shapiro, Carl and Yurukoglu, Ali. 2025. “Trends in Competition in the United
States: What Does the Evidence Show?” Working Paper.

Shephard, Ronald W. 1953. Cost and Production Functions. Princeton Univer-
sity Press.

Syverson, Chad. 2011. “What Determines Productivity?” Journal of Economic
Literature 49 (2): 326–365.

Valmari, Nelli. 2023. “Estimating Production Functions of Multiproduct Firms”.
Review of Economic Studies 90 (6): 3315–3342.

Van Beveren, Ilke. 2012. “Total Factor Productivity Estimation: A Practical
Review”. Journal of Economic Surveys 26 (1): 98–128.

Van Biesebroeck, Johannes. 2008. “The Sensitivity of Productivity Estimates:
Revisiting Three Important Debates”. Journal of Business & Economic Statis-
tics 26 (3): 311–328.

Van Reenen, John. 2018. “Increasing Differences between Firms: Market Power
and the Macro-Economy”. Federal Reserve Bank of Kansas City Working Pa-
per.

Wooldridge, Jeffrey M. 2009. “On Estimating Firm-level Production Functions
Using Proxy Variables to Control for Unobservables”. Economics Letters 104
(3): 112–114.

Yeh, Chen, Macaluso, Claudia, and Hershbein, Brad. 2022. “Monopsony
in the US Labor Market”. American Economic Review 112 (7): 2099–2138.

Zhang, Hongsong. 2019. “Non-neutral Technology, Firm Heterogeneity, and La-
bor Demand”. Journal of Development Economics 140 (3): 145–168.

53



Production Function Estimation with Factor-Augmenting
Technology: An Application to Markups

Mert Demirer

Appendix - For Online Publication

OA-1



A Extension to Heterogeneous Input Prices

In this extension, I allow input prices to vary across firms. Let plit and pmit denote

the wage and materials prices. Define p̄it := (plit, p
m
it ) as the input price vector and

define pl/mit := plit/p
m
it as the input price ratio. Unlike in the main model, we now

include input prices inWit, so we letWit := (Kit, Lit,Mit, p̄it). To account for firm-

level variation in input prices, I revise the Markov and monotonicity assumptions

as follows.

Assumption OA-1 (First-Order Markov with Heterogeneous Input Prices). The

distribution of productivity shocks and input prices satisfies the following condition:

P (ωLit, ω
H
it , p̄it | Iit−1) = P (ωLit, ω

H
it , p̄it | ωLit−1, ω

H
it−1, p̄it−1).

This assumption states that input prices and productivity shocks jointly follow

an exogenous, first-order Markov process. Notably, this assumption allows pro-

ductivity shocks and input prices to be correlated, capturing cases such as more

productive workers (those with higher ωLit) earning higher wages.

Assumption OA-2 (Monotonicity with Heterogeneous Input Prices). The firm’s

materials demand is given byMit = st(Kit, ω
L
it, ω

H
it , p̄it), and it is strictly increasing

in ωHit .

This assumption generalizes Assumption 2.5 from the main model by allowing

materials demand to depend on both input prices. In addition to these new

assumptions, I retain Assumptions 2.1, 2.2, and 2.4 from the main model and

state the following proposition.

Proposition OA-1.

(i) Suppose Assumptions 2.1(i-ii) and 2.2 hold. With firm-level heterogeneity in

input prices, the flexible input ratio, denoted by M̃it = Mit/Lit, relies on Kit, ωLit
and pl/mit :

M̃it = rt(Kit, ω
L
it, p

l/m
it ). (OA.1)

(ii) Under Assumption 2.1(iii), rt(Kit, ω
L
it, p

l/m
it ) is strictly monotone in ωLit.

The proof is a straightforward extension of the proof of Proposition 2.1, and is

therefore omitted. In contrast to Proposition 2.1, the flexible input ratio here
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also depends on the input price ratio pl/mit , implying that once we condition on

p
l/m
it and Kit, Equation (OA.1) is invertible to obtain ωLit.43 By inverting Equation

(OA.1) with respect to ωLit and then inverting the materials demand function in

Assumption OA-2 with respect to ωHit , we can write productivity shocks as follows:

ωLit = r̄t(Kit, M̃it, p
l/m
it ), ωHit = s̄t(Kit,Mit, M̃it, p̄it). (OA.2)

The derivation of the control variables proceeds similarly to that in Section 3.

First, I use Skorokhod’s representation of ωLit, which gives:

ωLit = g1(ωLit−1, ω
H
it−1, p

l/m
it−1, p

l/m
it , u1it), u1it | ωLit−1, ωHit−1, p

l/m
it−1, p

l/m
it ∼ U(0, 1). (OA.3)

Unlike in Equation (3.1) of the main text, g1(·) now includes both current and

lagged input price ratios. This follows from Proposition OA-1, which indicates

that the optimal input ratio depends on input price ratios. Combining Equations

(OA.1), (OA.2), and (OA.3) gives:

M̃it = rt
(
Kit, g1(ωLit−1, ω

H
it−1, p

l/m
it−1, p

l/m
it , u1it), p

l/m
it

)
≡ r̃t(Kit,Wit−1, p

l/m
it , u1it), (OA.4)

where r̃t(·) is strictly monotone in u1
it.

Lemma OA-4. Under Assumptions 2.4, OA-1, and OA-2, u1
it is jointly indepen-

dent of (Kit,Wit−1, p
l/m
it ).

Proof. This proof closely follows the proof of Lemma 3.1. By Assumption OA-1:

(p
l/m
it , ωLit) ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1, p̄it−1,

p
l/m
it , g1(ωLit−1, ω

H
it−1, p

l/m
it−1, p

l/m
it , u1

it) ⊥⊥ Iit−1 | ωLit−1, ω
H
it−1, p̄it−1.

Monotonicity of g1(·) with respect to its last argument implies that

u1
it ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1, p

l/m
it , p

l/m
it−1.

Since u1
it has a uniform distribution conditional on (ωLit−1, ω

H
it−1, p

l/m
it , p

l/m
it−1) by nor-

malization in Equation (OA.3) and (Kit,Wit−1) ∈ Iit−1, we have that

u1
it | Kit,Wit−1, ω

L
it−1, ω

H
it−1, p

l/m
it , p

l/m
it−1 ∼ U(0, 1).

Using Equation (OA.2), we substitute (ωLit−1, ω
H
it−1) as functions of (Wit−1) to

obtain:

u1
it | Kit,Wit−1, p

l/m
it ∼ U(0, 1).

43Because of the cost function’s properties, only the price ratio affects the flexible input ratio.
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With this lemma and using Equation (OA.4), u1
it can be identified as:

u1
it = F

M̃it|Kit,Wit−1,p
l/m
it

(M̃it | Kit,Wit−1, p
l/m
it ).

Next, using Equations (OA.2) and (OA.3), we can write ωLit ≡ c1t(Wit−1, p
l/m
it , u1

it).

Unlike in the main model, this control function includes the price ratio pl/mit since

u1
it is defined conditional on the price vector p̄it in Equation (OA.3). The control

function for ωHit follows a similar derivation:

ωHit = g2(ωLit−1, ω
H
it−1, p̄it−1, p̄it, u

1
it, u

2
it), u2

it | ωLit−1, ω
H
it−1, p̄it−1, p̄it, u

1
it ∼ U(0, 1).

Following the same steps used to derive Equation (3.2), the materials demand can

be derived as Mit ≡ s̃t
(
Kit,Wit−1, p̄it, u

1
it, u

2
it

)
, with s̃t(·) strictly monotone in u2

it.

Lemma OA-5. Under Assumptions 2.4, OA-1 and OA-2, u2
it is jointly indepen-

dent of (Kit,Wit−1, p̄it, u
1
it).

Proof. This proof closely follows the proof of Lemma 3.2. By Assumption OA-1
we have

(p̄it, ω
L
it, ω

H
it ) ⊥⊥ Iit−1 | ωLit−1, ωHit−1, p̄it−1,

p̄it, g1(ωLit−1, ω
H
it−1, p

l/m
it−1, p

l/m
it , u1it), g2(ωLit−1, ω

H
it−1, p̄it−1, p̄it, u

1
it, u

2
it) ⊥⊥ Iit−1 | ωLit−1, ωHit−1, p̄it−1.

Monotonicity of g1(·) and g2(·) with respect to their last arguments and Lemma

OA-4 imply that

u2
it ⊥⊥ Iit−1 | ωLit−1, ω

H
it−1, p̄it, p̄it−1, u

1
it.

Since u2
it has a uniform distribution conditional on (ωLit−1, ω

H
it−1, p̄it, p̄it−1, u

1
it) and

(Kit,Wit−1) ∈ Iit−1 we have

u2
it | Kit,Wit−1, ω

L
it−1, ω

H
it−1, p̄it, u

1
it ∼ U(0, 1).

Using Equation (OA.2) to substitute (ωLit−1, ω
H
it−1) as functions of Wit−1, I obtain

u2
it | Kit,Wit−1, p̄it, u

1
it ∼ U(0, 1).

From this lemma and the strict monotonicity of Mit in u2
it, we can recover u2

it as

u2
it = FMit|Kit,Wit−1,p̄it,u1it

(Mit | Kit,Wit−1, p̄it, u
1
it),

and the control function is given by ωHit ≡ c2t(Wit−1, p̄it, u
1
it, u

2
it). Therefore,

once we allow input prices to vary, the control functions take the form ωLit =

OA-3



c1t(Wit−1, p
l/m
it , u1

it) and ωHit = c2t(Wit−1, p̄it, u
1
it, u

2
it). The rest of the identification

and estimation results remain the same with these modifications in the control

variables.

B Models of Imperfect Competition

This section investigates the conditions under which the firm’s materials demand

function can be expressed as in Assumption 2.5,Mit = st(Kit, ω
H
it , ω

L
it). To achieve

this, I begin by deriving the firm’s materials demand function from its cost mini-

mization problem.

B.1 Symmetric and Aggregative Product Market Competition Games

In Equation (A.3) of Appendix A, the firm’s static cost function is derived as

follows:

Ct(Ỹit, Kit, ω
H
it , ω

L
it, p̄t) = C1t(Kit, Ỹit, ω

H
it )C2t(Kit, p̄

l
t/ω

L
it, p

m
t ). (OA.5)

where p̄t = (plt, p
m
t ) is the input price vector. Here, Ỹit denotes the firm’s static

profit-maximizing level of output. By Shephard’s Lemma, the firm’s materials

demand is given by:

Mit =
∂C1t(Kit, Ỹit, ω

H
it )C2t(Kit, p̄

l
t/ω

L
it, p

m
t )

∂pmt
= s̃t(Kit, Ỹit, ω

H
it , ω

L
it). (OA.6)

Here, the firm’s materials demand depends on Kit, target output Ỹit, productivity

shocks (ωHit , ω
L
it), and the industry-specific input prices reflected in the t index in

s̃t(·). Next, compare this expression with the materials demand function given in

Assumption 2.5.

Mit = st(Kit, ω
H
it , ω

L
it), (OA.7)

Comparing Equation (OA.7) with Equation (OA.6) implies that, for our materials

demand assumption to hold, the firm’s profit-maximizing planned output Ỹit must

take the following form: Ỹit = Yt
(
Kit, ω

H
it , ω

L
it

)
. In other words, the firm’s profit-

maximizing output choice should depend solely on (Kit, ω
H
it , ω

L
it) and any industry-

level variables which can be represented by the t index in Yt(·). If this condition

holds, the materials demand function derived from cost minimization in Equation
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(OA.6) can be written as:

Mit = s̃t(Kit, Yt
(
Kit, ω

H
it , ω

L
it

)
, ωHit , ω

L
it)

= st(Kit, ω
H
it , ω

L
it),

which is consistent with Assumption 2.5. Hence, in the remainder of this section,

I establish the sufficient conditions under which Ỹit = Yt
(
Kit, ω

H
it , ω

L
it

)
holds.

To achieve this, I require two high-level conditions. First, there must be no

unobserved, firm-specific demand shifters, as these would affect the firm’s profit-

maximizing output choice Ỹit. Second, the firm’s output choice must not be influ-

enced by individual competitors’ actions. Otherwise, Ỹit would depend on com-

petitors’ output (or price) decisions, which in turn depend on their productivity,

contradicting Ỹit = Yt(Kit, ω
H
it , ω

L
it). However, the output choice may still depend

on common, industry-specific factors, which are captured by the t index in the

Yt(·) function.

