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Abstract

We provide a theoretical characterization of the welfare effects of buyer and seller
power in vertical relations and introduce an empirical approach for quantifying the
contributions of each to the welfare losses from market power. Our model accom-
modates both monopsony distortions from buyer power and double-marginalization
distortions from seller power. Rather than imposing one of these vertical distortions
by assumption, we allow them to arise endogenously based on model primitives. We
show that the relative elasticity of upstream supply and downstream demand is the
key determinant of whether buyer or seller power creates a market power distortion.
Applying our framework to coal procurement by power plants in Texas, we attribute
74.9% of the distortion to monopoly power of coal mines, with the remainder attributed
to the monopsony power of power plants.
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1 Introduction

There is a growing interest in the buyer power of firms, both in labor markets (Card
et al., 2018; Lamadon et al., 2022; Yeh et al., 2022) and in vertically related industries
(Grennan, 2013; Gowrisankaran et al., 2015; Rubens, 2023). This attention is mirrored in
policy circles; for instance, the Department of Justice (DOJ) has challenged mergers on the
grounds of monopsony concerns (DOJ, 2022), and tackling labor market power has come
to the forefront of economic policy-making (The White House, 2023; DOJ and FTC, 2023).

However, the welfare implications of buyer power vary drastically across different ver-
tical models. In one class of models, which we classify as "monopolistic vertical conduct,"
the downstream party controls output, either directly or indirectly by setting consumer
prices, and bargains over input prices (Crawford and Yurukoglu, 2012; Ho and Lee, 2019).
In these models, seller power creates vertical distortions by generating upstream markups,
and buyer power can countervail this distortion. In contrast, in another class of mod-
els, which we classify as "monopsonistic vertical conduct," the upstream party controls
how much input to supply and bargains over input prices (Card et al., 2018; Berger et al.,
2022). In these models, buyer power creates vertical distortions by generating input price
markdowns.

In this paper, we provide a theoretical characterization of the welfare effects of buyer
and seller power in a unified framework and introduce an empirical approach to quantify
how much each channel contributes to vertical distortions. Our framework nests both
monopsonistic and monopolistic vertical conduct. The key novelty is that we do not
assume a specific type of vertical conduct; rather, we allow it to arise endogenously based
on model primitives. This feature allows us to characterize the conditions under which
buyer power acts as countervailing or distortionary, as a function of the supply and demand
elasticities.

In its basic form, our theoretical model is a perfect-information bilateral Nash bargain-
ing between a single seller ("upstream party") and a single buyer ("downstream party") that
bargain over a linear wholesale price, and either the seller chooses how much to supply
("monopsonistic bargaining") or the buyer chooses how much to produce ("monopolistic
bargaining"). We model "buyer power" as the buyer’s bargaining ability (𝛽) compared to
the seller’s. We avoid functional-form assumptions on the demand and cost curves and
allow for both simultaneous and sequential timing. Using this model, we analyze vertical
distortions, defined as the output reduction relative to joint-profit maximization in the
vertical chain.

The starting point of our paper is our result that under increasing upstream marginal
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cost and decreasing downstream demand, an equilibrium exists under both monopsonistic
and monopolistic vertical conduct. This contrasts with most empirical IO models studying
settings with constant marginal costs, where only monopolistic conduct is possible.1 Sim-
ilarly, monopsony models in labor typically feature perfectly elastic downstream demand,
where only monopsonistic conduct is possible.2 However, in settings with both increasing
marginal cost and decreasing demand, there is no a priori reason a specific vertical conduct
should occur. To address this theoretical ambiguity, we develop two empirically testable
microfoundations that pin down the form of vertical conduct in equilibrium.

We argue that such settings are common and illustrate the application of our model in
three empirical contexts: (i) a manufacturer with increasing marginal costs bargaining with
a downstream firm, (ii) a union bargaining with an employer, and (iii) a seller collective
bargaining with a buyer. In each of these applications, we show how to empirically
determine whether the vertical distortions come from the buyer’s monopsony power or
the seller’s monopoly power. Moreover, if both distortion types are present in an industry,
we decompose the vertical distortion into buyer and seller power components. We illustrate
this decomposition in our main empirical application of coal procurement by power plants.

We begin our theoretical analysis by examining monopolistic and monopsonistic bar-
gaining separately. Our first result shows that buyer power has an opposite effect on
output under each type of vertical conduct. Under monopolistic bargaining, greater buyer
power raises output by reducing the double-marginalization problem of Spengler (1950).
In contrast, under monopsonistic bargaining, greater buyer power lowers output due to
a different form of double marginalization, in which the downstream firm marks down
input prices in addition to marking up consumer prices (Robinson, 1933). Although these
insights are recognized in the literature, we characterize the nonparametric conditions
under which they arise in a bargaining setting.

To understand their properties, we compare monopsonistic and monopolistic bargain-
ing with efficient bargaining, where upstream and downstream firms negotiate a two-part
tariff that maximizes joint profits. We show that for a unique interior value of buyer power
𝛽∗ ∈ (0, 1), both the monopsonistic and monopolistic equilibria coincide with the efficient-
bargaining outcome. Although it may not be immediately obvious, this result is intuitive:
at 𝛽∗, which we call the "efficient level of buyer power," the buyer’s monopsony power and
the seller’s monopoly power exactly offset each other, leading to the efficient-bargaining
outcome with no vertical distortions.

1To be precise, we show that no interior equilibrium exists in these cases. A trivial equilibrium where the
wholesale price equals the upstream average cost or downstream price remains possible.

2Recently, monopsony models have been developed in which downstream residual demand is not perfectly
elastic with respect to downstream prices, such as Kroft et al. (2020), Rubens (2023), and Lobel (2024).
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We show that the efficient level of buyer power 𝛽∗ is the key threshold determining
the welfare effects of buyer and seller power. It is characterized by the relative elasticities
of upstream cost and downstream demand, as these govern the extent of downstream
monopsony power (cost curve) and upstream monopoly power (demand curve). A higher
cost elasticity increases the potential for monopsony power, requiring more seller power
(lower 𝛽∗) to countervail it. Similarly, less-elastic demand amplifies the scope for double
marginalization, necessitating greater buyer power (higher 𝛽∗) to countervail seller power.

Having shown that two types of vertical conduct are possible with distinct welfare prop-
erties, we next develop two testable microfoundations that select between monopsonistic
and monopolistic bargaining.

The first microfoundation imposes a participation constraint: the seller requires a
nonnegative markup, and the buyer requires a nonnegative markdown in order to trade.
Under these constraints, vertical conduct is uniquely determined depending on how the
actual buyer power (𝛽) compares to the efficient buyer power (𝛽∗). If buyer power is below
𝛽∗, the seller has "too much" power, resulting in monopolistic vertical conduct. Conversely,
if buyer power exceeds 𝛽∗, the buyer has "too much" power, leading to monopsonistic
vertical conduct. Thus, buyer power can be either countervailing (output-increasing) or
distortionary (output-decreasing), depending on how 𝛽 compares with 𝛽∗.

Although the nonnegative markup and markdown constraints seem intuitive, they
warrant further discussion because firms can still earn positive profits from inframarginal
units, even with a negative markup and markdown. Thus, these constraints are more likely
to hold when it is infeasible to operate the marginal unit at a loss through internal transfers
due to organizational frictions (Holmstrom and Tirole, 1991; Scharfstein and Stein, 2000).
For example, if the seller is a labor union, a negative upstream markup would require
transfers among union members to subsidize some workers to accept wages below their
reservation wage—a scenario that appears highly implausible. Similarly, if the seller is a
multiplant firm, it would require a manager to operate a loss-making plant.

We develop a second microfoundation to select the vertical conduct without directly
imposing nonnegative markups and markdowns. In this microfoundation, we augment
our model to allow firms to bargain over either a linear price or a two-part tariff. We
introduce an incentive-compatibility constraint that firms choose a linear price contract
only if they cannot unilaterally earn higher profits under a two-part tariff. Under this
constraint, either the upstream party (under monopolistic conduct) or the downstream
party (under monopsonistic conduct) has the incentive to choose a linear price contract
over a two-part tariff in the 𝛽 intervals defined under the first conduct selection rule. This,
in turn, uniquely determines conduct as either monopsonistic or monopolistic.
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The characterization of vertical conduct as a function of the actual level of buyer power,
𝛽, and the efficient level of buyer power, 𝛽∗, suggests potential empirical strategies for
analyzing market power in vertical relations. First, 𝛽∗ can be calculated from the elasticity
of upstream cost and downstream demand, and can be compared to 𝛽 estimated using
a bargaining model. In our model, this comparison identifies the vertical conduct and
whether seller or buyer power generates vertical distortions. Second, even if estimating
the actual bargaining weight is not feasible, 𝛽∗ alone could still be useful. Under a uniform
prior for 𝛽, high levels of 𝛽∗ suggest that the conduct is likely monopsonistic, while low
levels of 𝛽∗ indicate that the conduct is more likely monopolistic.

We then show how to implement these empirical strategies in three applications. In our
main application, we analyze the wholesale coal procurement by power plants in Texas
from 2005 to 2014. Using detailed cost data from coal mines and power plants, along with
observed wholesale coal and electricity prices, we estimate cost and demand curves on
both sides of the market together with the bargaining weights. Our estimates reveal that
74.9% of the vertical distortion is due to monopoly power of coal mines; the remaining
25.1% arises from the monopsony power of power plants.

The two other empirical examples rely on calibrated applications of our model to infer
𝛽∗ rather than estimating a full bargaining model. First, using estimates of labor supply
and demand for U.S. construction workers from Kroft et al. (2020), we examine the effects
of potential unionization in this industry. We find that if construction workers were to
unionize, the output-maximizing bargaining power of employers would be 0.42, slightly
favoring unions over employers. Second, we apply our model to the Chinese tobacco
supply chain to examine the potential effects of a farmer’s cooperative, using estimates
from Rubens (2023). We find that the efficient level of buyer power of tobacco buyers
would be 0.92, which is close to a one-sided monopsony. This means that introducing a
farmer’s cooperative would likely reduce output through double marginalization in this
industry.