One class of models satisfying these conditions is symmetric aggregative games,

where a firm’s best response depends only on industry-wide aggregates rather

than on competitors’ individual actions. When such industry-level aggregates can

be constructed in best-response functions, the game can be represented as an

aggregative game. Aggregative games are particularly useful because they reduce

the dimensionality of the firm’s strategic problem.

In what follows, I will provide conditions under which a firm’s optimal out-

put Ỹit depends on the aggregate in an aggregative game. I then present specific

examples—such as Cournot and Bertrand competition (with logit and CES de-

mand) in oligopolistic competition and CES/Kimball preferences in monopolistic

competition—that can be framed as aggregative games.

Consider a market with J firms. Each firm produces a single product according

to the cost function given in Equation (OA.5). Products may be either perfect

or imperfect substitutes, depending on the assumed demand model. I assume

each firm, in choosing Ỹit, maximizes its static profit function given the strategic

actions (price or quantity) of its rivals. A Nash equilibrium exists when no firm

can unilaterally change its chosen action to achieve a higher profit, given all other

firms’ actions. To simplify the notation, let ωi = (Ki, ω
H
i , ω

L
i ) collect the cost

determinants that firm i treats as given in static optimization problems. I also
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drop the t subscript throughout this section since the analysis here focuses on a

single period. I start with two definitions.

Definition OA-1 (Aggregative Games, Acemoglu and Jensen 2013). A game is

called (linearly) aggregative if each firm’s payoff depends only on its own one-

dimensional action, ai > 0, and the sum of the actions of all firms, the aggregate,

A =
∑J

i=1 ai. Formally, πi(ai, a−i) = πi(ai, A), where a−i denotes the action vector

of all other firms.

In our setting, assuming that ai corresponds to firm i’s quantity choice (for now,

before considering a specific model), firm i’s payoff can be expressed as

πi = Ri(a)− C(ai, ωi),

where a = (a1, a2, · · · , aJ) is the vector of actions across all firms, Ri(·) the revenue
function of firm i and C(ai, ωi) is the cost function that is common to all firms

in the industry since the production function is industry-specific.44 If the game is

aggregative, then the profit function becomes:

πi(ai, A, ωi) = Ri(ai, A)− C(ai, ωi)

= Ri(ai, A−i + ai)− C(ai, ωi),

where A−i =
∑

j 6=i aj. In this formulation, the aggregative structure ensures that

the revenue function depends only on the total actions of the rivals rather than

each rival’s individual decision. However, the revenue function can still be firm-

specific (as indicated by index i) because it can be affected by firm-specific demand

shocks. To address this, I also impose a symmetry condition:

Definition OA-2 (Symmetric Games). A competition game is symmetric (with

respect to demand) if each firm’s revenue satisfies Ri(ai, a−i) = Rj(ai, a−i) for any

i, j.

In other words, the firm identities are exchangeable: if two firms produce the same

amount and face the same actions, their revenue is the same. In our setting, the

symmetry condition implies that for any two firms i and j

Ri(ai, A−i + ai)− C(ai, ωi) = Rj(ai, A−i + ai)− C(ai, ωi).

44If ai is the price, we can write quantity as a function of the aggregate and the firm’s price, as I
show in Online Appendix B.2.2 and Online Appendix B.2.3
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Using this, we can write the profit function as:

π(ai, A, ωi) = R(ai, A−i + ai)− C(ai, ωi)

Therefore, under symmetry, once cost determinants are included, the functional

form for profit is no longer firm-specific (πi vs π). In what follows, I write the

profit function as π(ai, A, ωi). When the cost vector ωi is suppressed, I use the

shorter πi(ai, A), where the subscript now signals the firm-specific cost variables.

With these assumptions, I aim to show that in a symmetric, aggregative com-

petition game, (i) each firm’s best response function depends only on the aggregate

and its cost variables ai = r̃i(A) = r̃(A, ωi) where r̃i(·) is the best response func-

tion and (ii) an equilibrium exists and can be characterized by an aggregate A∗

such that a∗i = r̃(A∗, ωi) and
∑
a∗i = A∗. The proof proceeds in three steps. First,

I characterize the conditions under which a firm’s best response can be expressed

as a function of the aggregate (that is, A instead of A−i because it is trivial to

show that best response depends on A−i with a well-behaved profit function).

Second, I identify the conditions under which an equilibrium exists (that is, A∗

exists). Finally, I give examples of some demand systems and competition games

that satisfy these assumptions.

The analysis builds on Anderson et al. (2020), who study aggregative games in

industrial organization to derive comparative statics of entry. For completeness, I

reproduce some of their results and extend others to cover non-constant marginal

cost cases.

Proposition OA-1 (Existence of Firm’s Best Response as a function of the Ag-

gregate). Assume that

(i) The competition game is aggregative and symmetric.

(ii) πi(ai, a−i) is twice differentiable, and strictly quasi-concave in ai, with a

strictly negative second derivative with respect to ai at an interior maximum.

(iii) d2πi
da2i

< d2πi
daidA−i

.

Then, each firm’s best response can be written as a function of the sum of all firms’

actions and its cost variables ωi. That is, the best response does not depend on the

actions of the individual competitors.
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Proof. Since the game is aggregative, we can express the firm’s profit function as

πi(ai, a−i) = πi(A−i + ai, ai) = π(A−i + ai, ai, ωi).

By the strict quasi-concavity specified in condition (ii), there exists a unique ai =

ri(A−i) that maximizes the firm’s profit. I next show that dai/dA−i = r′i(A−i) >

−1. Differentiating the FOC with respect to A−i and applying the chain rule:

∂2πi
∂a2

i

dai
dA−i

+
∂2πi

∂ai∂A−i
= 0, =⇒ r′i(A−i) =

− ∂2πi
∂ai∂A−i
∂2πi
∂a2

i

> −1,

by condition (iii). Next, I show that there is a one-to-one mapping between A−i
and A. Differentiating the aggregate function A = A−i + ri(A−i) with respect to

A−i:
dA

dA−i
= 1 + r′i(A−i) > 0,

because r′i(A−i) > −1. Hence, the mapping A−i to A is strictly increasing and

thus invertible, implying the existence of a function mi such that:

A−i = mi(A).

Substituting A−i = mi(A) into the best response function ri(·) yields

ai = ri(A−i) = ri(mi(A)) ≡ r̃i(A) = r̃(A, ωi).

Therefore, each firm’s optimal action can be expressed as a function of the aggre-

gate and its cost variables, which concludes the proof.

Next, I investigate the conditions that ensure the existence of an equilibrium.

In particular, I show that there exists a fixed point A∗ such that
∑
r̃i(A

∗) = A∗.

Lemma OA-6 (Existence of Aggregate using Brouwer Fixed Point Theorem).

Assume that each firm’s strategy space is compact. Then there exists an A∗ such

that
∑
ai =

∑
r̃i(A

∗) = A∗.

Proof. An equilibrium exists if and only if the best response function as an aggre-

gate r̃i(A) has a fixed point. This implies that the aggregate A satisfies:

A =
∑

r̃i(A) ≡ r̄(A). (OA.8)
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To show the existence of a fixed point, observe that each individual best response

function r̃i(A) is continuous. Since each firm’s strategy space ai lies within a com-

pact interval [amin
i , amax

i ], the aggregate Amust lie in the interval
[∑

amin
i ,

∑
amax
i

]
,

which is also compact. Hence, the aggregate best response function r̄(A) maps

the compact interval [Amin, Amax] into itself. Since r̄(A) is continuous and its do-

main is a compact convex set, the Brouwer Fixed Point Theorem guarantees the

existence of a fixed point A∗.

Lemma OA-7 (Existence of Aggregate using Intermediate Value Theorem). As-

sume that actions are strategic substitutes, that is, r′i(A−i) < 0. Then, there exists

a unique A∗ such that
∑
ai =

∑
r̃i(A

∗) = A∗.

Proof. First, I show that dr̃i(A)/dA < 1. Differentiate r̃i(A) with respect to A:
dr̃i(A)

dA
=

d

dA
ri(mi(A)) = r′i(mi(A))m′i(A). (OA.9)

Since mi(·) is a function of Ai = A−i + ri(A−i), by the inverse function theorem:

m′i(A) =
1
dAi

dA−i

=
1

1 + r′i(mi(A))
.

Substituting m′i(A) back into Equation (OA.9), we obtain:
dr̃i(A)

dA
= r′i(mi(A)) · 1

1 + r′i(mi(A))
.

Since 0 > r′i(A−i) > −1, this equation implies that r̃′i(A)<0, so r̃i(·) is strictly

decreasing.

The equilibrium condition can then be written as: A = r̄(A) with r̄(A) =
∑
r̃i(A).

Since each r̃i(A) is strictly decreasing in A, their sum r̄(A) inherits this property

and is strictly decreasing. Let G(A) = r̄(A) − A. Given that r̄(A) is strictly

decreasing, G(A) is also strictly decreasing. I now impose the following boundary

conditions:

lim
A→0

G(A) = r̄(A)− A > 0, lim
A→∞

G(A) = lim
A→Ā

r̄(A)− A < 0.

where Ā is the sum of the upper bound of the firms’ strategy spaces. These

boundary conditions hold under mild assumptions, such as bounded firm profits.

Because G(A) is strictly decreasing and meets these boundary conditions, it can

cross zero at most once. Thus, G(A) = 0 has at most one solution. Consequently,

there is at most one equilibrium A∗ satisfying
∑
r̃i(A

∗) = A∗.
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B.2 Examples of Aggregative Oligopolistic Competition Models

In this section, I demonstrate that under some assumptions, both Cournot com-

petition and Nash–Bertrand competition with CES or logit demand meet the

conditions of Proposition OA-1 and are, therefore, aggregative games.

B.2.1 Cournot Competition

In the Cournot model, the market price depends on the total quantity produced

by the industry. Let p(Q) be the inverse demand curve, where Q is the total

output in the market. For firm i, let Q−i be the total output of all other firms, so

Q = Q−i + qi. The firm’s profit function is given by

πi(q) = πi(Q, qi) = p(Q)qi − Ci(qi),

where Ci(qi) = C(qi, ωi). Redefining the strategic variable ai := qi and A−i := Q−i,

we can rewrite the profit function as:

πi(a) = πi(A, ai) = p(A−i + ai)ai − Ci(ai).

Hence, Cournot competition is a symmetric aggregative game where the aggregate

variable is the total industry quantity Q. This shows that condition (i) of Propo-

sition OA-1 is satisfied. Next, I identify assumptions under which conditions (ii)

and (iii) in Proposition OA-1 hold for the Cournot game.

Proposition OA-2. Under the following assumptions, the Cournot competition

game satisfies conditions (ii) and (iii) of Proposition OA-1:

(i) The cost function is increasing and convex, demand is downward sloping:

C ′i(ai) > 0, C ′′i (ai) > 0 for all i and p′(A) < 0.

(ii) The marginal revenue is decreasing: 2p′(A) + aip
′′(A) < 0 for all i.

Proof. I first show that the profit function is strictly quasi-concave by examining

its second derivative
d2πi
da2

i

=
(
2p′(A) + ai p

′′(A)
)
− C ′′i (ai).

By condition (ii), the first term is negative, and by condition (i), the second term

is also negative. Hence, the profit function is concave, satisfying the condition (ii)

of Proposition OA-1. Next, I show that the condition (iii) of Proposition OA-1
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also holds: d2πi
da2i

< d2πi
daidA−i

. In the Cournot model, this difference can be written

as:
d2πi
da2

i

− d2πi
dai dA−i

= (2 p′(A) + ai p
′′(A)− C ′′i (ai))− (p′(A) + ai p

′′(A))

= p′(A)− C ′′i (ai) < 0,

since p′(A) < 0 and C ′′i (ai) > 0 by Assumption (i). This concludes that the firm’s

best response can be expressed as a function of aggregate ai = ri(A).

To show that an equilibrium A∗ exists, I impose the trivial assumption that

each firm’s output is restricted to a finite interval, ai ∈ [0, ā]. This makes the strat-

egy space compact and by Lemma OA-6, there exists A∗ such that
∑

i ri(A
∗) = A∗,

ensuring the existence of an equilibrium.