We present four extensions of our theoretical framework. First, we allow for nonzero
disagreement payoffs and measure buyer power as the buyer’s disagreement payoff instead
of bargaining weight 𝛽. Second, we consider a setting with multiple buyers that compete
oligopolistically in the downstream market. Third, we accommodate bilateral negotiations
of multiple buyers and sellers by using the extended class of Nash-in-Nash bargaining
models with passive beliefs (Horn and Wolinsky, 1988; Collard-Wexler et al., 2019). Fourth,
we consider a multi-input downstream production setting, where one input is obtained
through bargaining, and the other is sourced from a competitive market.

Our paper offers key insights for antitrust policy. In horizontal mergers between either
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upstream or downstream firms, we show that the effects of the resulting change in buyer
power on consumer surplus depend on whether the vertical conduct is monopsonistic or
monopolistic. Our model thus nests prior analyses of buyer power in merger control, with
buyer power being pro-competitive in Nevo (2014); Craig et al. (2021); Sheu and Taragin
(2021) but anti-competitive in Hemphill and Rose (2018); Berger et al. (2023). In vertical
mergers, potential welfare gains from reduced double marginalization depend on the gap
between premerger buyer power 𝛽 and 𝛽∗, which we show how to estimate.

Nevertheless, we emphasize that this paper focuses solely on the static effects of buyer
and seller power while remaining agnostic about potential dynamic effects, such as those
relating to innovation or investment incentives, which may be critical for welfare. More-
over, we do not take a stand on how to weigh the surpluses of upstream and downstream
parties; rather, we examine the effects of buyer and seller power on output and various
welfare metrics.

Contribution to the Literature Our project contributes to four sets of literature. The first
is the literature on market power in vertical relations under bilateral oligopoly. This class of
models has been applied in IO to study firm-to-firm bargaining (Crawford and Yurukoglu,
2012; Grennan, 2013; Gowrisankaran et al., 2015; Crawford et al., 2018; Ho and Lee, 2019;
Cuesta et al., 2024), in labor to analyze union-employer wage bargaining (Abowd and
Lemieux, 1993; Hosken et al., 2024), and in international trade to study importer-exporter
bargaining (Alviarez et al., 2023; Atkin et al., 2024).3, A common feature of these models
is that output is determined by the buyers, either directly or indirectly through output
prices, which implies that vertical distortions are due to seller power.

Second, a distinct literature studies monopsony power in vertical relations while as-
suming that the seller, rather than the buyer, determines output. In these models, the
downstream party sets wholesale prices (or wages, in labor applications) while facing
an upward-sloping factor supply curve under various market structures: monopsonistic
competition (Card et al., 2018; Lamadon et al., 2022), oligopsonistic competition (Azar
et al., 2022; Berger et al., 2022; Rubens, 2023), or monopsonistic bargaining (Rubens, 2022;
Azkarate-Askasua and Zerecero, 2024).4

We contribute to these two literatures by endogenizing vertical conduct. Instead of
analyzing vertical distortions due to monopsony or upstream monopoly power separately,
we consider a unified framework that determines the vertical conduct in equilibrium and

3An important difference between our paper and Alviarez et al. (2023) is that the markdown in our paper
represents a wedge between the marginal revenue product of an input and the price of that input paid by
the buyer, whereas the markdown in Alviarez et al. (2023) means a negative markup of the seller.

4These are the "neoclassical" monopsony models, as opposed to the "dynamic" monopsony models in the
search-and-matching tradition (Manning, 2013).
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decomposes the vertical distortions into distortions from seller and buyer power.
Third, we contribute to models of countervailing power (Galbraith, 1954; Iozzi and

Valletti, 2014; Loertscher and Marx, 2022), for which empirical evidence was documented in
Gowrisankaran et al. (2015); Barrette et al. (2022); Angerhofer et al. (2024). We advance this
literature by developing a model that identifies the conditions under which buyer power
is countervailing or distortionary. In contemporaneous and complementary research,
Avignon et al. (2024) derive similar theoretical results within a bargaining framework
where the upstream firm also exercises monopsony power, which introduces a novel
"double markdownization" phenomenon. Other differences include our consideration of
both simultaneous and sequential timing assumptions, a different microfoundation for
vertical conduct, and bringing our model to the data.

Fourth, we contribute to the literature testing vertical conduct (Berto Villas-Boas, 2007;
Bonnet and Dubois, 2010; Atkin et al., 2024). Differently from these papers, vertical conduct
is an equilibrium outcome in our model instead of a primitive assumed to be fixed.

The rest of the paper is structured as follows. In Section 2, we set up our model. Section
3 analyzes the welfare effects of buyer power under monopolistic and monopsonistic bar-
gaining while taking vertical conduct as given. Section 4 develops two microfoundations
to select between conduct types. Section 5 generalizes the model with four extensions. In
Section 6, we empirically implement our model in two calibrated applications. In Section
7, we conduct a fully estimated empirical application in the context of coal procurement
of power plants. Section 8 concludes. All proofs are included in Appendices A, B, and C.

2 Model Setup

2.1 Primitives: Costs, Demand, and Payoffs

We consider a simple bilateral bargaining problem where an upstream firm 𝑈 sells a
quantity 𝑞 of a good to a downstream firm 𝐷 at a wholesale price 𝑤 under a linear price
contract. The downstream firm 𝐷 then resells this good directly to consumers without
incurring additional costs. 𝐷 faces an inverse demand curve 𝑝(𝑞), with 𝑝′(𝑞) ≤ 0. 𝑈

produces output at an average cost 𝑐(𝑞), with 𝑐′(𝑞) ≥ 0. We denote the downstream
profit as 𝜋𝑑(𝑤, 𝑞) ≡

(
𝑝(𝑞) − 𝑤

)
𝑞 and upstream profit as 𝜋𝑢(𝑤, 𝑞) ≡

(
𝑤 − 𝑐(𝑞)

)
𝑞. We

assume that 𝑝(𝑞) > 𝑐(𝑞) in an interval (0, �̄�) with 𝑝(�̄�) = 𝑐(�̄�) to guarantee gains from
trade. We denote upstream marginal cost as 𝑚𝑐(𝑞) ≡ 𝜕(𝑐(𝑞)𝑞)

𝜕𝑞 and downstream marginal

revenue as 𝑚𝑟(𝑞) ≡ 𝜕(𝑝(𝑞)𝑞)
𝜕𝑞 . In addition, we assume that both 𝑝(𝑞) and 𝑐(𝑞) are three times

continuously differentiable functions. For expositional purposes, we set the disagreement
payoffs to zero. In Sections 4 and 5, we provide various extensions to the model, including
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nonzero disagreement payoffs, nonlinear pricing, and multiple buyers and sellers.

2.2 Relevance of Allowing for Increasing Marginal Costs

Our key departure from the prior empirical bargaining literature is that we allow for
increasing marginal costs of 𝑈 . We argue that allowing for increasing marginal costs
is important for understanding vertical relations across various industries. We highlight
three vertical environments where increasing marginal costs matter and our model applies.

Example 1. Unions: Labor unions representing workers with heterogeneous reservation wages.

A long tradition of research has examined wage bargaining and labor unions (Ashen-
felter and Johnson, 1969; Card, 1986; Abowd and Lemieux, 1993; Lee and Mas, 2012). In
these applications, the upstream entity 𝑈 is a labor union bargaining over wages 𝑤 with
a downstream employer 𝐷. The upstream marginal costs correspond to workers’ reser-
vation wages, i.e., their outside employment opportunities. Any heterogeneity in these
reservation wages generates an upward-sloping labor supply curve for the employer. In
Section 6, we provide an example in the context of U.S. construction workers.

Example 2. Cooperatives: Cooperatives of suppliers with heterogeneous marginal costs.

When an upstream entity collectively bargains with a downstream buyer on behalf of
multiple suppliers, the supply curve slopes upward due to heterogeneity in suppliers’
costs. Agricultural cooperatives, which are prevalent in both the United States and de-
veloping countries, are an example of this structure (Cook, 1995; Banerjee et al., 2001; Ito
et al., 2012). In Section 6, we demonstrate this setting in the context of Chinese tobacco
markets.

Example 3. Firm-Level Increasing Marginal Costs: Individual suppliers with increasing
marginal costs at the firm level.

In Examples 1 and 2, the aggregation of atomistic production units generates increasing
marginal costs for the negotiator. There are also instances where an individual input
producer bargains with a downstream buyer and faces increasing marginal costs due to
a decreasing returns-to-scale technology. For example, most manufacturing production
function estimates support decreasing returns to scale, particularly in the short term when
capital is fixed (Collard-Wexler and De Loecker, 2015; De Loecker and Scott, 2022; Demirer,
2022). Moreover, even firms with constant marginal costs at the plant level may face
increasing marginal costs at the firm level if they operate multiple plants with heterogeneous
costs.5 In Section 7, we illustrate this category in the context of coal production.

5Also, any monopsony power of the upstream firm over its input market leads to increasing marginal costs.
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2.3 Behavior: Monopolistic vs. Monopsonistic Bargaining

Our main analysis considers two alternative behavioral models of vertical conduct. In the
first type, which we coin "monopolistic bargaining," 𝐷 makes an output decision 𝑞, and 𝑈

and 𝐷 bargain over the wholesale price 𝑤 to maximize a Nash product:6
max

𝑞
𝜋𝑑(𝑤, 𝑞) (1)

max
𝑤

[(𝜋𝑑(𝑤, 𝑞))𝛽(𝜋𝑢(𝑤, 𝑞))1−𝛽] s.t. 𝜋𝑑 ≥ 0,𝜋𝑢 ≥ 0 (2)

We denote the solution to this problem (𝑞𝑚𝑝 , 𝑤𝑚𝑝). A second type of vertical conduct,
which we coin "monopsonistic bargaining," involves 𝑈 choosing how much output to
supply while bargaining over the wholesale price with 𝐷:

max
𝑞

𝜋𝑢(𝑤, 𝑞) (3)

max
𝑤

[(𝜋𝑑(𝑤, 𝑞))𝛽(𝜋𝑢(𝑤, 𝑞))1−𝛽] s.t. 𝜋𝑑 ≥ 0,𝜋𝑢 ≥ 0

We denote the solution to this problem as (𝑞𝑚𝑠 , 𝑤𝑚𝑠). In the remainder of the paper, we
refer to the bargaining weight of the buyer, 𝛽, as "buyer power" and 1− 𝛽 as "seller power."

Note that under monopsonistic bargaining, "𝑈 chooses output" should not be inter-
preted as contracts where the upstream firm directly controls the downstream output,
as in resale price maintenance. Instead, the upstream firm chooses how much input to
supply to 𝐷, which in turn constrains how much output 𝐷 can sell.7 The "𝑈 chooses out-
put" model is relevant in the presence of increasing marginal costs: with constant marginal
costs, the upstream firm would supply an infinite amount of input as long as the wholesale
price exceeds marginal cost. In contrast, increasing marginal costs create a well-defined
profit-maximization problem with an interior solution.

We discuss two versions of our model that differ in terms of the timing assumptions: a
simultaneous bargaining model and a sequential bargaining model.

Definition 1. Under "Simultaneous Bargaining," the quantity choice by either 𝑈 or 𝐷 occurs
simultaneously with bargaining over the wholesale price.

• Stage 0: 𝑈 and 𝐷 observe 𝑐(·), 𝑝(·), 𝛽, vertical conduct.
• Stage 1: 𝑈 and 𝐷 bargain over 𝑤, and either 𝑈 or 𝐷 chooses 𝑞.

6The model can be readily extended to settings where downstream firms choose a price (𝑝) instead of a quantity
(𝑞), a more common assumption in empirical bargaining models for industries with product differentiation.

7This assumption can be extended by letting 𝑈 choose a quantity that is an input to downstream production;
we provide this extension in Section 5.4. There, 𝑈 influences, but does not directly control, downstream 𝑞.
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Definition 2. Under "Sequential Bargaining," 𝑈 and 𝐷 bargain over a wholesale price, after
which either 𝑈 or 𝐷 chooses an output quantity.

• Stage 0: 𝑈 and 𝐷 observe 𝑐(·), 𝑝(·), 𝛽, vertical conduct.
• Stage 1: 𝑈 and 𝐷 bargain over 𝑤.
• Stage 2: Either 𝑈 or 𝐷 chooses 𝑞.

Both types of timing assumptions are widely used in the literature.8 Simultaneous models
have been employed in several studies, including Ho and Lee (2017) and Crawford et al.
(2018). The sequential model resembles various vertical models in the literature, such as
the bargaining model in Crawford and Yurukoglu (2012) and the right-to-manage models
of union-labor bargaining (Leontief, 1946; Abowd and Lemieux, 1993).

In the case of full buyer or seller power, our bargaining models nest several classical
models. With full buyer power (𝛽 = 1), the sequential monopsonistic bargaining collapses
to the classical monopsony model of Robinson (1933), in which sellers decide how much
to supply at each possible input price, and buyers set input prices conditional on the factor
supply curve. In contrast, monopolistic conduct with full seller power (𝛽 = 0) collapses
to the successive monopoly model of Spengler (1950) with double marginalization. In the
remaining limit cases, the party with full power makes a take-it-or-leave-it (TIOLI) offer.9

Assuming that the second-order conditions hold, the solutions to bargaining problems
in Equations (1), (3), and (2) are characterized by the following first-order conditions (FOC):

𝑝′(𝑞)𝑞 + 𝑝(𝑞) = 𝑤 (D-FOC) (4)

𝑐′(𝑞)𝑞 + 𝑐(𝑞) = 𝑤 (U-FOC) (5)

𝛽
𝜕𝜋𝑑(𝑤, 𝑞)

𝜕𝑤
𝜋𝑢 + (1 − 𝛽)

𝜕𝜋𝑢(𝑤, 𝑞)
𝜕𝑤

𝜋𝑑 = 0 (B-FOC) (6)

for 𝛽 ∈ (0, 1).10,
11 The solution to monopolistic bargaining is given by (D-FOC) and (B-

FOC), while the solution to monopsonistic bargaining is given by (U-FOC) and (B-FOC).

8See Lee et al. (2021) for a comprehensive discussion of these timing assumptions and their implications.
9See Table OA-2 for a summary of the limit cases of both models.

10Appendices A.1 and B.1 present the closed-form solutions of these FOCs for the simultaneous and sequential
versions of the model. Note that the FOCs characterize the solution only for 𝛽 ∈ (0, 1). At the limiting cases
𝛽 = 0 and 𝛽 = 1, these models must be solved as constrained optimization problems, as the nonnegative
profit constraints become binding. Appendix D.1 analyzes these cases.

11The second-order conditions for (U-FOC) and (D-FOC) are given by 𝑚𝑐′(𝑞) > 0 and 𝑚𝑟′(𝑞) < 0. The
second-order conditions (B-SOC) for (B-FOC) are presented in Appendix A.2 for simultaneous timing and
in Appendix B.2 for sequential timing. While (B-SOC) is always satisfied under simultaneous timing, the
sequential timing case yields a complex expression involving third derivatives of both cost and demand
functions. In Appendix B.8, we develop some sufficient conditions under which (B-SOC) holds globally and
under our conduct selection rule given in Section 4 with sequential timing.
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In the sequential timing, unlike in the simultaneous case, the Nash bargaining solution in
(B-FOC) internalizes the impact of 𝑤 on the quantity choice in the second stage.

2.4 Benchmark: Efficient Bargaining

We consider the "efficient-bargaining" problem as a benchmark against the monopsonistic
and monopolistic bargaining models. Under efficient bargaining, upstream and down-
stream firms negotiate over both the wholesale price and quantity:

max
𝑤,𝑞

[
(𝜋𝑑(𝑤, 𝑞))𝛽(𝜋𝑢(𝑤, 𝑞))1−𝛽

]
(7)

This bargaining corresponds to a scenario where the parties maximize their joint profit,
as is the case under vertical integration.12 The efficient-bargaining quantity 𝑞∗ from this
problem is simply the quantity such that upstream marginal cost equals downstream
marginal revenue: 𝑚𝑐(𝑞∗) = 𝑚𝑟(𝑞∗). We use the efficient-bargaining model as a reference
point for assessing deadweight loss under monopsonistic and monopolistic bargaining.

2.5 Sources of Market Power in Vertical Relations

Since we do not take a stance between monopolistic and monopsonistic conduct, two
sources of market power can generate vertical distortions in our model: a seller markup
and a buyer markdown. As usual, we define the markup as the wedge between the
wholesale price𝑤 and the seller’s marginal costs, and the markdown as the wedge between
the buyer’s marginal revenue and the wholesale price:

Seller Markup : 𝜇𝑢(𝑞) ≡
𝑤 − 𝑚𝑐(𝑞)
𝑚𝑐(𝑞) Buyer Markdown : Δ𝑑(𝑞) ≡

𝑚𝑟(𝑞) − 𝑤

𝑚𝑟(𝑞)

These sources of market power can generate vertical distortions relative to efficient bar-
gaining by creating a wedge between marginal cost 𝑚𝑐(𝑞) and marginal revenue 𝑚𝑟(𝑞).
Under monopolistic bargaining, this wedge results from the upstream markup, while un-
der monopsonistic bargaining, it is caused by the downstream markdown. Note that a
buyer markup in the downstream market is also present as a source of market power; how-
ever, it exists independently of vertical conduct. Throughout the paper, we distinguish
these two sources of vertical distortions by referring to the seller markup as "upstream
monopoly power" and the buyer markdown as "downstream monopsony power."

12This is assuming that firms jointly maximize profits under vertical integration, which may not always occur,
due to organizational frictions (Crawford et al., 2018).
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3 Effects of Buyer Power: Monopolistic vs. Monopsonistic Conduct

We begin our analysis by examining the existence of the monopsonistic and monopolis-
tic equilibrium under various cost and demand curve assumptions to determine which
settings can accommodate these conduct types. We then characterize the effects of buyer
power on output, consumer surplus, and total surplus separately under monopolistic and
monopsonistic bargaining. In the next section, we unify both forms of conduct and jointly
analyze their welfare effects by endogenizing vertical conduct. All results in this section
hold under both simultaneous and sequential timing assumptions, so we do not state them
explicitly.

3.1 Equilibrium Existence

We establish equilibrium existence in monopsonistic and monopolistic bargaining by high-
lighting two special cases that commonly appear in the literature: constant marginal cost
and constant marginal revenue.

Proposition 1. (i) If the upstream marginal cost is constant, 𝑚𝑐′(𝑞) = 0, the monopsonistic
bargaining problem does not have an interior solution for any 𝛽.
(ii) If the downstream marginal revenue is constant, 𝑚𝑟′(𝑞) = 0, the monopolistic bargaining
problem does not have an interior solution for any 𝛽.
(iii) In all other cases, both the monopolistic and monopsonistic bargaining problems have an interior
solution for 𝛽 ∈ (0, 1).13

The intuition for Proposition 1(i-ii) is straightforward: if upstream marginal costs are
constant, the FOC for 𝑈’s output choice in Equation (5) under the monopsonistic model
becomes undefined when the wholesale price exceeds the marginal cost; 𝑈 would be
willing to supply an infinite quantity of output. Similarly, in the monopolistic model, if
marginal revenue is constant, 𝐷 would be willing to sell an infinite quantity if the wholesale
price is below the downstream price, resulting in unbounded profits for 𝐷.14

Proposition 1(i-ii) could explain why different literatures have tended to adopt specific
bargaining models. The empirical IO literature, which commonly studies settings with
constant marginal costs, uses monopolistic bargaining (Lee et al., 2021), while the classical

13We call a solution interior if the equilibrium wholesale price is different from the average upstream cost 𝑐(𝑞)
and downstream price 𝑝(𝑞). In the simultaneous bargaining models, a solution may fail to exist for some
values of 𝛽 depending on the demand and cost curves. We characterize the 𝛽 range for which a solution
exists for the simultaneous models in Appendix D.2, but for simplicity, we use 𝛽 ∈ (0, 1) for the remainder
of the paper. If necessary, these bounds can be replaced with those derived in Appendix D.2.

14In light of Proposition 1, we assume for the remainder of this section that 𝑚𝑐′(𝑞) > 0 when analyzing
monopsonistic bargaining and 𝑚𝑟′(𝑞) < 0 when analyzing monopolistic bargaining to ensure that the
solutions are well-defined.
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monopsony literature, which historically assumed perfect competition in goods markets,
adopts monopsonistic bargaining (Manning, 2021). However, as Proposition 1(iii) shows,
an equilibrium under each conduct type is possible when there are increasing upstream
costs and decreasing downstream demand. As we argued in Examples 1–3, studies of
such settings have become increasingly prevalent in the literature with the integration of
monopsony and buyer power into IO models (Card, 2022; Azar and Marinescu, 2024). This
observation motivates our unified approach of jointly analyzing both types of conduct.