B.2.2 Bertrand Competition with Logit Demand

In a symmetric Bertrand oligopoly game with logit demand, firm i’s residual de-

mand is given by:

D(pi, p−i) =
exp[(s− pi)/µ]∑
j exp[(s− pj)/µ]

,

where s is the “quality” parameter, pi is price of firm i, and µ > 0 represents

the degree of preference heterogeneity. Let ai = exp[(s − pi)/µ]. Then, we can

transform the demand function to write it as a function of ai as follows:

D(ai, A) =
ai
A
, with A =

∑
j

exp[(s− pj)/µ].

Using this notation, the firm’s profit function becomes:

πi = (s− µ ln ai)qi − Ci(qi), qi := D(ai, A) =
ai

A−i + ai
.

Hence, the Nash–Bertrand game with logit demand is an aggregative game with

respect to the variable ai, satisfying condition (i) of Proposition OA-1. I now

present the assumptions under which conditions (ii) and (iii) of Proposition OA-1

are also satisfied.

Lemma OA-8. Under the following assumptions, the Bertrand competition with

logit demand satisfies conditions (ii) and (iii) of Proposition OA-1:

(i) The cost function is convex and increasing: C ′′i (·) > 0, C ′i(·) > 0 for all i.
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(ii) Positive markup: pi − C ′i(·) > 0 for all i in equilibrium.

Proof. I begin by deriving the derivatives of the residual demand qi = D(ai, A)

with respect to A−i and ai
∂qi
∂ai

=
A−i

(A−i + ai)2
> 0,

∂qi
∂ai∂ai

= − 2A−i
(A−i + ai)3

< 0, (OA.10)

∂2qi
∂ai∂A−i

=
ai − A−i

(A−i + ai)3
,

∂qi
∂A−i

= − ai
(A−i + ai)2

< 0 (OA.11)

Next, I compute the derivatives of the profit function as follows:

d2πi
da2

i

=
µqi
a2
i

− 2µ

ai

dqi
dai

+ (s− µ log(ai)− C ′i(qi))
d2qi
da2

i

− C ′′i (qi)

(
dqi
dai

)2

∂2πi
∂ai∂A−i

= − µ
ai

∂qi
∂A−i

− C ′′i (qi)
∂qi
∂ai

∂qi
∂A−i

+ (s− µ log(ai)− C ′i(qi))
∂2qi

∂ai∂A−i

The difference between these two expressions can be written as:

d2πi
da2i

− d2πi
daidA−i

=
µ

ai

(
qi
ai
− 2

∂qi
∂ai

+
∂qi
∂A−i

)
+ (s− µ log(ai)− C ′i(qi))

(
∂2qi
∂a2i

− ∂2qi
∂ai∂A−i

)
− C ′′i (qi)

∂qi
∂ai

(
∂qi
∂ai
− ∂qi
∂A−i

)
.

Substituting the derivatives of qi in Equations (OA.10-OA.11), we obtain

d2πi
da2

i

− d2πi
daidA−i

=
µ

ai

(
− A−i

(A−i + ai)2

)
︸ ︷︷ ︸

(1)

+ (s− µ log(ai)− C ′i(qi))
(
− 1

(A−i + ai)2

)
︸ ︷︷ ︸

(2)

− C ′′i (qi)

(
A−i

(A−i + ai)2

)(
1

A−i + ai

)
.︸ ︷︷ ︸

(3)

Observe that (s−µ log(ai)−C ′i(qi)) equals pi−C ′i(qi), which is positive by condition

(ii). Consequently, term (2) is negative. Term (3) is weakly negative due to the

cost function’s convexity (condition (i)). Since term (1) is also negative, the entire

expression is negative, thus establishing that condition (ii) of Proposition OA-1 is

satisfied.

I now show that the firm’s profit function is strictly quasi-concave in ai. To

that end, I first express the profit function in terms of qi, substituting ai as a

function of qi:

πi(qi) =
(
s− µ[ln qi + lnA−i − ln(1− qi)]

)
qi︸ ︷︷ ︸

4

−Ci(qi)︸ ︷︷ ︸
5

.

It is straightforward to verify that term (4) is concave in qi, and term (5) is also con-
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cave since the cost function is convex. Hence, the profit function is quasi-concave

in qi. Furthermore, qi is a monotone in ai. Since a monotone transformation of a

quasi-concave function remains quasi-concave, the profit function is quasi-concave

in ai. This proves that the condition (iii) of Proposition OA-1 is satisfied.

To show that an equilibrium A∗ exists, I cannot rely on Brouwer’s Fixed Point

Theorem in Lemma OA-6 because the profit function is infinite at ai = 0. Instead,

I apply Lemma OA-7. To apply this Lemma, note that the firm’s best response

pi is decreasing in pj with j 6= i as prices are strategic substitutes in the Bertrand

competition game. This implies that ai’s are also strategic substitutes since they

are monotone transformations of pi’s. Therefore, Lemma OA-7 guarantees the

existence of an equilibrium.

B.2.3 Bertrand Competition with CES Demand

In the CES demand system, firm i’s demand is given by

Di(p) =
p−λ−1
i∑
p−λj

,

with λ = ρ
1−ρ and ρ ∈ (0, 1) is the substitution parameter. Let ai ≡ p−λi . Then,

the demand for firm i can be expressed as

Di(a) =
a

(λ+1)/λ
i∑

j 6=i aj + ai
=

a
(λ+1)/λ
i

A−i + ai
,

where A−i ≡
∑

j 6=i aj. Hence, the firm’s profit function becomes:

πi = (a
−1/λ
i )qi − Ci(qi), qi =

a
(λ+1)/λ
i

A−i + ai
.

We thus observe that Bertrand competition under CES demand constitutes a sym-

metric aggregative game in the variable ai, satisfying condition (i) of Proposition

OA-1. Next, we show that under some assumptions, conditions (ii) and (iii) of

Proposition OA-1 are also satisfied.

Lemma OA-9. Under the assumptions below, the Bertrand competition with CES

demand satisfies conditions (ii) and (iii) of Proposition OA-1.

(i) The cost function is convex and increasing: C ′′i (qi) > 0, C ′i(qi) > 0.

(ii) Substitution parameter ρ is less than 0.5.

(iii) Positive markup: pi − C ′i(·) > 0 for all i in equilibrium.
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Proof. Note that the profit function can be written as:

πi(A−i, ai) =
ai

A−i + ai
− Ci(qi).

First, we show that d2πi
da2i
− d2πi

dai dA−i
< 0. We begin by computing the necessary

derivatives:
∂2πi

∂ai ∂A−i
=

ai − A−i
(A−i + ai)3

− C ′′i (qi)

(
∂qi
∂ai

)(
∂qi
∂A−i

)
− C ′i(qi)

∂2qi
∂ai ∂A−i

d2πi
da2

i

= − 2A−i
(A−i + ai)3

− C ′i(qi)
∂2qi
∂a2

i

− C ′′i (qi)

(
∂qi
∂ai

)2

.

The difference can be written as

d2πi
da2i
− d2πi
dai, dA−i

= C ′i(qi)

(
−∂

2qi
∂a2i

+
∂2qi

∂ai∂A−i

)
︸ ︷︷ ︸

1

+C ′′i (qi) ·
∂qi
∂ai

(
−∂qi
∂ai

+
∂qi
∂A−i

)
︸ ︷︷ ︸

2

− 1

(A−i + ai)2︸ ︷︷ ︸
3

,

(2) is negative because C ′′i (qi) > 0 and

dqi
dai

=
aγ−1
i γA−i + (γ − 1)aγi

(A−i + ai)2
> 0,

∂qi
∂A−i

=
aγi

(A−i + ai)2
< 0,

where γ is defined as γ := (λ + 1)/λ. Hence, we need to show that (1) + (3) is

negative. We assume the opposite to derive a contradiction. Focusing on term (1)

(1) = C ′i(qi)
(
− ∂2qi
∂a2

i

+
∂2qi

∂ai∂A−i

)
= −C ′i(qi)γ

(γ − 1)A−i + (γ − 2)ai
(A−i + ai)2

aγ−2
i ,

Combining terms (1) and (3) yields

(1) + (3) = −γ (γ − 1)A−i + (γ − 2)ai
(A−i + ai)2

aγ−2
i C ′i(qi)−

1

(A−i + ai)2
> 0,

which in turn implies that

−γ
(
(γ − 1)A−i + γ(γ − 2)ai

)
aγ−2
i C ′i(qi) > 1. (OA.12)

By substituting pi = a1−γ
i , the condition in Equation (OA.12) can be written as:

−γ
(
(γ − 1)A−i + γ(γ − 2)ai

) 1

ai

C ′i(qi)

pi
> 1 =⇒ −γ

(
(γ − 1)A−i + γ(γ − 2)ai

) 1

ai
>

pi
C ′i(qi)

Simplifying further, we obtain

−γ(γ − 1)(A−i/ai)︸ ︷︷ ︸
(4)

−γ(γ − 2)︸ ︷︷ ︸
(5)

>
pi

C ′i(qi)
. (OA.13)

Note that term (4) is negative and is maximized (i.e., equals 0) when γ = 1.

Likewise, (5) is maximized at γ = 1 and equals 1. Hence, the entire left-hand

side is bounded above by 1. By condition (iii) pi/C ′i(qi) ≥ 1, therefore Equation
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(OA.13) cannot be satisfied, giving a contradiction. This concludes that condition

(ii) of Proposition OA-1 holds.

We now show that the profit function is quasi-concave in ai. The second

derivative of the profit function is:

d2πi
da2

i

= − 2A−i
(A−i + ai)3︸ ︷︷ ︸

(1)

−C ′i(qi)
∂2qi
∂a2

i︸ ︷︷ ︸
(2)

−C ′′i (qi)

(
∂qi
∂ai

)2

︸ ︷︷ ︸
(3)

.

Because terms (1) and (3) are negative, we only need (2) to be negative. Given

that C ′i(qi) is positive, this reduces to showing ∂2qi/∂a
2
i is positive:

∂2qi
∂a2

i

=
aγ−1
i

[
γ(γ−1)A2

−i

ai
+ 2γ(γ − 2)A−i + (γ − 1)(γ − 2)ai

]
(A−i + ai)3

.

Note that condition (ii) implies that γ > 2. Therefore, the above expression is

positive. It follows that the profit function is concave in ai.

Finally, to establish the existence of an equilibrium, we apply Lemma OA-

7 because prices, and therefore ai’s, are strategic substitutes in Nash-Bertrand

competition with CES demand.

B.3 Examples of Aggregative Monopolistic Competition Models

Monopolistic competition describes a market structure where firms are atomistic,

and their decisions do not affect market-level variables such as prices and quan-

tities. Under certain conditions, monopolistic competition models can be formu-

lated as an aggregative game in which each firm’s profit is expressed in terms of

market-level aggregates and the firm’s strategic choice. We begin by stating these

conditions. Let i index a firm and assume there is a continuum of firms i ∈ [0, N ].

Let u be the utility function that represents consumer preferences over the firms’

products, and let E be the total budget.

Assumption OA-1 (Additive Separability). Preferences are additively separable

max
{qi}i∈[0,N ]

∫ N

0

ui(qi) di subject to
∫ N

0

piqi di = E,

Assumption OA-2 (Symmetric Preferences). u is symmetric over [0, N ] that is

for any Lebesgue measure-preserving mapping τ : [0, N ] → [0, N ] u({qi}i∈[0,N ]) =

u({qτ(i)}i∈[0,N ]).
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The assumptions of additive separability and symmetry imply that the consumer’s

utility maximization problem can be written as:

max
{qi}i∈[0,N ]

∫ N

0

u(qi) di subject to
∫ N

0

piqi di = E.

Solving the FOC, we obtain the following inverse demand:

p(qi) =
u′(qi)

λ
with λ =

∫ N
0
qiu
′(qi) di

E
. (OA.14)

From this inverse demand, the firm’s profit function can be written as:

πi(qi, ωi, λ) =
u′(qi)qi
λ

− C(qi, ωi),

where λ is an aggregate term that depends on the distribution of qi. This profit

function satisfies the definition of an aggregative game given in Definition OA-1.