3.2 Output and Buyer Power

We now characterize the relationship between output 𝑞 and buyer power 𝛽 in monopson-
istic and monopolistic bargaining. To do so, we introduce two additional assumptions on
the cost and demand curves.

Assumption 1. Increasing Differences Between Marginal and Average Costs: 𝑑(𝑚𝑐(𝑞)−𝑐(𝑞))
𝑑𝑞

> 0

Assumption 2. Decreasing Differences Between Marginal and Average Revenue: 𝑑(𝑚𝑟(𝑞)−𝑝(𝑞))
𝑑𝑞

< 0

These assumptions govern the curvature of the cost and demand curves. They are
weaker assumptions than the convexity of the average cost and the concavity of demand,
but they imply that upstream marginal costs are increasing, 𝑚𝑐′(𝑞) > 0, and that down-
stream marginal revenue is decreasing, 𝑚𝑟′(𝑞) < 0.15 We need Assumption 1 to hold only
under monopsonistic bargaining, and Assumption 2 only under monopolistic bargaining.

Lemma 1. In monopsonistic bargaining, the equilibrium quantity 𝑞𝑚𝑠 decreases and the down-
stream markdown Δ𝑑 increases with buyer power 𝛽; that is, 𝑑𝑞𝑚𝑠/𝑑𝛽 < 0 and 𝑑Δ𝑑/𝑑𝛽 > 0.

Lemma 1 establishes that an increase in buyer power reduces output under monopson-
istic bargaining. Figure 1(a) illustrates the key intuition behind this result. In monopson-
istic bargaining, the output is decided by 𝑈 , which implies that 𝑞𝑚𝑠(𝑤) is an input supply
curve. An increase in buyer power 𝛽 leads to movements along this input supply curve by
lowering the wholesale price. This, in turn, reduces output and increases the markdown.

The "Increasing Differences Between Marginal and Average Costs" assumption is neces-
sary for Lemma 1 to hold globally. The intuition is that marginal cost drives the upstream
firm’s quantity choice, whereas average cost determines its profits and participation con-
straint. Without this assumption, if marginal cost were to rise more slowly than average
cost, a more powerful buyer might prefer a higher wholesale price—violating Lemma
1—since the revenue increase from resulting higher quantity offsets the higher wholesale
costs while still maximizing the Nash product. Assumption 1 prevents this scenario.

15See Lemma OA-15 in Appendix D.5 for this result.
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Figure 1: Illustration of the Effects of Buyer Power on Output (Intuition)

(a) Monopsonistic Conduct (b) Monopolistic Conduct
Notes: This figure illustrates how buyer power affects output under the two types of vertical conduct: monopson-
istic (Panel (a)) and monopolistic (Panel (b)). In monopsonistic conduct, increased buyer power 𝛽 moves output
along the marginal cost curve, while in monopolistic conduct, it shifts output down the marginal revenue curve.

Lemma 2. In monopolistic bargaining, the equilibrium quantity 𝑞𝑚𝑝 increases and the upstream
markup 𝜇𝑢 decreases with buyer power 𝛽; that is, 𝑑𝑞𝑚𝑝/𝑑𝛽 > 0 and 𝑑𝜇𝑢/𝑑𝛽 < 0.

Lemma 2 states that output increases with buyer power under monopolistic bargaining.
Unlike the monopsonistic case, monopolistic bargaining implies that output is determined
by 𝐷, implying that 𝑞𝑚𝑝(𝑤) is an input demand curve, as illustrated in Figure 1(b). Conse-
quently, an increase in 𝛽 induces movements along this input demand curve, reducing the
seller’s markup and increasing output.

To illustrate our findings, we simulate data with log-linear upstream cost and down-
stream demand curves and solve the sequential bargaining models for each type of vertical
conduct. The resulting output-buyer power relationships are shown in Figure 2 for monop-
sonistic and monopolistic conduct. Under monopsonistic conduct, output decreases with
buyer power, whereas the opposite is true under monopolistic conduct.

Together, Lemmas 1 and 2 reveal a key distinction between two types of vertical conduct:
holding cost and demand constant, an increase in buyer power 𝛽 raises output under
monopolistic bargaining but reduces output in the monopsonistic bargaining model. This
distinction explains why the prior IO studies often feature pro-competitive effects of buyer
power (Grennan, 2013; Nevo, 2014; Gowrisankaran et al., 2015), whereas the monopsony
literature features anticompetitive effects of buyer power (Morlacco, 2019; Berger et al.,
2022; Lamadon et al., 2022).
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Figure 2: Illustration of the Effects of Buyer Power on Output (Simulation)

Notes: This figure presents results from a numerical simulation of how output varies with buyer power under
monopolistic and monopsonistic bargaining with sequential timing. We use the cost curve 𝑐(𝑞) = 𝑞𝜓/(1 + 𝜓) and
the demand curve 𝑝(𝑞) = 𝑞1/𝜂, where the marginal cost elasticity is 𝜓 and the downstream demand elasticity is 𝜂.
We use the parametrizations 𝜓 = 1/4 and 𝜂 = −6. For the derivation of equilibria, see Appendix D.3. We report
the corresponding figure under the simultaneous timing assumption in Figure OA-4.

3.3 Distinguishing Between "Buyer Power" and "Monopsony Power"

In the literature, the terms buyer power and monopsony power are often used interchangeably.
Our results clarify the distinctions between these concepts.

Corollary 1. Under monopolistic bargaining, the downstream markdown Δ𝑑 is zero for all values
of 𝛽, so the buyer has no monopsony power. Under monopsonistic bargaining, the upstream markup
𝜇𝑢 is zero for all values of 𝛽, so the seller has no monopoly power.

While there may be buyer power (𝛽 > 0) under monopolistic bargaining, the buyer
markdown is always zero, because the downstream firm sets the marginal revenue equal
to wholesale price in (D-FOC). Hence, there is no monopsony distortion in this model.
Similarly, under monopsonistic bargaining, even with positive seller power ((1 − 𝛽) > 0),
the seller markup is always zero, because the upstream firm sets the marginal cost equal to
the wholesale price in (U-FOC). Hence, there is no double-marginalization distortion. As a
result, monopsony power arises only when increased buyer power reduces output, whereas
upstream monopoly power arises only when increased seller power reduces output. In all
other cases, buyer and seller power are countervailing.

3.4 Characterization of the Efficient Level of Buyer Power

Having established how output depends on buyer power under each vertical conduct, we
analyze their efficiency properties by comparing each conduct to the efficient-bargaining
problem over the two-part tariff given in Equation (7).

14



Proposition 2. There exists a unique bargaining parameter 𝛽∗ =
−𝑝′(𝑞∗)

𝑐′(𝑞∗) − 𝑝′(𝑞∗) ∈ (0, 1) at which

the monopsonistic bargaining model, the monopolistic bargaining model, and the efficient-bargaining
models imply an identical equilibrium output.

We denote 𝛽∗ as the "efficient level of buyer power". This proposition shows that at
𝛽∗, output under the monopolistic and monopsonistic conduct coincides and is equal to
the level that would be reached under efficient bargaining. This result arises because
𝛽∗ represents the level of buyer power at which the buyer’s monopsony power and the
seller’s monopoly power exactly offset one another, resulting in an outcome with neither
monopsony nor upstream monopoly distortions. Moreover, this result holds under both
simultaneous and sequential timing at the same 𝛽∗.

Since downstream monopsony power is determined by the curvature of the cost curve
and upstream monopoly power is determined by the curvature of the demand curve, 𝛽∗

relates to these primitives in an intuitive way, as shown in the following corollary.

Corollary 2. The efficient level of buyer power 𝛽∗ weakly decreases as the upstream marginal
cost curve becomes steeper and weakly increases as the downstream inverse demand curve becomes
steeper.

The steeper the upstream cost curve, the higher the potential monopsony distortion
becomes. To counterbalance this effect, the seller needs greater bargaining power, resulting
in a lower value of 𝛽∗. Similarly, steeper downstream demand amplifies the potential for
upstream monopoly power, requiring the buyer to have stronger bargaining power with
higher 𝛽∗ as a countervailing force. As a result, in extreme cases with constant marginal
cost or constant inverse demand, the efficient level of buyer power is full buyer power
(𝛽∗ = 1) and full seller power (𝛽∗ = 0), respectively.

An implication of our results in this section is that equilibrium output can exceed
the efficient-bargaining output. As we observe in Figure 2, 𝑞 > 𝑞∗ when 𝛽 < 𝛽∗ in the
monopsonistic model and when 𝛽 > 𝛽∗ in the monopolistic model. This outcome arises
because, in these regions, either the upstream markup or the downstream markdown
becomes negative—even as firms continue to earn positive profits. These negative values
partially offset the distortion generated by the downstream markup, driving output above
the efficient-bargaining level. This observation is useful for analyzing how vertical conduct
affects consumer surplus, which we explore next.

3.5 Total and Consumer Surplus Under Monopolistic and Monopsonistic Conduct

Having analyzed how buyer power affects output 𝑞, we now examine its impact on con-
sumer and total surplus under both monopolistic and monopsonistic bargaining. We

15



define consumer surplus as 𝐶𝑆(𝛽) ≡
∫ 𝑞(𝛽)

0
(
𝑝(ℎ) − 𝑝(𝑞(𝛽))

)
𝑑ℎ and total surplus as the sum

of consumer surplus, upstream profit, and downstream profit.

Proposition 3. Consumer surplus is maximized at 𝛽 = 1 under monopolistic conduct and at 𝛽 = 0
under monopsonistic conduct.

Proposition 3 is intuitive: consumer surplus increases monotonically with output, so
the level of buyer power that maximizes output necessarily maximizes consumer surplus.
Under monopolistic bargaining, this occurs at the corner solution with full buyer power,
whereas under monopsonistic bargaining, it occurs with full seller power.

Proposition 4. Under monopolistic bargaining, total surplus is maximized at some 𝛽† in the range
𝛽∗ < 𝛽† ≤ 1, whereas under monopsonistic bargaining it is maximized at 𝛽 = 0.

Proposition 4 is novel: if upstream marginal costs were constant, both consumer and
total surplus would be maximized at full buyer power under monopolistic bargaining.
However, with increasing marginal costs, it is possible that the wholesale and downstream
prices can fall below the marginal cost, because the upstream firm can still earn positive
profits with negative markups. In this case, there is socially inefficient overproduction at
full buyer power, and the total surplus maximizing bargaining parameter lies between 𝛽∗

and 1.
Under monopsonistic bargaining, total surplus reaches its maximum with full seller

power. In that scenario, the seller makes a TIOLI offer to the buyer, driving the buyer’s
profit to zero. The downstream price 𝑝 then equals the wholesale price 𝑤, which equals
upstream marginal costs from (U-FOC). As a result, the downstream price equals the
marginal cost, maximizing total welfare.