Hence, a monopolistic competition model that satisfies additive separability and

symmetry can be represented as an aggregative game. Solving the FOC of firm

i’s profit maximization problem:

u′′(q∗i )q
∗
i + u′(q∗i ) = λC ′i(q

∗
i ). (OA.15)

where Ci(q∗i ) = C(q∗i , ωi). This equation implicitly defines the firm’s optimal

quantity choice as a function of λ and its own cost parameters ωi. Having derived

the best response q∗i (λ, ωi), we substitute it into the definition of λ in Equation

(OA.14) to obtain:

λ =

∫ N
0
q∗i (λ, ωi)u

′(q∗i (λ, ωi)) di

E
. (OA.16)

This equation defines a fixed point relationship with respect to λ, thus charac-

terizing the equilibrium. Next, I present several commonly used monopolistic

competition models under this family following Arkolakis and Morlacco (2017)

and Parenti et al. (2017).

B.3.1 CES Preferences

Following Melitz (2003), the CES demand system has been widely employed in

models of monopolistic competition. The preferences are given by:

U =

(∫ N

0

qρi di

)1/ρ

.
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Solving this system yields the following demand function for firm i:

pi(qi, P,Q) = P

(
qi
Q

)−1/σ

with Q =

(∫ N

0

qρi di

)1/ρ

P =

(∫ N

0

p 1−σ
i di

)1/(1−σ)

,

where σ = 1/(1− ρ). Using this inverse demand, we write the profit function as:

πi(qi, ωi, P,Q) = P

(
qi
Q

)−1/σ

qi − C(qi, ωi).

Therefore, monopolistic competition with CES preferences is an aggregative game.

However, one drawback of CES preferences is that they imply a constant markup.

The following demand systems allow for markups that vary across firms.

B.3.2 Kimball Preferences

Kimball preferences, used by Klenow and Willis (2016), are implicitly defined by

the following condition:

min

∫ N

0

piqidi s.t
N∫

0

Y
(qi
Q

)
di = 1,

where Q =
∫ N

0
qidi and Y (·) is a function such that Y (1) = 1, Y ′ > 0 and Y ′′(·) <

0. One can derive the demand function by solving a standard cost minimization

problem in which prices and the aggregate quantity Q are given. Let Z denote

the inverse of the derivative of the function Y (·). Then, the demand function for

firm i is given by:

q(pi, Q, Q̃, P ) = Z
(
Q̃
pi
P

)
Q,

with P =
∫ N

0
pi
qi
Q
di and Q̃ =

∫ N
0
Y ′
(qi
Q

)qi
Q
di. The profit function is given by

π(pi, ωi, λ) = q(pi, Q, Q̃, P )pi − C(q(pi, Q, Q̃, P ), ωi)

which depends on three aggregates, Q,P and Q̃, and the cost parameters of firm

i. Hence, Kimball preferences also yield an aggregative game.

B.3.3 Quadratic Preferences

Quadratic preferences, used by Melitz and Ottaviano (2008), are defined by the

following preferences:

U(q) = α

N∫
0

qidi−
γ

2

N∫
0

q2
i di−

η

2

( N∫
0

q2
i di

)2

.
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Here, α and η govern substitution with the numeraire, while γ measures product

differentiation. The inverse demand for each product i is then given by

pi(qi, Q) = α− γqi − ηQ,

where Q =
N∫
0

qidi is the aggregate. Using this inverse demand, we can express the

profit function as:

π(qi, ωi, Q) = (α− γqi − ηQ)qi − C(qi, ωi),

which satisfies the properties of an aggregative game.

B.3.4 Stone-Geary Preferences

In the Stone-Geary demand system, the corresponding utility function is given by:

U =

∫ N

0

α ln(qi − γ) di.

Maximizing this utility subject to the budget constraints yields the following in-

verse demand function for firm i:

pi(qi, E,G) =
α(E −G)

(qi − γ)
with E =

∫ N

0

piqi di and G =

∫ N

0

piγ di.

From this inverse demand, the firm’s profit function can be written as:

πi(qi, ωi, E,G) =
α(E −G)

(qi − γ)
qi − C(qi, ωi).

Thus, monopolistic competition with Stone-Geary preferences is aggregative.

C Application to Parametric Production Functions

This section applies the identification strategy to specific functional forms. My

model nests five labor-augmenting production functions:

yit = ft
(
Kit, ht(Kit, ω

L
itLit,Mit)

)
+ ωHit + εit (Weak Homot. Sep.)

yit = ft
(
Kit, ht(ω

L
itLit,Mit)

)
+ ωHit + εit (Strong Homot. Sep.)

yit = vkit + ft
(
L̃itht(ω

L
it, M̃it)

)
+ ωHit + εit (Homogeneous)

yit =
v

σ
log
(
βkK

σ
it + (1− βk)

(
βl
[
ωLitLit

]σ1
+ (1− βl)Mσ1

it

) σ
σ1

)
+ ωHit + εit (Nest. CES)

yit =
v

σ
log
(

(1− βl − βm)Kσ
it + βl

(
ωLitLit

)σ
+ βmM

σ
it

)
+ ωHit + εit (CES)

where L̃it = Lit/Kit in the homogeneous production function, which is obtained

by dividing the arguments of the production function by Kit. I first illustrate how
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to estimate CES, Nested CES, and homogeneous production functions with labor-

augmenting productivity. Then, I show the application of Imbens and Newey

(2009) to the Cobb-Douglas model under Hicks-Neutral productivity. For simplic-

ity, I omit the time subscripts from the production function parameters. I maintain

the assumptions in Section 2.2 except the form of the production function.

C.1 Nested CES Production Function

We write the log of the Nested CES production function as:

yit =
v

σ
log
(
βkK

σ
it + (1− βk)

(
βl
[
ωLitLit

]σ1 + (1− βl)Mσ1
it

)σ/σ1 )
+ ωHit + εit.

By using its homotheticity, we can write the Nested CES production function as:

yit = vmit +
v

σ
log
(
βkK̃

σ
it + (1− βk)

(
βl
[
ωLitL̃it

]σ1 + (1− βl)
)σ/σ1)+ ωHit + εit,

where K̃it := Kit/Mit and L̃it := Lit/Mit and mit := log(Mit). From the FOCs of

cost minimization we have ωLit = γL̃
(1−σ1)/σ1
it , where γ =

(
(1− βl)plt/(βlpmt )

)1/σ1 is

a constant. Substituting this expression into the production function gives

yit = vmit +
v

σ
log
(
βkK̃

σ
it + (1− βk)γ1

(
L̃it + γ2

)σ/σ1)+ ωHit + εit,

where γ1 = βlγ
σ1 and γ2 = (1 − βl)/(βlγ

σ1). This production function can be

estimated by replacing ωHit with its control function, which leads to the following

estimating equation:

yit = vmit +
v

σ
log
(
βkK̃

σ
it + (1− βk)γ1

(
L̃it + γ2

)σ/σ1)+ c2t(Wit−1, u
1
it, u

2
it) + εit.

In this equation, the levels of βk and (1 − βk)γ1 cannot be separately identified

from c2t(·) because scaling these parameters by the same value becomes an additive

constant (and hence part of c2t(·)) in a log production function. However, their

ratio is identified. Next, we write the elasticities of the flexible input and capital

as:

θVit = v
(1− βk)γ1x

σ
it

(1− βk)γ1xσit + βkKσ
it

, θKit = v
βkK

σ
it

(1− βk)γ1xσit + βkKσ
it

,

where xit = Mit(L̃it + γ2)1/σ1 . Note that θVit and θKit are identified using these

expressions as they depend only on the ratio of βk and (1−βk)γ1 rather than their

individual values. This result is the parametric counterpart of Proposition 4.1,

which shows that only the sum of labor and materials elasticities (θVit ) is identified
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from input and output data. However, labor and materials elasticities can still be

obtained from θVit using the ratio of revenue shares as in Equation (4.6).

C.2 CES Production Function

Using its homotheticity, we express the log of the CES production function as:

yit = vmit +
v

σ
log
(
(1− βl − βm)K̃σ

it + βl
[
ωLitL̃it

]σ
+ βm

)
+ ωHit + εit.

The FOCs of cost minimization imply that ωLit = γL̃
(1−σ)/σ
it , where γ is a constant

that depends on input prices and model parameters. Substituting this into the

production function yields:

yit = vmit +
v

σ
log
(
(1− βl − βm)K̃σ

it + γ1(L̃it + γ2)
)

+ ωHit + εit,

where γ1 := γσβl and γ2 := βm/(γ
σβl). The model parameters can be estimated

using the following equation:

yit = vmit +
v

σ
log
(
(1− βl − βm)K̃σ

it + γ1(L̃it + γ2)
)

+ c2t(Wit−1, u
1
it, u

2
it) + εit.

As with the Nested CES model, we identify the sum of the flexible input elasticities

and the capital elasticity from the model parameters as follows:

θVit = v
γ1x

σ
it

γ1xσit + (1− βl − βm)Kσ
it

, θKit = v
(1− βl − βm)Kσ

it

γ1xσit + (1− βl − βm)Kσ
it

,

where xit = Mit(L̃it + γ2). These elasticities are identified because they depend

only on the ratio of (1− βl − βm) and γ1. In turn, labor and materials elasticities

can be recovered from θVit using the revenue shares as in Equation (4.6).

C.3 Imposing Homogeneity Restriction on the Production Function

A production function with homogeneous of degree v can be written as:

yit = vkit + ft
(
1, L̃itht(ω

L
it, M̃it)

)
+ ωHit + εit,

where L̃it = Lit/Kit. The reduced form of this production function is

yit = vkit + f̃t
(
L̃ith̄t(M̃it)

)
+ ωHit + εit,

where f̃t = ft
(
1, L̃ith̄t(M̃it)

)
. The identification results in Sections 3 and 4 apply

to this model once the homogeneity condition is imposed.
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C.4 Application of Imbens and Newey (2009) to Cobb-Douglas Form

For illustration, I use a value-added production function under Hicks-neutral pro-

ductivity, since Ackerberg et al. (2015) showed that the gross Cobb-Douglas form

with two flexible inputs is not identified:

yit = βkkit + βllit + ωHit + εit.

I use the standard assumptions from the proxy variable literature: (i) productivity

follows an exogenous first-order Markov process P (ωHit | Iit−1) = P (ωHit | ωHit−1),

(ii) capital is a dynamic input while labor is a static input optimized each period,

and (iii) the firm’s intermediate input decision is given by mit = s(kit, ω
H
it ), which

is strictly increasing in ωHit . Using these assumptions, I construct a control variable

following the steps outlined in Section 3 as follows:

ωHit = g(ωHit−1, uit), uit | ωHit−1 ∼ U(0, 1). (OA.17)

From the Markov Assumption, we have that ωHit ⊥⊥ Iit−1 | ωHit−1. Substituting ωHit
using Equation (OA.17) we obtain g(ωHit−1, uit) ⊥⊥ Iit−1 | ωHit−1, which implies that

uit ⊥⊥ Iit−1 | ωHit−1. Using this,

mit = s(kit, ω
H
it ) = s(kit, g(ωHit−1, uit)) ≡ s̃(kit, kit−1,mit−1, uit).

Since s(kit, ωHit ) is strictly increasing in ωHit and g(ωHit−1, uit) is strictly increasing

in uit, s̃(·) is strictly increasing in uit. It follows from Lemma 3.1 that

uit | kit,mit−1, kit−1 ∼ U(0, 1). (OA.18)

Thus, we can recover uit as the conditional CDF of mit: uit = Fmit
(mit |

kit,mit−1, kit−1). In turn, this lets us construct a proxy for ωHit as a function

of (mit−1, kit−1, uit):

ωHit = g(ωHit−1, uit) = g(s−1(kit−1,mit−1), uit) ≡ c1(mit−1, kit−1, uit).

Using this expression, we arrive at a partially linear model:

yit = βkkit + βllit + c1(mit−1, kit−1, uit) + εit. (OA.19)

We can derive additional moment restrictions by exploiting the first-order Markov

property of ωHit . Specifically, using ωHit = c2(ωHit−1) + ξit and E[ξit | Iit−1] = 0,

yit = βkkit + βllit + c2(mit−1, kit−1) + ξit + εit, (OA.20)
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with E[ξit | Iit−1] = 0. We can estimate the parameters (βk, βl) and functions

c1(·), c2(·) from Equations (OA.19) and (OA.20) by using the following moments:

E[εit | kit, lit,mit,mit−1, kit−1, uit] = 0, E[ξit + εit | kit,mit−1, kit−1] = 0.

In this estimation, the parameters might be identified even if labor is a flexible

input, expressed as lit = l(ωit, kit). The main difference between the control vari-

able approach of Imbens and Newey (2009) and the proxy variable approach lies

in their conditioning variables: the proxy approach conditions on an unknown

function of (kit,mit), whereas the control variable approach conditions on uit, a

known function of (kit,mit). Even conditional on uit, there may still be variation

in lit linearly independent of kit.

To illustrate this, suppose the firm’s labor choice is lit = l
(
kit, ω

H
it ) =

l
(
k(kit−1, ω

H
it−1, νit−1), c(mit−1, kit−1, uit)

)
where kit = k(kit−1, ωit−1, νit−1) de-

fines the next-period capital via the firm’s investment decision, and

νit−1 is a vector of random variables (e.g., investment prices) influenc-

ing investment decision. Substituting ωit−1 = s−1(kit−1,mit−1) we ob-

tain lit = l
(
k(kit−1, s

−1(kit−1,mit−1), νit−1)), c(mit−1, kit−1, uit)
)
, which yields

lit =: l̃(kit−1,mit−1, uit, νit−1). In this example, even when conditioning on

(kit−1,mit−1, uit), the variables νit−1 could generate variation in labor indepen-

dently of a linear function of capital. Note, however, that this illustration depends

on the parametric form of the production function.

D Additional Proofs

Proof of Proposition 4.3

In this proof, we omit time subscripts from all functions for notational simplicity.

This proof proceeds in two parts. First, I show that there exist two different sets of

structural functions, h(·) and r̄(·), that produce the same values for (θLit, θ
M
it , h̄, f).

Second, I show that labor-augmenting productivity, the output elasticity of capi-

tal, and the elasticity of substitution depend on h(·) and r̄(·), implying that these

quantities cannot be uniquely inferred from (θLit, θ
M
it , h̄, f). Starting with the elas-

ticities, note that θLit and θMit depend on the production function as follows:

θLit = f2(·)h2

(
Kit, r̄(Kit, M̃it), M̃it

)
r̄(Kit, M̃it)Lit (OA.21)
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θMit = f2(·)h3

(
Kit, r̄(Kit, M̃it), M̃it

)
Mit, (OA.22)

where the arguments of f2(·)’s derivatives are omitted. Next, the derivatives of
the reduced form function h̄(·) are expressed as follows:

h̄2(Kit, M̃it) = h2
(
Kit, r̄(Kit, M̃it), M̃it

)
r̄2(Kit, M̃it) + h3

(
Kit, r̄(Kit, M̃it), M̃it

)
, (OA.23)

h̄1(Kit, M̃it) = h1
(
Kit, r̄(Kit, M̃it), M̃it

)
+ h2

(
Kit, r̄(Kit, M̃it), M̃it

)
r̄1(Kit, M̃it). (OA.24)

The left-hand sides of Equations (OA.21-OA.24) are functions of (θLit, θ
M
it , h̄, f).

This raises the question of whether the unknown quantities on the right-hand

sides of Equations (OA.21-OA.24) can be identified solely from (θLit, θ
M
it , h̄, f). To

investigate this, consider the true functions h(·), r̄(·) and alternatives h∗(·), r̄∗(·)
defined as:

r̄∗(Kit, M̃it) = r̄(Kit, M̃it)T (Kit),

h∗2(Kit, r̄(Kit, M̃it), M̃it) = h2(Kit, r̄(Kit, M̃it), M̃it)/T (Kit),

h∗1(Kit, r̄(Kit, M̃it), M̃it) = h1(Kit, r̄(Kit, M̃it), M̃it)− r̄(Kit, M̃it)T
′(Kit)/T (Kit),

h∗3(Kit, r̄(Kit, M̃it), M̃it) = h3(Kit, r̄(Kit, M̃it), M̃it),

where T (Kit) is an arbitrary function and T ′(Kit) is its derivative. These true and

alternative functions lead to the same (θLit, θ
M
it , h̄, f):

θLit/f2 = h∗2(Kit, r̄
∗(Kit, M̃it), M̃it)r̄

∗(Kit, M̃it)Lit

= h2(Kit, r̄(Kit, M̃it), M̃it)r̄(Kit, M̃it)Lit,

θMit /f2 = h∗3(Kit, r̄
∗(Kit, M̃it), M̃it)Mit = h3(Kit, r̄(Kit, M̃it), M̃it)Mit,

h̄2(Kit, M̃it) = h∗2(Kit, r̄
∗(Kit, M̃it), M̃it)r̄

∗
2(Kit, M̃it) + h∗3(Kit, r̄

∗(Kit, M̃it), M̃it),

= h2(Kit, r̄(Kit, M̃it), M̃it)r̄2(Kit, M̃it) + h3(Kit, r̄(Kit, M̃it), M̃it),

h̄1(Kit, M̃it) = h∗1(Kit, r̄
∗(Kit, M̃it), M̃it) + h∗2(Kit, r̄

∗(Kit, M̃it), M̃it)r̄
∗
1(Kit, M̃it),

= h1(Kit, r̄(Kit, M̃it), M̃it) + h2(Kit, r̄(Kit, M̃it), M̃it)r̄1(Kit, M̃it).

Hence, using (θLit, θ
M
it , h̄, f) alone does not allow us to distinguish the original

functions (h1, h2, r̄1, r̄2) from the alternatives (h∗1, h
∗
2, r̄
∗
1, r̄
∗
2). Next, I will show that

labor-augmenting productivity, capital elasticity, and the elasticity of substitution

all depend on (h1, h2, r̄1, r̄2), so they cannot be inferred from (θLit, θ
M
it , h̄, f).

Since ωLit = r̄(Kit, M̃it), non-identification of r̄(Kit, M̃it) immediately im-

plies that ωLit is not identified. The capital elasticity depends on h1(·), θKit =
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f1 + f2h1(Kit, r̄(Kit, M̃it), M̃it), and therefore is not identified. Finally, to demon-

strate that the elasticity of substitution is not identified, observe that it is defined

as σML
it = ∂ log(Lit/Mit)/∂ log(FM/FL) where the ratio of marginal products is

computed as:

FL
FM

=
h(Kit, r̄(Kit, M̃it), M̃it)

h3(Kit, r̄(Kit, M̃it), M̃it)
− M̃it.

Using this, the elasticity of substitution between materials and labor is given by

σML
it =

h3(Kit, r̄(Kit, M̃it), M̃it)
2 − h(Kit, r̄(Kit, M̃it), M̃it)h33(Kit, r̄(Kit, M̃it), M̃it)

h3(Kit, r̄(Kit, M̃it), M̃it)2
− 1,

which depends on h33(Kit, r̄(Kit, M̃it), M̃it). This function is not identified because

r̄(Kit, M̃it) and h(·) are not identified. Therefore, σML
it is not identified. The

elasticity of substitution for other input pairs can similarly be derived, and it can

be shown that they are not identified because they depend on the derivatives of

the function h(·).

Proof of Proposition 4.4

I drop time subscripts from all functions for brevity. If the production function

takes the form given in Equation (4.7), the labor and materials elasticities, as a

function of f and h, can be written as

θLit = f2h1(r̄(M̃it), M̃it)r̄(M̃it)Lit, θMit = f2h2(r̄(M̃it), M̃it)Mit.

Since I already showed in Equation (4.6) that θLit and θMit are identified, the right-

hand sides of these equations are identified. The identification of θMit immediately

implies that h2(r̄(M̃it), M̃it) is identified from (f2, θ
M
it ). Taking the derivative of the

reduced form function h̄(·) with respect to M̃it, and using h̄(M̃it) = h(r̄(M̃it), M̃it),

I obtain

h̄′(M̃it) = h1(r̄(M̃it), M̃it)r̄
′(M̃it) + h2(r̄(M̃it), M̃it), (OA.25)

where r̄′(M̃it) denotes the derivative of r̄(M̃it). Therefore, the right-hand side of

Equation (OA.25) is identified from h̄(M̃it) by taking its derivative. Taking the

ratio of f2h̄
′(M̃it)− θMit /Mit and θLit/Lit, and denoting it by b(M̃it):

b(M̃it) :=
f2h̄

′(M̃it)− θMit /Mit

θLit/Lit
=
f2h1(r̄(M̃it), M̃it)r̄

′(M̃it)

f2h1(r̄(M̃it), M̃it)r̄(M̃it)
=
r̄′(M̃it)

r̄(M̃it)
=
∂ log(r̄(M̃it))

∂M̃it

.
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which implies that the derivative of log(r̄(M̃it)) with respect to M̃it is identified

from (θLit, θ
M
it , h̄, f). Thus, by integrating b(M̃it), we can recover log(r̄(M̃it)) up to

an additive constant:

log(r̄(M̃it)) =

∫ M̃it

M̃

b(M̄)dM̄ + a.

Since ωLit = r̄(M̃it), and log(r̄(M̃it)) is identified up to a constant, ωLit is identified

up to a scale. Capital elasticity is also identified because it depends only on the

reduced form functions f and h̄: θKit = f1(Kit, Lith̄(M̃it))Kit.

Proof of Proposition 4.5

If the production function takes the form in Equation (4.7), then we can derive

σML
it as

σML
it =

h2(r̄(M̃it), M̃it)
2 − h(r̄(M̃it), M̃it)h2(r̄(M̃it), M̃it)

h22(r̄(M̃it), M̃it)2
− 1,

which depends on h22(·). Since h22(·) is not identified, σML
it is not identified.

Similarly, one can derive the elasticities of substitution for other input pairs, which

also depend on the second derivatives of h(·).

D.1 Identification of the Reduced Form Functions Under Strongly Ho-

mothetic Production Function

In this section, I analyze the identification of the reduced form functions (ft, h̄t)

obtained from the weakly homothetic production function given in Equation (2.2).

This analysis follows the proof of Proposition 5.1 closely. While Proposition 5.1

showed identification of reduced form functions for the strongly homothetic pro-

duction function Ft
(
Kit, ht(ω

L
itLit,Mit)

)
this section analyzes identification for the

weakly homothetic production function Ft
(
Kit, ht(Kit, ω

L
itLit,Mit)

)
.

Since Section 4.2 showed that under the weakly homothetic production func-

tion, only the sum of labor and materials elasticities is identifiable from the reduced

form production functions as θVit := ft2
(
Kit, Lith̄t(Kit, M̃it)

)
Lith̄t(Kit, M̃it), I focus

on identification of ft2h̄t using the moment condition given in Equation (5.3). This

analysis follows the proof of Proposition 5.1 closely. Under this functional form,

Equation (B.10) of Proposition 5.1 becomes

E[y | w, z, x, t] = f
(
w, zh(w, x)

)
+ g
(
t, l(w, x, t), s(w, z, x, t)

)
, (OA.26)
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where l(w, x, t) = FM̃it|Kit,Wit−1
(M̃it | Kit,Wit−1) as derived in Equation (3.3) and

(w, z, x, t) := (Kit, Lit, M̃it,Wit−1). s(·) and g(·) are defined in Proposition 5.1.

Taking the derivative of Equation (OA.26) with respect to w, z and x, we obtain

y1(w, z, x, t) = f1

(
w, zh(w, x)

)
h1(w, x)z + g3s1(w, z, x, t) + g2l1(w, x, t) (OA.27)

y2(w, z, x, t) = f2

(
w, zh(w, x)

)
h(w, x) + g3s2(w, z, x, t) + g2l2(w, x, t), (OA.28)

y3(w, z, x, t) = f2

(
w, zh(w, x)

)
h2(w, x)z + g3s3(w, z, x, t) (OA.29)

where the arguments of g functions are suppressed for brevity. Summing these

equations after multiplying Equation (OA.27) by α = −l2/l1 and multiplying

Equation (OA.29) by β = (l2/l1)s1/s3 − s2/s3, we obtain

αy1 + y2 + βy3 = αf1(w, zh(w, x))h1(w, x)z + f2(w, zh(w, x))h(w, x) + βf2(w, zh(w, x))h2(w, x)z

which can be written in the form of

ŷ(w, z, x, t) = (α + β)f̂(w, z, x) + f̂1(w, z, x), (OA.30)

where f̂(w, z, x) := f1(w, zh(w, x))h1(w, x)z + f2(w, zh(w, x))h2(w, x)z and

f̂1(w, z, x) := f2(w, zh(w, x))h(w, x). Here ŷ, α and β are known functions and

f̂ and f̂1 are unknown functions. Lemma B.1 implies that f̂1(w, z, x) is identified

from this Equation (OA.30) under the assumption that Var
(
α + β | w, z, x

)
> 0.