4 Effects of Buyer Power: Endogenous Vertical Conduct

In Section 3, we showed that under general conditions, equilibrium exists under both
monopsonistic and monopolistic bargaining, with opposite welfare effects of buyer power.
The welfare implications of buyer power thus depend on the specific type of vertical
conduct, which researchers typically do not know ex-ante.16 In this section, we present
two microfoundations that determine which type of vertical conduct arises in equilibrium.

16Unless researchers directly observe conduct from transaction contracts, vertical conduct is generally unob-
servable in the data, as it inherently involves determining whether the upstream or downstream firm rations
output by exerting market power. Identifying market power in vertical markets, like in horizontal markets,
requires counterfactuals through behavioral assumptions or exogenous instruments (Bresnahan, 1982).
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Figure 3: Decision Tree: Nonnegative Markup and Markdown

max𝑤 (𝜋𝑢)1−𝛽 (𝜋𝑑)𝛽

max𝑞 𝜋𝑢

U picks q:

Bargaining:

D picks q:
max𝑞 𝜋𝑑

[Stage 1]

[Stage 0]
U,D observe 𝛽, 𝑐(.), 𝑑(.), conduct

[Stage 0.5]
U bargains if 𝑤 ≥ 𝑚𝑐

D bargains if 𝑤 ≤ 𝑚𝑟

U or D do not
want to bargain

U and D want to bargain

(0, 0)

(
𝜋𝑚𝑠
𝑢 ,𝜋𝑚𝑠

𝑑

) (
𝜋
𝑚𝑝
𝑢 ,𝜋

𝑚𝑝

𝑑

)
Notes: This decision tree illustrates the augmented bargaining game under the conduct selection rule defined in
Section 4.1. The addition is Stage 0.5, where upstream firm𝑈 decides to participate in bargaining if the anticipated
markup is nonnegative, while downstream firm𝐷 decides to participate in bargaining if the anticipated markdown
is nonnegative. 𝜋𝑚𝑠 and 𝜋𝑚𝑝 correspond to profit under monopsonistic bargaining and monopolistic bargaining,
respectively. The game is formally defined in Appendix C.5.

4.1 Selecting Conduct: Nonnegative Markup and Markdown

We start by specifying a participation constraint that pins down vertical conduct, and that
can be used in both the simultaneous and sequential bargaining models.

Participation Constraint 1. 𝐷 participates in bargaining if its resulting markdown is nonnega-
tive, Δ𝑑 ≥ 0. 𝑈 participates in bargaining if its resulting markup is nonnegative, 𝜇𝑢 ≥ 0.

We illustrate the bargaining game that incorporates these participation constraints in
Figure 3 for simultaneous timing. 𝑈 wants to bargain if it anticipates a nonnegative
upstream markup, whereas 𝐷 participates only if it anticipates a nonnegative markdown.
If either party declines to bargain, both parties receive zero payoffs. Otherwise, they
engage in bargaining, and either 𝑈 or 𝐷 determines output according to the conduct type.

Theorem 1. Under Participation Constraint 1, for any bargaining parameter 𝛽 ≠ 𝛽∗, an equi-
librium with trade exists either under monopsonistic or monopolistic bargaining, but not both.
Specifically, this equilibrium occurs under monopsonistic conduct if 𝛽 ≥ 𝛽∗, and under monopolis-
tic conduct if 𝛽 ≤ 𝛽∗.

This theorem shows that the vertical conduct is determined by how 𝛽 compares to
the efficient level of buyer power 𝛽∗. To illustrate this, we solve each subgame for every
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Figure 4: The Effects of Buyer Power on Output With Conduct Selection

(a) Intuition (b) Simulation
Notes: This figure illustrates the relationship between buyer power (𝛽) and output (𝑞) in bargaining models
under our conduct selection approach in Participation Constraint 1. Panel (a) provides the intuition, showing
how equilibrium wholesale price (𝑤) and quantity (𝑞) are determined by either the input supply curve or input
demand curves. Panel (b) presents the numerical simulation under the design reported in Figure 2, where shaded
lines indicate the buyer power 𝛽 values under which equilibrium is no trade under Participation Constraint 1.

possible value of buyer power.17
Under monopsonistic bargaining, if 𝛽 < 𝛽∗, the downstream markdown is negative,

so 𝐷 does not want to bargain, and no subgame perfect equilibrium with trade exists.
However, if 𝛽 ≥ 𝛽∗, we have that Δ𝑑 ≥ 0 and 𝜇𝑢 = 0, so both parties are willing to
bargain, and monopsonistic conduct yields a subgame perfect equilibrium with trade.
The monopolistic case is similar: when 𝛽 > 𝛽∗, the negative markup makes 𝑈 unwilling to
bargain, while for 𝛽 ≤ 𝛽∗, markup and markdown are both nonnegative and monopolistic
conduct is a subgame perfect equilibrium. Thus, for every 𝛽 ≠ 𝛽∗, only one type of conduct
produces a subgame perfect equilibrium with trade. At 𝛽 = 𝛽∗, both types of conduct yield
subgame perfect equilibria, but they are identical in that case.

Theorem 1 leads to one of the central findings of the paper: an increase in buyer power
creates a monopsony distortion (reducing output) when 𝛽 > 𝛽∗, but counteracts upstream
market power (increasing output) when 𝛽 < 𝛽∗. Conversely, an increase in seller power
causes a monopoly distortion when 𝛽 < 𝛽∗, but offsets monopsony power when 𝛽 > 𝛽∗.

Corollary 3. An increase in buyer power 𝛽 lowers output if 𝛽 > 𝛽∗ but increases output if 𝛽 < 𝛽∗

in both simultaneous and sequential models.

In Figure 4(a), we combine Figures 1(a) and 1(b) to illustrate the

V

-shaped relationship
between output and buyer power stated in Corollary 3. From 𝛽 = 0 to 𝛽∗, the conduct is

17We formally define the game in the proof of Theorem 1 presented in Appendix C.5.
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monopolistic bargaining, with the input price–output relationship tracing the input de-
mand curve. In this range, increasing buyer power transitions the outcome from successive
monopoly to efficient bargaining. Once 𝛽 > 𝛽∗, the vertical conduct shifts to monopsonis-
tic conduct, and the relationship between input price and output follows a factor supply
curve. Further increases in buyer power result in movement along this supply curve,
progressing from the efficient-bargaining outcome toward classical monopsony at 𝛽 = 1.

We also illustrate this result in Figure 4(b) by reusing our numerical example from Sec-
tion 3. We indicate the equilibrium points with no trade (𝑤 < 𝑚𝑐 or 𝑤 > 𝑚𝑟) with shaded
blue and green lines. In line with Corollary 3, this generates a

V

-shaped relationship
between output and buyer power.

4.1.1 Discussion of the Nonnegative Markups and Markdowns Constraint

Even with a negative markup, the upstream party can still earn positive profits from
trading due to its inframarginal production units; a negative markup merely indicates
that the marginal production unit operates at a loss. Similarly, the downstream party
can realize gains from trade under negative markdowns, again due to its inframarginal
units. Therefore, whether these constraints are reasonable depends on the feasibility of
efficient internal transfers within parties, which may be precluded by fairness concerns,
organizational factors, or agency problems (Kahneman et al., 1986; Holmstrom and Tirole,
1991; Scharfstein and Stein, 2000). For example, in the case of labor unions in Example 1, it
seems highly unrealistic for unions to subsidize some workers to accept wages below their
reservation level. Likewise, in the context of multi-establishment firms, as in Example 3, it
is plausible that plant managers would resist overseeing loss-making production units.18

4.1.2 Testing the Vertical Conduct Selection Rule

Although the applicability of nonnegative markups and markdowns may vary by specific
setting, a key advantage is its empirical verifiability.

Proposition 5. Under Participation Constraint 1, equilibrium output is always smaller than or
equal to the efficient-bargaining output level 𝑞∗.

Therefore, Participation Constraint 1 can be empirically tested by examining whether
the observed quantity falls below the efficient-bargaining quantity level 𝑞∗.19

18However, if the increasing marginal cost comes from technological constraints in a single production unit,
this assumption can be violated.

19Our results suggest additional approaches for testing vertical conduct. For instance, one can analyze how
an exogenous change in wholesale price affects quantity since 𝑤 moves in the opposite direction of 𝑞
under different conduct types, as shown in Lemmas 1-2. Another possibility is to estimate markups and

19



Figure 5: Decision Tree: Incentive Compatibility of Linear Pricing

max (𝜋𝑢)1−𝛽 (𝜋𝑑)𝛽
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(
𝜋𝑚𝑠
𝑢 , 𝜋𝑚𝑠

𝑑

)(𝜋∗
𝑢 , 𝜋∗

𝑑)

max (𝜋𝑢)1−𝛽 (𝜋𝑑)𝛽
Bargaining:

D decides whether
to set q if 𝜋𝑚𝑝

𝑑
≥𝜋∗

𝑑

max𝑞 𝜋𝑑

U sets q D sets q

(
𝜋
𝑚𝑝
𝑢 , 𝜋

𝑚𝑝

𝑑

) (𝜋∗
𝑢 , 𝜋∗

𝑑)

[Stage 1]

Notes: This decision tree illustrates the augmented bargaining game under the conduct selection rule defined
in Section 4.2. The addition is Stage 0.5, where the upstream or downstream firm decides to set 𝑞 based on the
Participation Constraint 2. 𝜋𝑚𝑠 , 𝜋𝑚𝑝 , and 𝜋∗ correspond to profit under monopsonistic bargaining, monopolistic
bargaining, and efficient bargaining, respectively. The game is formally defined in Appendix C.8.

4.2 Selecting Conduct: Incentive Compatibility of Linear Pricing

The sequential bargaining model provides another microfoundation that does not directly
impose nonnegative markups and markdowns. We augment our bargaining model by
introducing the possibility that firms bargain efficiently over a two-part tariff instead of
over a linear contract if it is incentive-compatible.