By Proposition 4.2, the sum of flexible input elasticities equals f̂1(w, z, x)z =

f2(w, zh(w, x))h(w, x)z. Thus, the sum of elasticities is identified.

E Estimation Details

E.1 Estimation Algorithm

This section outlines the estimation algorithm. First, we apply the data cleaning

and variable construction steps described in Online Appendix F and denote the

resulting sample as A. Next, remove any observations with missing lagged inputs

to form sample B. From sample B, extract the subset of observations that lies

within the rolling window τ , denoting this new subsample Bτ . To estimate the

control variable u2
it for each it ∈ Bτ , partition the support of Mit into 500 equally-

sized bins (by observation count). Let Q denote the set of these grid points. For

each q ∈ Q, use logistic regression with a third-degree polynomial in (k, w, u) to
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estimate

Pr(Mit 6 q | Kit = k,Wit−1 = w, u1
it = u) ≡ st(q, k, w, u)

Then, for each it ∈ Bτ , compute an estimate û2
it of u2

it = st(Mit, Kit,Wit−1, u
1
it) by

linearly interpolating between the two grid points in Q nearest to Mit. This pro-

cedure yields estimates û2
it for all observations in Bτ . To estimate the production

function, first approximate log(h̄t) using a third-degree polynomial:

log(̂̄ht(M̃it)) = a1t + a2tm̃it + a3tm̃
2
it + a4tm̃

3
it, (OA.31)

where {ajt}4
j=1 are the parameters of the polynomial approximation. Set a1t = 0

to impose a normalization because h̄t is identified up to a multiplicative constant.

Define Vit := Lit
̂̄ht(M̃it) and vit its logarithm. Approximate the production func-

tion as follows:

f̂t(Kit, Lit
̂̄ht(M̃it)) = b1t + b2tkit + b3tk

2
it + b4tk

3
it + b5tvit + b6tv

2
it + b7tv

3
it (OA.32)

+ b8tk
2
itvit + b9tkitv

2
it + b10tkitvit,

where {bjt}10
j=1 are the polynomial coefficients. Approximate the control func-

tions c2t(·) and c3t(·) using a similar third-degree polynomial approach. For

given values of {ajt}4
j=1, {bjt}10

j=1, ĉ2t(·) and ĉ3t(·), construct the objective func-

tion from Equation (5.5) using the third-degree polynomials of Kit and Wit−1 as

{zj(Kit,Wit−1)}Jj=1 instruments. Estimate the production function by minimiz-

ing this objective function using the following nested optimization procedure. In

the inner loop, for each value of {ajt}4
j=2, use least squares regression to estimate

{bjt}10
j=1, ĉ2t(·) and ĉ3t(·). In the outer loop, apply an optimization routine to

estimate {ajt}4
j=1. After estimating the production function parameters, the next

step is elasticity and markup estimation.

Select observations at the midpoint of the rolling window in sample A to form

Ac. For each it ∈ Ac, calculate output elasticities and markups as follows: first

obtain estimates of ft(·) and h̄t(·) from the parameter estimates {ajt}4
j=2 and

{bjt}10
j=1 in Equations (OA.31) and (OA.32). With the estimates of ft(·) and h̄t(·),

compute the capital elasticity of output and the sum of the materials and labor

elasticities, as specified in Equations (4.5) and (4.9). Next, given the estimated

θ̂Vit and the revenue shares for labor and materials, use Equation (4.6) to estimate

the output elasticities of labor and materials. Then, calculate markups using θ̂Vit
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and the revenue share of flexible input. To compute standard errors, resample

firms with replacement from sample A 250 times and repeat the entire estimation

process.

I follow the same procedure to estimate the CES and nested CES models,

applying the necessary parametric restrictions.

E.2 Blundell and Bond (2000) Estimation Method

In this section, I present the dynamic panel method of Blundell and Bond (2000),

which I use in Section 8 to estimate Hicks-neutral production functions. Under

the dynamic panel approach, productivity shocks follow an AR(1) process: ωHit =

ρωHit−1 + vit. Given this assumption, we take the ρ-difference of the log production

function, which yields:

yit − ρyit−1 =βk(kit − ρkit−1) + βl(lit − ρlit−1) + βm(mit − ρmit−1)+

ωHit − ρωHit−1 + εit − ρεit−1.

Let νit := ωHit − ρωHit−1 + εit− ρεit−1 be the composite error term. By construction,

νit is orthogonal to the firm’s information set at t − 1, that is, E[νit | Iit−1] = 0.

To exploit this orthogonality condition, define the following moment function:

νit(βk, βl, βm, ρ) = yit − ρyit−1−βk(kit − ρkit−1)− βl(lit − ρlit−1)− βm(mit − ρmit−1).

The moment conditions to estimate the parameters are given by:

E
[
νit(βk, βl, βm, ρ)(kit, kit−1, lit−1,mit−1)′

]
= 0.

I estimate the translog production function similarly, imposing the following func-

tional form:

yit = β1kit + β2lit + β3mit + β4k
2
it + β5l

2
it + β6m

2
it+

β7kitmit + β8litmit + β9litkit + ωHit + εit.

F Data Appendix

This section describes the datasets. The summary statistics for each dataset are

presented in Supplementary Appendix A.
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F.1 Chile

Data from Chile are from the Chilean Annual Census of Manufacturing, Encuesta

Nacional Industrial Anual (ENIA), covering the years 1979 through 1996. This

dataset includes all manufacturing plants with at least ten employees. I restrict

the sample to industries with more than 250 firms per year. I drop observations

at the bottom and top 2% of the distribution of revenue share of labor, revenue

share of materials, or the combined flexible input for each industry to remove

outliers. I report each industry’s share in manufacturing in terms of sales and

the number of plants for the first, last, and midpoint year of the sample in Table

SA-1. After sample restrictions, five industries remain, covering around 30% of

the manufacturing sector.

F.2 Colombia

The data for Colombia are from the annual Colombian Manufacturing census

provided by the Departamento Administrativo Nacional de Estadistica, covering

the years 1981 through 1991. This dataset contains all manufacturing plants with

at least ten employees. I restrict the sample to industries with more than 250

firms per year on average and follow the same steps as those used for constructing

the Chile data to remove outliers. Table SA-2 shows that the number of industries

in the sample is nine, and the sample covers around 55% of the manufacturing

sector’s total sales.

F.3 India

The Indian data were collected by the Ministry of Statistics and Programme Imple-

mentation through the Annual Survey of Industries (ASI), which covers all plants

with at least ten workers and those that use electricity, as well as those that do

not use electricity but have at least 20 workers. The plants are divided into two

categories: census and sample. The census sector comprises all large plants and

all plants in states classified as industrially backward by the government. From

2001 to 2005, a large plant was defined as one with 200 or more workers; however,

starting in 2006, the definition was revised to one with 100 or more workers. All

plants in the census sector are surveyed every year. The remaining plants consti-

tute the sample sector, from which a random sample is surveyed each year. India
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uses the National Industrial Classification (NIC) to categorize manufacturing es-

tablishments, a classification system similar to those used in other countries. The

industry definition has changed multiple times over the sample period. I follow

Allcott et al. (2016) to create a consistent industry definition at the NIC 87 level.

For sample restrictions and data cleaning, I follow the approach outlined in Allcott

et al. (2016). Then, I restrict the sample to Census firms to follow them over time.

My final sample comprises industries with an average of more than 250 firms per

year. I follow the same steps as in the Chilean data to remove outliers. Table

SA-3 provides summary statistics.

F.4 Turkey

Manufacturing data for Turkey come from the Turkish Statistical Institute (Turk-

Stat), which maintains comprehensive plant-level records for the sector. TurkStat

conducts the Annual Surveys of Manufacturing Industries (ASMI), covering es-

tablishments with ten or more employees. I use a sample of ASMI for the period

from 1983 to 2000. The main variables include gross revenue, investment, the

book value of capital, materials expenditures, and the number of production and

administrative workers. For variable construction, I follow Taymaz and Yilmaz

(2015). I restrict the sample to industries with more than 250 firms per year on

average and private establishments. I follow the same procedure as I do with

Chilean data to remove outliers.

F.5 Compustat

The Compustat data comes from Standard and Poor’s Compustat North America

database, covering a period from 1961-2018. Although later data are available,

the sample ends in 2018 because I use the NBER-CES Manufacturing Industry

Database to deflate values in Compustat, which is available only until 2018.45 Since

Compustat draws from corporate financial statements, it requires more extensive

data cleaning compared to other datasets. The cleaning process involves removing

non-US incorporated firms, financial and utility companies (industry codes 4900-

4999 and 6000-6999), firms with negative or zero values for key variables (sales,
45The NBER-CES Manufacturing Industry Database can be found at https://www.nber.org/
research/data/nber-ces-manufacturing-industry-database.
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employment, cost of goods sold, selling/general/administrative expenses), compa-

nies with fewer than ten employees, and those without industry codes. The final

sample includes only manufacturing firms with NAICS codes 31-33. Variable con-

struction follows the methodology detailed in Keller and Yeaple (2009), specifically

their Appendix B, page 831. Unlike the plant-level datasets, Compustat provides

firm-level data and covers only public companies. Industries are classified using

two-digit NAICS codes. Outlier removal excludes the top and bottom 1% of ob-

servations, rather than the 2% threshold used in other datasets, to preserve the

sample size.

F.6 Variable Construction

Labor: For Chile, Colombia, Turkey, and the United States, labor is measured

using the number of production workers, while for India, it is measured using the

total number of days worked. The labor revenue share is calculated as the sum of

total salaries and benefits divided by total sales for the year.

Materials: For Chile, Colombia, India, and Turkey, materials input is computed

as the sum of total materials expenditures and the year-over-year change in inven-

tory value. This nominal value is converted to real terms using the industry-level

intermediate input price index. For Compustat, materials are calculated as the

deflated sum of cost of goods sold and administrative/selling expenses, minus

depreciation and wage expenditures. The materials revenue share represents ma-

terials cost divided by total annual sales.

Capital: For Turkey, the capital stock is constructed using the perpetual inven-

tory method, combining new investment with deflated capital from the last period

to determine current capital levels. For Compustat, capital is measured as the

deflated value of property, plant, and equipment net of depreciation, using BEA

satellite account deflators. For India, the capital book value is deflated using

an implied national deflator derived from “Table 13: Sector-wise Gross Capital

Formation” in the Reserve Bank of India’s Handbook of Statistics on the Indian

Economy. For Chile and Colombia, I follow Raval (2023).

Output: The output measure is calculated as deflated sales. For Compustat, it

is net sales from the Industrial data file. For other countries, sales are the total

production value plus the difference between the end-year and beginning-year value
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of finished goods inventories.

G Robustness Checks Details

G.1 Estimation with Physical Quantity

One challenge in estimating production functions with physical quantities is the

aggregation of products for multi-product firms. To resolve this issue, I focus

on single-product firms and estimate the production functions of six relatively

homogeneous products in Indian manufacturing industries. For this sample, I ob-

serve both the quantity of production and the price. These products include Brick

Tiles, Cotton Shirts, Biri Cigarettes, Black Tea, Parboiled Non-Basmati Rice, and

Raw Non-Basmati Rice. In this sample, products are relatively homogeneous and

produced by a sufficient number of plants. Table SA-6 lists the products, their

units, the number of firm-year observations, and their product codes. The product

classification includes two types of codes, ASICC and NPCMS, as the National

Statistical Office of India revised its product coding system in 2011.46

To construct the sample, I follow Raval (2023) and include only plants that

derive at least 75% of their revenues from one of these products. Product price for

each firm is calculated by subtracting reported sales-related expenses (excise duty,

sales tax, and other expenses) from gross value and dividing it by the quantity

sold. To remove outliers, I exclude plants whose prices are greater than five times

or less than 20% of the median price for a given product-year. Because each

industry in this sample has fewer observations than in the main sample, I use a

five-year rolling window instead of a three-year window.

With this sample, I estimate product-level production functions. The main

difference from the estimation in the main text is that I use physical output quan-

tities instead of deflated revenues for Yit. All other estimation procedures follow

the methodology outlined in Online Appendix E.1.

Figure OA-7a presents the comparison of elasticities and markups when es-

timated with revenues and quantities for the FA production function (left) and

markup estimates from different production functions (right). Elasticity compar-

isons suggest that using deflated revenues instead of quantity introduces an upward
46The product codes after 2010 can be found here. The crosswalk between the two product
categories can be found here.
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bias in capital elasticity (7.2%), a downward bias in variable elasticity (-6.5%), and

a negligible bias in markups (0.1%). Markup comparison in the right panel reveals

the same pattern documented in the main text: Hicks-neutral production functions

yield the highest markup estimates, and markup estimates decline progressively

as we move from Cobb-Douglas to nonparametric labor-augmenting productivity

specifications.

G.2 Estimation when Controlling for Input Prices

This robustness check includes input prices for materials and wages as controls in

the input demand functions as described in the extension in Online Appendix A.

The Indian manufacturing data provide the nine largest inputs for each plant,

along with their product code, quantity, value, price, and unit. An "other" cate-

gory encompasses inputs beyond these nine. For each of the six industries used in

the quantity production function estimation in Online Appendix G.1, I identify the

largest input by expenditure share. These main inputs remain consistent across

the years; however, their codes and, sometimes, their names changed in 2010 due

to changes in the product classification coding system. To address this, I match

the ASICC (2001-2009) and NPCMS (2010-2014) codes for these inputs using the

ministry’s concordance. I exclude the year 2000 from the analysis because the

largest input is listed as “Other basic items (Indigenous)” for almost all industries.

I identify the input unit most commonly used across firms, as shown in Table

SA-7. Most firms consistently use the same unit over time. For firms using different

units, I perform appropriate conversions (e.g., kg to tonnes), which yield the input

set and corresponding prices. For a small fraction of firms (5-15% depending

on industry) where the price of the main input is unavailable, I substitute the

industry-year average price.

Table SA-7 shows summary statistics for the inputs considered in the paper.

The largest input typically accounts for a large fraction of intermediate input

expenditures, from 53% for shirts manufacturing to 90% for non-basmati rice.

The input price variation is relatively small, as indicated by the average CoV in

each industry over the years, except for cigarettes and brick tiles.

I also calculate the average wage by dividing the total wage bill by the total

number of employees. With these materials prices and wages, I follow the esti-
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mation procedure in Online Appendix A and estimate markups by controlling for

variation in input prices.

Results in Figure OA-7b suggest that capital elasticity is biased downward

(-2.3%) and variable elasticity is biased downward when using revenues instead

of quantities. There is also a -0.9% bias in average markup estimates. However,

the markup comparison results across different production functions are consistent

with the pattern documented in the main text.

G.3 Measurement Error in Capital

This section employs a simulation study to examine the impact of potential mea-

surement errors in capital input on empirical estimates. I assume that the ob-

served data come from the ’true’ data-generating process and introduce errors to

the observed data to generate simulated data with measurement error in capital.

Specifically, I add an independent and identically distributed error term to the

capital input, drawn from a mean-zero normal distribution with a standard devia-

tion of one-tenth of the capital’s standard deviation in the data. After simulating

100 datasets with these measurement errors, I estimate output elasticities and

markups for each dataset and report their averages across 100 simulations.

Figure OA-9 presents results alongside the original estimates. I find that mea-

surement error in capital reduces the output elasticity of capital and increases the

output elasticity of labor in most simulations. This suggests that the higher capi-

tal elasticity estimates obtained using the factor-augmenting production function

in Section 6.1 are unlikely to be driven by the impact of measurement error in

capital.

To examine how potential capital underutilization affects the empirical es-

timates, I analyze firms’ energy consumption, assuming a Leontief production

function relationship between capital and energy. This assumption enables me

to infer the actual capital utilized by firms through their energy consumption, as

these inputs are expected to be proportionally related in a Leontief production

function. Since energy consumption data are available in the Chilean and Turkish

datasets, I restrict this robustness analysis to firms from these two countries. I

first calculate the true capital used by each firm using the electricity data, and

then use these corrected capital values instead of the observed values in production
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function estimation.

Figure OA-8 compares the original estimates with those obtained using capac-

ity utilization-adjusted capital. The results indicate that this adjustment primarily

affects capital elasticities, while other elasticities and markups show small differ-

ences in magnitude but maintain similar patterns across estimates. In Turkey,

the capacity utilization correction preserves the comparative patterns in capital

elasticity estimates across production function specifications. However, in Chile,

the adjusted capital elasticity estimates are too small, possibly due to noise in the

electricity consumption data.

G.4 Estimation with Single Product Firms

When I estimate the quantity production function, I include plants that obtain

at least 75% of their revenue from a given product. This procedure still includes

firms that are multi-product, which can bias the markup and production function

estimates. As a robustness check, I include the plants that receive at least 99% of

their revenue from a given product, focusing on purely single-product firms. The

results reported in Figure OA-7c suggest that capital elasticity is biased downward

(-10.7%) and variable elasticity is biased downward (-6.0%) when using revenues

instead of quantities. There is also a 4.5% bias in average markup estimates.

However, the markup comparison results across different production functions are

consistent with the pattern documented in the main text.
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H Additional Empirical Results

Figure OA-1: Additional Output Elasticity Estimates
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(b) Returns to Scale

Notes: Comparison of sales-weighted materials elasticities and returns to scale in each country
generated by the following production functions: (i) Cobb-Douglas (CD), (ii) Translog (TR),
(iii) CES with labor-augmenting productivity (CES-FA), and (iv) strongly homothetic production
function with factor-augmenting productivity (FA). For each year and industry, sales-weighted
averages are calculated, and then simple unweighted averages are taken over the years. The error
bars indicate 95 percent confidence intervals calculated using bootstrap method (250 resamples).

Figure OA-2: Distribution of Markups from Labor and Materials (Cobb-Douglas)
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This figure compares the distribution of markups implied by labor (black) and materials (red)
elasticities for each country from the Cobb-Douglas specification estimated using the Blundell
and Bond (2000) method.
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Figure OA-3: Difference of Elasticity Estimates from FA and Other Models
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Notes: Each bar shows the difference between the elasticity estimates from the method in-
dicated by the legend color and the strongly homothetic production function with factor-
augmenting productivity (FA) method. The red bars represent the corresponding 95 percent
confidence intervals, with standard errors computed using bootstrap (250 resamples).

Figure OA-4: Difference of Markup Estimates from FA and Other Models
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Notes: Each bar shows the difference between the markup estimates from the method indicated
by the legend color and the strongly homothetic production function with factor-augmenting
productivity (FA) method. The red bars represent the corresponding 95 percent confidence
intervals, with standard errors computed using bootstrap (250 resamples).
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Figure OA-5: Difference between Markup Estimates and Confidence Bands
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Notes: This figure shows changes in aggregate markups estimated using FA and CD (left panels)
and the 95 percent confidence intervals for their differences (right panels), calculated from bootstrap
distributions (250 resamples).

Figure OA-6: Variance Decomposition of the Aggregate Log Markup Changes
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Notes: This figure shows the percent variance explained by elasticity changes in the variance
decomposition of aggregate log markup into revenue shares and elasticities, based on µ̃t =∑
wit log(θit)−

∑
wit log(αit). The covariance term is excluded, so the results represent the

variance of the first term divided by the sum of the variances of the first and second terms.
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Table OA-1: Output Elasticities in Three Largest Industries in Each Country

Industry 1 Industry 2 Industry 3
CD TR CES FA CD TR CES FA CD TR CES FA

Chile (311, 381, 321)

Capital 0.04 0.08 0.06 0.08 0.10 0.07 0.09 0.07 0.11 0.04 0.10 0.10
(0.00) (0.01) (0.01) (0.02) (0.01) (0.02) (0.02) (0.05) (0.01) (0.03) (0.02) (0.04)

Labor 0.14 0.09 0.10 0.10 0.23 0.25 0.20 0.18 0.32 0.25 0.19 0.18
(0.01) (0.01) (0.00) (0.00) (0.02) (0.03) (0.01) (0.01) (0.02) (0.03) (0.01) (0.01)

Materials 0.86 0.88 0.83 0.78 0.72 0.72 0.70 0.64 0.70 0.75 0.72 0.69
(0.01) (0.01) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03) (0.01) (0.03) (0.02) (0.03)

RTS 1.04 1.05 0.99 0.96 1.04 1.03 0.98 0.89 1.13 1.03 1.01 0.97
(0.01) (0.01) (0.02) (0.03) (0.01) (0.02) (0.03) (0.05) (0.02) (0.02) (0.03) (0.05)

Colombia (311, 322, 381)

Capital 0.06 0.10 0.08 0.14 0.13 0.10 0.07 0.07 0.08 0.30 0.12 0.15
(0.01) (0.01) (0.01) (0.03) (0.02) (0.01) (0.01) (0.03) (0.02) (0.03) (0.01) (0.05)

Labor 0.18 0.14 0.11 0.12 0.47 0.30 0.31 0.31 0.34 0.30 0.26 0.25
(0.01) (0.01) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.03) (0.01) (0.01)

Materials 0.79 0.81 0.81 0.83 0.56 0.72 0.67 0.65 0.54 0.52 0.63 0.57
(0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01) (0.02) (0.03) (0.03) (0.02) (0.04)

RTS 1.03 1.05 1.01 1.09 1.16 1.12 1.06 1.02 0.96 1.12 1.01 0.97
(0.01) (0.01) (0.01) (0.04) (0.01) (0.01) (0.02) (0.03) (0.02) (0.02) (0.02) (0.05)

India (230, 265, 213)

Capital 0.09 0.07 0.04 0.03 0.06 0.06 0.05 0.06 0.07 0.05 0.07 0.12
(0.01) (0.01) (0.00) (0.01) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.02)

Labor 0.34 0.01 0.06 0.06 0.09 0.04 0.08 0.08 0.36 0.14 0.19 0.18
(0.02) (0.01) (0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.01) (0.02) (0.00) (0.00)

Materials 0.57 0.93 0.85 0.86 0.85 0.91 0.87 0.87 0.57 0.79 0.71 0.68
(0.02) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.02) (0.01) (0.01)

RTS 1.00 1.01 0.95 0.95 1.00 1.01 1.00 1.01 1.00 0.99 0.97 0.97
(0.02) (0.01) (0.01) (0.02) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)

Turkey (321, 311, 322)

Capital 0.03 0.05 0.05 0.07 0.05 0.06 0.09 0.10 0.04 0.03 0.05 0.06
(0.00) (0.01) (0.01) (0.03) (0.00) (0.01) (0.01) (0.03) (0.01) (0.01) (0.01) (0.03)

Labor 0.16 0.15 0.08 0.07 0.22 0.20 0.15 0.14 0.27 0.18 0.11 0.11
(0.01) (0.01) (0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.01) (0.01) (0.00) (0.00)

Materials 0.83 0.86 0.82 0.80 0.81 0.81 0.75 0.71 0.71 0.86 0.87 0.86
(0.00) (0.01) (0.01) (0.02) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)

RTS 1.02 1.06 0.94 0.95 1.09 1.07 0.99 0.95 1.02 1.06 1.03 1.03
(0.01) (0.01) (0.01) (0.03) (0.01) (0.01) (0.02) (0.04) (0.01) (0.01) (0.02) (0.04)

US (33, 32, 31)

Capital 0.28 0.46 0.26 0.27 0.23 0.20 0.15 0.22 0.21 0.29 0.12 0.25
(0.03) (0.06) (0.05) (0.05) (0.02) (0.03) (0.02) (0.04) (0.01) (0.02) (0.02) (0.03)

Labor 0.50 0.28 0.20 0.21 0.47 0.33 0.21 0.21 0.54 0.31 0.28 0.27
(0.04) (0.06) (0.02) (0.01) (0.03) (0.04) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01)

Materials 0.25 0.30 0.55 0.57 0.31 0.48 0.64 0.60 0.26 0.37 0.61 0.59
(0.04) (0.05) (0.04) (0.03) (0.04) (0.04) (0.02) (0.02) (0.02) (0.02) (0.01) (0.01)

RTS 1.02 1.04 1.01 1.05 1.01 1.02 1.00 1.03 1.01 0.97 1.01 1.11
(0.01) (0.02) (0.03) (0.05) (0.01) (0.02) (0.02) (0.04) (0.00) (0.01) (0.01) (0.02)

Notes: This table presents a comparison of sales-weighted average output elasticities estimated using
different methods: (i) Cobb-Douglas (CD), (ii) Translog (TR), (iii) CES with labor-augmenting produc-
tivity (CES-FA), and (iv) strongly homothetic production function with factor-augmenting productivity
(FA). For each year and industry, sales-weighted averages are first calculated, followed by taking simple
averages across years. Numbers in each panel correspond to the SIC codes of the three largest industries
in each country. Bootstrapped standard errors are shown in parentheses (250 resamples).