Participation Constraint 2. Under monopsonistic conduct, the upstream firm has the right to
choose 𝑞, and it does so if it cannot earn higher profits by bargaining over (𝑞, 𝑤). Under monopolistic
conduct, the downstream firm has the right to choose 𝑞, and it does so if it cannot earn higher profits
by bargaining over (𝑞, 𝑤). If neither party is willing to choose 𝑞, the parties bargain over a two-part
tariff (𝑞, 𝑤) instead of over a linear contract.

Participation Constraint 2 states that U or D is willing to make an output choice in
Stage 2 and bargain over a linear price only if the resulting profit surpasses the profit
it would earn under efficient-bargaining (i.e., the profit it would earn when not setting
output unilaterally, but by jointly bargaining over output and wholesale prices). Figure 5
illustrates the resulting decision tree by adding a stage before bargaining where either the
upstream or the downstream firm chooses whether to set 𝑞 unilaterally.
markdowns using a production approach and directly test Corollary 1. However, this approach typically
requires behavioral assumptions, such as "downstream firms choose output to minimize costs," to estimate
markups and markdowns using the production function, which requires committing to a certain model of
vertical conduct (De Loecker and Warzynski, 2012; Rubens, 2022).
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Theorem 2. Under Participation Constraint 2, for any 𝛽 ≠ 𝛽∗, either (𝑞𝑚𝑠 , 𝑤𝑚𝑠) or (𝑞𝑚𝑝 , 𝑤𝑚𝑝)
is an equilibrium with a linear price contract, but not both. Specifically, this equilibrium occurs
under monopsonistic conduct if 𝛽 ≥ 𝛽∗, and under monopolistic conduct if 𝛽 ≤ 𝛽∗.

Theorem 2 implies, by revealed preference, that if we observe a linear price contract, the
equilibrium is monopsonistic when 𝛽 > 𝛽∗ or monopolistic when 𝛽 < 𝛽∗. If 𝛽 = 𝛽∗, neither
party has the incentive to determine output, and firms simply maximize joint profits.

This theorem rests on the insight that parties may earn greater profits under monopson-
istic or monopolistic vertical conduct than under efficient bargaining.20 Under monopsony,
the upstream firm’s profit from linear pricing exceeds the two-part tariff profit if 𝛽 > 𝛽∗,
whereas under monopolistic bargaining, the downstream firm’s profit from linear pricing
exceeds the two-part tariff profit if 𝛽 < 𝛽∗. Therefore, this microfoundation ensures that the
party choosing the output is never worse off than it would be under efficient bargaining.

The finding that firms do not always choose efficient bargaining has broader implica-
tions for full-information vertical bargaining models with linear contracts. A potential crit-
icism of this class of models is that firms could achieve Pareto improvements by switching
to nonlinear pricing (Lee et al., 2021). In our model, the possibility of inefficient bargaining
arises from a holdup problem due to a lack of commitment. Under commitment, efficient
bargaining would be reached because either party can convince the other not to set quan-
tities in Stage 0.5 by committing to bargaining less aggressively in Stage 1. However, since
the bargaining weights are predetermined and fixed, such a commitment would not be
credible. This holdup rationalization of linear price contracts has similarities to prior work
on vertical contracts, such as Iyer and Villas-Boas (2003), where shocks between contract
signing and delivery induce firms not to negotiate over two-part tariffs.

4.3 Welfare Effects of Buyer and Seller Power Under Conduct Selection

Now that we have developed an integrated framework that nests both monopolistic and
monopsonistic bargaining models, we can address the key question of the paper: to what
extent are welfare losses in vertical relations due to buyer power and seller power?

Under our conduct selection, vertical conduct is monopolistic when 𝛽 < 𝛽∗ and monop-
sonistic when 𝛽 > 𝛽∗. To quantify the magnitude and source of vertical distortions, we
need two key parameters: the level of buyer power 𝛽, which can be estimated empirically,
and the efficient level of buyer power 𝛽∗, which can be calculated from cost and demand

20To see this, assume 𝛽 = 1. Under monopsonistic bargaining, which corresponds to classical monopsony, the
upstream profit is positive, whereas under a two-part tariff, the upstream profit is zero. The possibility of
higher profit from linear prices than from a two-part tariff holds only under sequential timing, because the
two-part tariff profit weakly dominates the linear price profit for any 𝛽 under simultaneous timing.
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estimates. Thus, the determinants of 𝛽∗ analyzed in Section 3.4 are key primitives in
understanding which conduct generates distortions. All else equal, more inelastic down-
stream demand makes monopolistic conduct more likely, while more inelastic upstream
cost makes monopsonistic conduct more likely.

Our results also establish a unique relationship between buyer power and output.

Proposition 6. Under the bargaining models augmented with either Participation Constraint 1 or
Participation Constraint 2, consumer surplus and total surplus are maximized at the efficient level
of buyer power 𝛽∗ in both monopsonistic and monopolistic bargaining.

For consumer surplus, the result follows directly from its monotonic relationship with
output, which reaches its maximum at the efficient level of buyer power 𝛽∗ in Corollary 3.
For total surplus, observe that 𝛽 values that maximized total surplus under monopolistic
and monopsonistic conduct in Proposition 4 are ruled out by conduct selection. As a
result, when conduct arises endogenously, total surplus is also maximized at 𝛽∗.21

4.4 Implications for Antitrust Policy

With these welfare results at hand, we now turn to discussing the implications of our
results for the competitive effects of horizontal and vertical mergers.

4.4.1 Horizontal Merger Policy

Assume that a horizontal merger between downstream firms increases their buyer power
(higher 𝛽).22 Under monopolistic bargaining, this increased buyer power reduces whole-
sale prices, potentially increasing output and consumer surplus depending on changes in
downstream market power. Hence, all else equal, regulators are more likely to be lenient
towards downstream mergers in the presence of monopolistic conduct, as discussed in
Grennan (2013), Nevo (2014), and Sheu and Taragin (2021). However, under monopson-
istic bargaining, horizontal mergers have the opposite effect: the associated increase in
buyer power reduces both output and consumer surplus.

Our model provides insight into analyzing when increased buyer power through merg-
ers is distortionary versus countervailing. Let 𝛽0 represent premerger buyer power and
𝛽1 represent postmerger buyer power.23 When 𝛽0 < 𝛽1 ≤ 𝛽∗, both pre- and postmerger

21Under Participation Constraint 1, 𝛽∗ is the unique level of buyer power that maximizes consumer and total
surplus. However, under Participation Constraint 2, 𝛽∗ no longer uniquely maximizes welfare, as the values
of 𝛽 under which firms do not choose set 𝑞 induce efficient bargaining, yielding the same output level as 𝛽∗.

22As we explain in Section 5.1, one can equivalently make the more conventional assumption that a horizontal
merger between downstream firms decreases the disagreement payoff of the upstream parties.

23For expositional simplicity, we assume that 𝛽∗ remains constant pre- and postmerger. However, as we explore
in Section 5.2, postmerger 𝛽∗ will be different due to changes in the residual demand curve after the merger.
In that case, these inequalities simply need to be adjusted for the pre- and postmerger 𝛽∗ values.
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conduct remain monopolistic, and the merger can increase output through countervailing
force. However, when 𝛽0 > 𝛽∗, vertical conduct is monopsonistic, and a downstream hor-
izontal merger reduces output by increasing monopsony power. In cases where 𝛽0 < 𝛽∗

but 𝛽1 > 𝛽∗, vertical conduct changes after the merger, and the net effect on output can
be positive or negative depending on the relative size of the monopsony and monopoly
distortions. This analysis extends analogously to upstream mergers.

This analysis ideally requires knowledge of both buyer power 𝛽 and the efficient level
of buyer power 𝛽∗. However, even in the absence of 𝛽, which is nontrivial to estimate, 𝛽∗

can be estimated using only cost and demand primitives and still provide useful guidance.
Under a uniform prior for 𝛽, a high 𝛽∗ suggests that increased buyer power likely raises
output, while a low 𝛽∗ indicates the opposite.24 Thus, 𝛽∗ can serve as a screening tool
in merger evaluations even without estimating a full bargaining model. In our empirical
applications, we demonstrate the two alternative ways of using our model: in Section 6,
we estimate only 𝛽∗, whereas, in Section 7, we estimate both 𝛽∗ and 𝛽.

4.4.2 Vertical Merger Policy

Our model can help to quantify the potential competitive gains from the elimination of
double marginalization in vertical mergers (Chipty, 2001; Crawford et al., 2018; Luco and
Marshall, 2020; Cuesta et al., 2024). As shown in Section 3, under a fixed model of vertical
conduct, consumer surplus is maximized at the corner cases of buyer power, 𝛽 = 0 or 𝛽 = 1.
In this case, vertical integration leads to an output level implied by 𝛽∗ ∈ (0, 1), implying
that output could either rise or fall. However, when vertical conduct is endogenized, this
result changes: for any 𝛽, vertical integration increases output as a function of the distance
between premerger and efficient buyer power, |𝛽 − 𝛽∗ |. Thus, as in horizontal mergers,
knowledge of both 𝛽 and 𝛽∗ enables quantifying changes in output from vertical mergers.

5 Extensions

In this section, we extend our model by incorporating (i) nonzero disagreement pay-
offs, (ii) competition among buyers, (iii) multiple buyers and sellers, and (iv) multi-input
downstream production. We show that our main results are robust to these extensions.

5.1 Nonzero Disagreement Payoffs

In our main analysis, we performed comparative statics with respect to the bargaining
parameter 𝛽, while holding disagreement payoffs fixed at zero. However, in horizontal

24We compile buyer power estimates 𝛽 from seven studies, listed in Table OA-4, that estimate firm-to-firm
bargaining models. The distribution reported in Figure OA-3(a) broadly supports a uniform prior for 𝛽.
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Figure 6: Output and Relative Disagreement Payoffs

Notes: This figure illustrates the relationship between output (𝑞) and relative disagreement payoffs, defined as the
difference between the buyer’s disagreement payoff and the seller’s disagreement payoff when bargaining weight
𝛽 is normalized to 0.5. The green line represents the simultaneous monopolistic bargaining case, while the blue
line represents the simultaneous monopsonistic bargaining case. Parameter values under which equilibrium is no
trade according to Participation Constraint 1 are indicated with shaded color.

merger analyses involving bargaining, mergers typically affect firms’ disagreement payoffs
rather than their bargaining weights (e.g., Dafny et al., 2019). To accommodate this, we
incorporate nonzero disagreement payoffs into the simultaneous bargaining problem as
follows:

max
𝑤

[
(𝑝(𝑞)𝑞 − 𝑤𝑞 − 𝑜𝑑𝑞)𝛽(𝑤𝑞 − 𝑐(𝑞)𝑞 − 𝑜𝑢𝑞)1−𝛽

]
Here, 𝑜𝑑 and 𝑜𝑢 represent the per-unit disagreement profits of downstream and upstream
firms, respectively.25 The following theorem characterizes how changes in these disagree-
ment payoffs affect equilibrium output.

Theorem 3. In monopolistic bargaining, output increases with the buyer’s disagreement payoff
and decreases with the seller’s disagreement payoff, 𝑑𝑞𝑚𝑝/𝑑𝑜𝑑 > 0 and 𝑑𝑞𝑚𝑝/𝑑𝑜𝑢 < 0. In
monopsonistic bargaining, the opposite occurs: output decreases with the buyer’s disagreement
payoff and increases with the seller’s disagreement payoff, 𝑑𝑞𝑚𝑠/𝑑𝑜𝑑 < 0 and 𝑑𝑞𝑚𝑠/𝑑𝑜𝑢 > 0.

See Appendix E.1 for the proof. Theorem 3 shows that our main comparative statics
results from Lemmas 1-2 hold when buyer power manifests itself through disagreement
payoffs rather than bargaining weights. Figure 6 illustrates this using the same numer-
ical example as in Section 3.2. Higher buyer disagreement payoff increases output in
the monopolistic model but decreases it in the monopsonistic model. Applying our
conduct selection approach of nonnegative markups and markdowns reveals a similar

V

-
shaped relationship between disagreement payoffs and output. In this case, there exists an

25In labor applications, 𝑜𝑢 would be given by outside employment opportunities available to the workers.
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output-maximizing disagreement payoff gap (𝑜𝑑 − 𝑜𝑢), and the vertical conduct depends
on whether the actual disagreement payoff gap falls above or below this optimal level.

5.2 Multiple Buyers That Compete Downstream

While our baseline model focused on a single supplier and buyer, it can be naturally ex-
tended to multiple competing buyers by incorporating their residual downstream demand.
Appendix E.2 illustrates this extension using a Cournot model where multiple downstream
firms compete oligopolistically in the product market. Unlike the single-buyer case, where
the downstream firm’s decisions depend on market-level demand elasticity, firms in an
oligopoly make decisions based on their residual demand elasticity. The presence of more
competing firms increases this residual demand elasticity, which in turn reduces the effi-
cient level of buyer power 𝛽∗.26 As a result, increased downstream competition expands
the range of 𝛽 values that yields a monopsonistic equilibrium, making it more likely to
occur.

5.3 Multiple Buyers and Sellers

In most industries, firms in both upstream and downstream markets interact with multiple
partners. Our framework extends to these settings through the passive-belief assumption,
commonly used in the “Nash-in-Nash” approach of Horn and Wolinsky (1988). Under
this assumption, each firm expects all other equilibrium outcomes to remain the same,
regardless of the outcome of its current negotiation.27 Within this framework, we can
calculate gains from trade and estimate demand and cost curves by conditioning on the
equilibrium outcomes of other negotiations to operationalize our model. We demonstrate
this approach in our empirical application in Section 7.

5.4 Multi-Input Downstream Production

Our baseline model assumes a single-input production function where the downstream
firm simply resells the input in the downstream market. In Appendix E.3, we extend this
model to incorporate multi-input downstream production. We show that while the bar-
gaining problem remains largely unchanged, it requires some modifications. Specifically,
under monopsonistic bargaining, the upstream firm’s output choice influences down-
stream output through a monotone function rather than by determining it directly, as the
downstream firm can substitute to other inputs in its production process. Similarly, under
monopolistic bargaining, the downstream firm’s output choice no longer directly dictates
the upstream quantity; rather, it influences it via a monotone input demand function.

26For an illustration of these effects, see Figure OA-2.
27For extensions of this assumption, see Ho and Lee (2019).
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The multi-input production introduces a key parameter affecting the model’s compar-
ative statics: the elasticity of substitution between inputs. When this elasticity approaches
zero, the production function converges to a Leontief form, creating a one-to-one mapping
between upstream and downstream output, mirroring our baseline model. Conversely, as
the elasticity of substitution grows, the relationship between upstream and downstream
outputs weakens, reducing the scope of buyer and seller power in the vertical chain.

6 Empirical Illustrations: Labor Unions and Farmer Cooperatives

We first consider a simplified analysis that estimates only the efficient level of buyer
power 𝛽∗, before conducting a full empirical analysis that estimates both 𝛽∗ and the actual
bargaining weight 𝛽. We argue that even when estimating 𝛽 is not feasible (e.g., due to a
lack of transaction price data), 𝛽∗ can still be identified using cost and demand primitives to
evaluate potential vertical distortions based on prior beliefs about 𝛽.28 We demonstrate this
approach through two calibrated case studies using estimates from the literature: labor
unions in the U.S. construction industry and farmer cooperatives in the Chinese tobacco
industry. Appendix F provides detailed documentation of these empirical applications.

6.1 Labor Unions

A natural application of our model is collective wage bargaining, as described in Example 1.
With growing empirical evidence of monopsony power in labor markets (Card et al., 2018;
Berger et al., 2022; Lamadon et al., 2022; Yeh et al., 2022), a key question is whether labor
unions can effectively countervail this power (Angerhofer et al., 2024; Azkarate-Askasua
and Zerecero, 2024). To answer this question, we calibrate a first-order approximation
of our model using estimates from Kroft et al. (2020), who study buyer power in the U.S.
construction industry. Their study assumes monopsonistic competition for workers, which
in our notation implies 𝛽 = 1. This assumption is plausible in this setting because only
10% of U.S. construction workers are unionized (BLS, 2025).

However, suppose that construction workers form a union to bargain over wages with
individual firms. To what extent would this countervail employer monopsony power,
and at what level of union bargaining power would the total output be maximized? The
answer depends critically on 𝛽∗, which we express as a function of supply and demand
elasticities in Appendix D.3. Using the estimated values for these primitives from Kroft
et al. (2020) given in Table 1, we calculate the efficient level of buyer power 𝛽∗ to be 0.42.

28Estimating bargaining weights typically requires transaction prices. While wage data in employer-employee
datasets often provide such information for labor applications, transaction-level wholesale prices have histor-
ically been less commonly observed in IO applications. However, the growing availability of administrative
firm-to-firm transaction datasets has made wholesale prices increasingly observable.
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Table 1: Parameters for Empirical Illustrations

Industry Sources 𝜓 𝜂 𝛽∗

U.S. construction workers Kroft et al. (2020) 0.29 -7.30 0.42

Chinese tobacco farmers Rubens (2023)
Ciliberto and Kuminoff (2010) 1.904 -1.14 0.92

Notes: This table reports parameters for the inverse price elasticity of supply, 𝜓, and the own-price elasticity of
residual downstream demand, 𝜂, as estimated in the referenced studies, for each empirical application. The final
column shows the implied efficient level of buyer power, 𝛽∗, computed from the parameters using the log-linear
approximation derived in Appendix D.3.

This estimate suggests that collective wage bargaining requires careful consideration
as a solution to countervail monopsony power. If the resulting labor union possesses a
bargaining weight above 0.58 (1-𝛽∗), it will replace the downstream monopsony distortion
with an upstream monopoly distortion by creating double marginalization. Our compila-
tion of bargaining weights from the labor union literature in Table OA-4 and Figure OA-3(b)
suggests that this scenario is plausible—union bargaining power exceeds the estimated 𝛽∗

threshold in approximately half of the reviewed studies.

6.2 Farmer Cooperatives

We next apply our model to seller cooperatives, as discussed in Example 2, in the context of
Chinese tobacco farmers selling to cigarette manufacturers. We use supply elasticities from
Rubens (2023), who estimates an oligopsony model assuming full buyer power (𝛽 = 1).
This assumption is reasonable in this context, as tobacco leaf purchases are dominated by
a concentrated group of cigarette manufacturers buying from numerous small farmers.

A natural question in this setting is how the introduction of a farmer cooperative,
bargaining collectively with cigarette manufacturers, would affect market outcomes. To
analyze this question, we calculate the efficient level of buyer power (𝛽∗) by combining
tobacco leaf supply elasticities from Rubens (2023) and cigarette demand elasticities from
Ciliberto and Kuminoff (2010).

Despite the highly inelastic supply from farmers, we estimate 𝛽∗ = 0.92, indicating
that near-complete monopsony power maximizes output in this industry, at least when
abstracting from other inefficiencies of monopsony power, such as misallocation (Rubens,
2023). Therefore, unless the cooperative’s bargaining power is extremely low—which prior
estimates reported in Table OA-4 and Figure OA-3(c) do not support—double marginal-
ization is the likely outcome of cooperative formation.29

29The key driver of the large efficient-level of buyer power is the inelastic demand for cigarettes due to the
addictive nature of the product. Other studies estimating cigarette demand report elasticities below one
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7 Empirical Application: Coal Procurement

We now turn to an application in which we estimate actual buyer power 𝛽 in a bargaining
model alongside 𝛽∗. We analyze coal procurements of power plants from mining firms
by incorporating three key features of this industry: (i) rich heterogeneity in cost and
demand elasticities, (ii) the presence of multiple sellers and buyers, and (iii) oligopolistic
competition in the downstream electricity market. In our analysis, we model mining costs
by estimating individual mine marginal costs and then aggregating them to the firm level,
corresponding to the multiunit supplier case in Example 3. For electricity markets, we
closely follow the seminal work in the literature (Borenstein and Bushnell, 1999; Wolfram,
1999; Borenstein et al., 2002; Puller, 2007). The main objective of the model is to decompose
the total vertical distortions into their monopolistic and monopsonistic components.

7.1 Data Sources and Summary Statistics

Our empirical setting is the ERCOT (Electric Reliability Council of Texas) market, which
has been previously studied in the literature (Hortaçsu and Puller, 2008; Hortaçsu et al.,
2019). ERCOT offers three key advantages: (i) it operates independently without inter-
regional trade, (ii) the majority of power plants are deregulated, and (iii) hourly price and
generation data are readily available. We analyze the 10-year period between 2005 and
2014, which features a stable generation share of coal-fired generators (35%–39%, as shown
in Figure OA-7) and largely predates the major wave of coal mine closures that began in
the early 2010s.30

Our analysis combines data from four sources: Velocity Suite, CostMine, the BLS,
and the Mine Safety and Health Administration (MSHA). Velocity Suite compiles data
from various sources for the power industry; CostMine provides engineering estimates of
mining costs; the BLS reports wage information; and the MSHA provides information on
mine characteristics and production. We describe these data sources in Appendix G.1.