I Robustness Check Results

Figure OA-7: Elasticity Estimates and Markups from Robustness Exercises
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(c) Single vs Multi Product Firm Controls

Notes: Each panel shows results from a different robustness check. The left panels compare
estimates from the robustness-check specifications with the baseline empirical specification. The
right panels show markup estimates from different production functions in each robustness check
specification. Panel (a) uses production functions with output measured in physical quantities.
Panel (b) controls for input prices in the production-function estimation. Panel (c) includes only
single-product firms. See Online Appendix G for details of these robustness check specifications.
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Figure OA-8: Comparison of Estimates with and without Capacity Utilization
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Notes: This figure compares elasticity estimates from different production function specifica-
tions—CD, TR, CES-FA, and FA—for Chile and Turkey. It shows baseline estimates as well
as estimates obtained after correcting capital stock for utilization. See Section Online Appendix
G.3 for details on the estimation procedure.

Figure OA-9: Comparison of Estimates with and without Measurement Error
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Notes: This figure presents results from the capital measurement error simulation exercise detailed
in Online Appendix G.3. The white bars represent elasticity estimates obtained from the empirical
procedure described in the paper. The grey bar represents the average of 250 elasticity estimates,
each obtained by adding a random error to the capital stock.
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A Descriptive Statistics of Production Datasets

Table SA-1: Descriptive Statistics - Chile

Share (Sales) Number of Plants

ISIC Industry 1979 1988 1996 1979 1988 1996

311 Leather Tanning and Finishing 0.17 0.19 0.20 1245 1092 983
381 Metal Products 0.04 0.04 0.04 383 301 353
321 Textiles 0.05 0.04 0.02 418 312 257
331 Repair Of Fabricated Metal Products 0.03 0.02 0.03 353 252 280
322 Apparel 0.02 0.02 0.01 356 263 216

Other Industries 0.69 0.69 0.69 2399 1957 1873

Notes: Descriptive Statistics for Chile. Columns 3-5 show each industry’s share as a percentage
of sales in the entire manufacturing industry for the first and last year, and at the midpoint
of the sample. Columns 6-8 report the number of active plants in corresponding years. The
last row provides information about industries not included in the sample.

Table SA-2: Descriptive Statistics - Colombia

Share (Sales) Number of Plants

ISIC Industry 1978 1985 1991 1978 1985 1991

311 Leather Tanning and Finishing 0.21 0.21 0.20 971 840 976
322 Apparel 0.03 0.03 0.03 666 862 842
381 Metal Products 0.04 0.04 0.03 593 478 534
321 Textiles 0.11 0.09 0.08 467 398 428
342 Cutlery, Hand Tools, and General Hardware 0.02 0.03 0.02 325 315 342
382 Laboratory Instruments 0.02 0.02 0.02 285 266 307
352 Farm and Garden Machinery and Equipment 0.06 0.07 0.09 287 257 305
369 Miscellaneous Electrical Machinery 0.03 0.04 0.03 299 257 267
356 General Industrial Machinery 0.02 0.03 0.04 197 252 341

Other Industries 0.45 0.45 0.46 3893 3673 4001

Notes: Descriptive Statistics for Colombia. Columns 3-5 show each industry’s share as a
percentage of sales in the entire manufacturing industry for the first and last year, and at the
midpoint of the sample. Columns 6-8 report the number of active plants in corresponding
years. The last row provides information about industries not included in the sample.

Table SA-3: Descriptive Statistics - India

Share (Sales) Number of Plants

NIC Industry 1998 2007 2014 1998 2007 2014

230 Other non-metallic mineral products 0.09 0.05 0.08 596 1056 1386
265 Measuring and testing, equipment 0.01 0.02 0.02 272 877 750
213 Pharmaceuticals, medicinal chemical 0.01 0.01 0.01 186 479 670
304 Military fighting vehicles 0.04 0.03 0.07 118 383 704
206 Sugar 0.06 0.04 0.04 271 363 431

Other Industries 0.79 0.86 0.78 1172 2795 3510

Notes: Descriptive Statistics for India. Columns 3-5 show each industry’s share as a percentage
of sales in the entire manufacturing industry for the first and last year, and at the midpoint
of the sample. Columns 6-8 report the number of active plants in corresponding years. The
last row provides information about industries not included in the sample.
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Table SA-4: Descriptive Statistics - US

Share (Sales) Number of Firms

NAICS Industry 1961 1987 2014 1961 1987 2014

33 Manufacturing I 0.39 0.37 0.60 113 1092 752
32 Manufacturing II 0.51 0.53 0.25 84 392 222
31 Manufacturing III 0.10 0.10 0.15 36 138 104

Notes: Descriptive Statistics for the US. Columns 3-5 show each industry’s share as a per-
centage of sales in the entire manufacturing industry for the first and last year, and at the
midpoint of the sample. Columns 6-8 report the number of active plants in corresponding
years. The last row provides information about industries not included in the sample.

Table SA-5: Descriptive Statistics - Turkey

Share (Sales) Number of Plants

ISIC Industry 1983 1991 2000 1983 1991 2000

321 Textiles 0.16 0.13 0.16 1017 945 1803
311 Food 0.12 0.12 0.11 1261 1120 1061
322 Apparel 0.02 0.05 0.04 300 831 800
381 Metal Products 0.04 0.04 0.04 650 542 834
382 Machinery 0.05 0.06 0.04 532 482 683
383 Electrical-Electronic Machinery 0.04 0.03 0.04 413 523 639
356 Plastic Products 0.08 0.07 0.07 309 312 402
352 Pharmaceuticals 0.08 0.09 0.12 331 286 428
371 Motor Vehicles and Motor Vehicle Equipment 0.02 0.02 0.03 287 261 383
312 Beverage and Tobacco Product Manufacturing 0.05 0.06 0.07 263 218 250

Other Industries 0.33 0.34 0.29 5100 5302 7033

Notes: Descriptive Statistics for Turkey. Columns 3-5 show each industry’s share as a per-
centage of sales in the entire manufacturing industry for the first and last year, and at the
midpoint of the sample. Columns 6-8 report the number of active plants in corresponding
years. The last row provides information about the industries that are not included in the
sample.
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Table SA-6: List of Products for Quantity Production Function Estimation

Product Category Unit Obs Products Included (Code)
2000-09 (ASICC) 2010-14 (NPCMS)

Brick Tiles Tonnes 7500 29101 3732001
29102 3732007

Black Tea Kilograms 6902 12211-5 239130-3
2391308

Rice, Parboiled
Non-Basmati Tonnes 6547 12311 2316107

2316202

Biri Cigarettes Number of Cig. 5735 15323 2509001

Rice, Raw
Non-Basmati Tonnes 5057 12312 2316108

2316203

Shirts, Cotton Number of Shirts 3515

63428 2822203
63428 2822299

2822406
2822408
2823499

Notes: This table presents the list of products that were used to estimate the quantity-based
production function. The second column shows the unit of measurement, and the third column
shows the number of firm-year observations for each product. The final two columns list the product
codes that are included in each product category. The name of the products for each code can be
found here.

SA-4

http://www.csoisw.gov.in/cms/En/1027-npcms-national-product-classification-for-manufacturing-sector.aspx


Table SA-7: Descriptive Statistics on Largest Input in Each Industry

Product Cost Share CoV Unit Input Name Code
2001-09 2010-14

Brick Tiles 0.62 1.99 Tonne Clay, Common 21405 1540007

Black Tea 0.76 0.42 Kg Tea (Green), Leaf 12202 162002

Rice, Parboiled
Non-Basmati 0.88 0.32 Tonnes Paddy (Excl. Seed) 12301 113200

Biri Cigarettes 0.81 1.05 Tonne Kendu (Biri) Leaves 15318 2509002

Rice, Raw
Non-Basmati 0.90 0.26 Tonnes Paddy (Excl. Seed) 12301 113200

Shirts, Cotton 0.53 0.38 Metres Fabrics, Cotton 63302 2669010

Notes: This table lists the largest inputs used in each product category. The second column shows the
cost share of the input in intermediate input expenditures, and the third column presents the average
CoV of each price in each year-industry. The final two columns provide the name of the input and
the codes for two different time periods. The year 2000 is omitted because the largest input is “Other
basic items (indigenous)” in almost all industries.

SA-5



B Additional Figures and Tables
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Figure SA-1: Heterogeneity in Output Elasticities (Nested CES)
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Notes: Panel (a) shows the average CoV of output elasticities estimated from the Nested CES
specification. Panels (b-d) display average output elasticities by firm decile. For each country, the
average elasticity for each decile within an industry-year is first estimated, and then these estimates
are averaged across industry-year bins.
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Figure SA-2: Heterogeneity in Output Elasticities (Translog)
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Notes: Panel (a) shows the average CoV of output elasticities estimated from the Translog specifi-
cation. Panels (b-d) display average output elasticities by firm decile. For each country, the average
elasticity for each decile within an industry-year is first estimated, and then these estimates are
averaged across industry-year bins. In Panel (a), the average CV of capital elasticity in Turkey is
implausibly high due to an outlier and therefore is out of the y-axis range.
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Figure SA-3: Distribution of Elasticities Estimated using FA Method
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Notes: These figures display the distribution of capital, labor, and materials elasticity in each country estimated from the strongly homothetic production
function with factor-augmenting productivity (FA). The unit of observation is a plant- or firm-year, depending on the country.
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Figure SA-4: First and Second Derivatives of Production Functions
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Notes: This figure displays the CDF of the proportion of firms with positive first derivatives and
negative second derivatives with respect to capital and labor. In each CDF, the unit of observation
is a country-year-industry, with a total of 601 observations. The first and second derivatives are
evaluated at each firm’s observed values of capital, labor, and materials. To give an example of
how to interpret these plots, the top-right figure shows that in 90% of country-year-industry cases,
less than 10% of the derivatives of the production function with respect to capital are negative.
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Figure SA-5: Shape of the Production Function with Respect to Capital
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Notes: This figure displays the shape of the production function with respect to capital in the
largest three industries of each country in the midpoint period of the sample. The values of
other inputs are set to their median values observed in the sample. On the x-axis, the capital
input moves from the smallest to the largest observed value in the sample, and the y-axis reports
the corresponding change in output. Both axes are normalized to be between 0 and 1 to ease
readability.
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Figure SA-6: Shape of the Production Function with Respect to Composite Input
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Notes: This figure displays the shape of the production function with respect to composite input
h in the largest three industries of each country in the midpoint period of the sample. The values
of other inputs are set to their median values observed in the sample. On the x-axis, the input
moves from the smallest to the largest observed value in the sample, and the y-axis reports the
corresponding change in output. Both axes are normalized to be between 0 and 1 to ease readability.
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Figure SA-7: Average Markup Estimates Across Production Function Models (No
Rolling Window)
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Notes: Comparison of sales-weighted markups estimated using four production functions. Sales-
weighted averages are calculated for each industry-year, then averaged across years. Error bars
show 95% confidence intervals based on bootstrap. Due to the increase in the computational
intensity, the standard errors are estimated using 50 resamples instead of 250 resamples as in the
main text.

Figure SA-8: Sales-Weighted Markup Trend Over Time in US Manufacturing (No
Rolling Window)
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Notes: This figure compares sales-weighted markup trends in US manufacturing derived from
a Cobb-Douglas (CD) production function versus a strong homothetic production function with
Hicks-neutral and factor-augmenting productivity (FA).
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