Table 2 presents summary statistics for our empirical sample, which includes all mining
firms supplying coal to ERCOT power plants and all electricity-generation firms (power
firms) operating coal-fired plants in ERCOT. The sample consists of nine upstream mining
firms operating 25 mines and two downstream power firms operating 19 coal-fired gener-

(Liu et al., 2015; Lopez and Pareschi, 2024). These estimates are inconsistent with our model of static profit
maximization, as they imply pricing on the inelastic portion of the demand curve.

30We end the sample in 2014 when the average coal power plant capacity factor declined sharply from
78% to 65%. As observed by Gowrisankaran et al. (2024), this decline was primarily driven by the advent of
"fracking," which led to lower natural gas prices and higher generator cycling and ramping costs, accelerating
coal plant retirements. Since modeling ramping costs and exits requires a dynamic framework (Borrero et al.,
2023), we focus on a period where ramping costs were less important and abstract away from them.
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Table 2: Summary Statistics

Upstream Downstream

Panel A. Firm Characteristics

Number of units (mine or generator) 25 19
Number of firms 9 2
Avg. number of units per firm 2.51 3.30
Avg. number of trade partners 22.15 2.55
Avg. share of largest partner 0.42 0.53

Panel B. Transaction Characteristics

Avg. FOB price (USD per MMBtu) - 0.84
Avg. Contract duration (years) - 1.22
Share of spot-market transactions - 0.03

Notes: This table presents the summary statistics for the sample used in our empirical analysis. Panel A reports the
characteristics of mining firms (upstream) and power firms (downstream), whereas Panel B provides information
on transaction details. The sample includes all mining firms supplying coal to ERCOT power plants and all power
firms operating coal-fired plants in ERCOT between 2005 and 2014.

ators. Mining firms deal with 22.1 partners on average, including those outside of ERCOT,
while power firms engage with an average of just 2.55 partners. These relationships typi-
cally take the form of medium-term contracts, with an average duration of 1.22 years. We
provide the list of upstream and downstream firms in Table OA-5.

7.2 Model Primitives

Our empirical framework involves a bargaining model between mining and power firms.
We begin by estimating the model’s primitives: the cost curve of mining firms, the cost
curve of power firms, and the residual electricity demand faced by power firms. Using
these primitives, we then estimate the bargaining model. Although we perform these
estimations annually, we omit year subscripts for notational clarity. Appendix G provides
the details of the estimation procedures, and Table OA-3 summarizes the model’s notation.

7.2.1 Cost Curve of Mining Firms

Each upstream mining firm 𝑢 operates a portfolio of 𝑛𝑢 mines indexed by 𝑖. Each mine has
capacity �̄�𝑐

𝑖𝑢
and constant marginal cost 𝑐𝑖𝑢 , determined by mine characteristics and labor

costs. To estimate marginal cost, we first specify the mine production function. Mine 𝑖

produces 𝑞𝑐
𝑖𝑢

short tons of coal using 𝑙𝑖𝑢 labor hours and 𝑚𝑖𝑢 units of intermediate inputs
according to a Leontief production function:

𝑞𝑐𝑖𝑢 = min{𝑙𝑖𝑢𝛾𝜃(𝑖𝑢), 𝑚𝑖𝑢}𝜔𝑖𝑢
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The Leontief specification reflects the limited input substitution possibilities in short-run
coal production (Byrnes et al., 1988), assuming perfect complementarity between labor
and intermediate inputs. Two key parameters capture technological heterogeneity in the
production function: (i) 𝛾𝜃(𝑖𝑢), which determines the labor-materials ratio based on mine
type 𝜃 (characterized by the combination of capacity bin, vein thickness, and mining
technology), and (ii) 𝜔𝑖𝑢 , which accounts for mine-specific productivity differences.

Given hourly wages𝑤 𝑙
𝑖𝑢

and material costs 𝑝𝑚
𝑖𝑢

, the Leontief production function implies
the following marginal cost function:

𝑐𝑖𝑢 = 𝑤 𝑙
𝑖𝑢

𝑙𝑖𝑢

𝑞𝑐
𝑖𝑢

(
1 + 𝛾𝜃(𝑖𝑢)

𝑝𝑚
𝑖𝑢

𝑤 𝑙
𝑖𝑢

)
if 𝑞𝑐𝑖𝑢 ≤ �̄�𝑐𝑖𝑢 . (8)

While we can estimate unit labor costs by multiplying wages (𝑤 𝑙
𝑖𝑢

) and mine-level output-
per-labor (𝑙𝑖𝑢/𝑞𝑐𝑖𝑢), unit material costs are not directly estimable because our data do not
include materials expenditures at the mine level. To address this, we utilize the Coal Cost
Guide, published by the industry research firm CostMine, which provides engineering
estimates of both labor and material unit costs for different mine types 𝜃.31 From this data,
we calculate the materials-to-labor cost ratio, equal to 𝛾𝜃(𝑖𝑢)(𝑝𝑚𝑖𝑢/𝑤

𝑙
𝑖𝑢
) for mines with type

𝜃, enabling us to recover marginal costs in Equation (8).
Coal’s value in electricity generation depends primarily on its heat content (measured

in millions of British thermal units, or MMBtu) rather than its weight. To convert between
these measures, we define a mine-specific conversion factor 𝜆𝑖𝑢 , which equals heat content
per short ton for mine 𝑖. This factor transforms weight-based quantities into heat-based
quantities through 𝑞𝑖𝑢 = 𝜆𝑖𝑢𝑞

𝑐
𝑖𝑢

. The conversion factor 𝜆𝑖𝑢 varies by coal type and mining
area, representing an important source of heterogeneity across mines. Following this
conversion, we express all coal quantities and mine capacities in MMBtu and coal costs
per MMBtu for the remainder of the paper.

Using mine marginal costs, we construct firm-level cost curves by ordering each firm’s
mines from lowest to highest marginal cost and calculating cumulative production cost.
This aggregation yields the following firm-level cost function:

𝐶𝑢(𝑄, 𝑐𝑢 , �̄�𝑢) =

∑𝑛𝑢

𝑖=1 𝑐𝑖𝑢 max
{
0,min

[
�̄�𝑖𝑢 , 𝑄 −∑𝑖−1

𝑙=1 �̄�𝑙𝑢
]}

, if 0 ≤ 𝑄 ≤ ∑𝑛𝑢
𝑖=1 �̄�𝑖𝑢 ,

∞, if 𝑄 >
∑𝑛𝑢

𝑖=1 �̄�𝑖𝑢

where the vector 𝑐𝑢 := {𝑐𝑖𝑢}𝑛𝑢𝑖=1 is such that 𝑐1𝑢 ≤ 𝑐2𝑢 ≤ · · · ≤ 𝑐𝑛𝑢𝑢 and �̄�𝑢 is the vector of

31The Coal Cost Guide has been previously used in the mining engineering literature (Shafiee and Topal, 2012)
and other academic studies (World Bank, 2017).
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mine capacities.

7.2.2 Cost Curve of Power Firms

Each downstream power firm 𝑑 operates a portfolio of 𝑛𝑑 generation assets. Asset 𝑗 is
characterized by a constant marginal cost 𝑐 𝑗𝑑 and a capacity 𝑘 𝑗𝑑𝑡 . The capacity can vary
over time due to intermittency in renewable energy resources across seasons and hours
of the day. We therefore define hourly capacity values for each time type 𝑡, representing
specific combinations of month, hour, and weekend/weekday status.32

The marginal cost of a fossil-fuel generator depends on fuel prices and its efficiency,
which is measured by the heat rate. We define marginal costs as follows:

𝑐 𝑗𝑑 =


(𝑤𝑑 + 𝜅 𝑗𝑑)ℎ 𝑗𝑑 + 𝑚 𝑗𝑑 if coal

𝑤𝑔𝑎𝑠ℎ 𝑗𝑑 + 𝑚 𝑗𝑑 if gas

0 if nuclear and renewables

where ℎ 𝑗𝑑 represents generator 𝑗’s (inverse) heat rate, 𝑤𝑔𝑎𝑠 is the natural gas price common
to all gas generators, 𝑤𝑑 is firm 𝑑’s weighted average FOB coal price, and 𝑚 𝑗𝑑 is the
maintenance costs. For coal generators, we also add the per MMBtu average transportation
cost 𝜅 𝑗𝑑 to generator 𝑗.33 We assume constant heat rates within a year for each generator,
calculated as total heat input divided by total electricity generation.34

To determine capacity 𝑘 𝑗𝑑𝑡 , we cannot rely solely on nameplate capacity, due to mainte-
nance downtime in fossil-fuel units and intermittency in renewables. Instead, we calculate
an "effective" capacity by multiplying the nameplate capacity by a capacity factor. For
fossil-fuel units, we obtain annual, fuel-type-specific capacity factors from the Generating
Availability Data System (GADS) maintained by the Federal Energy Regulatory Commis-
sion (FERC). For renewable units, we derive a time-varying capacity factor for each unit as
the ratio of average hourly generation in each hour type 𝑡 to the nameplate capacity.35

Using unit-level capacity and cost data, we construct firm 𝑑’s cost function in hour type
𝑡 by ordering all units in ascending order of marginal cost and calculating their cumulative

32For example, 8 a.m. on a weekday in January represents one hour type 𝑡 in our model. Even though capacity
does not vary meaningfully across weekdays and weekends, we include it to capture variation in demand.

33We treat transportation costs 𝜅 𝑗𝑑 as exogenous and do not model railroad firms as separate agents in the value
chain. Prior research shows that railroad companies could have significant market power in coal procurement
markets (Preonas, 2023). In our model, upstream agents can be interpreted as jointly representing coal firms
and railroad operators. For instance, if coal firms and railroad companies bargain efficiently, the upstream
entity can be viewed as maximizing their joint profits. Thus, double marginalization attributed to coal firms
can alternatively be interpreted as arising from railroad companies’ market power.

34We calculate the marginal cost using coal prices from the transaction data, transportation costs, and the heat
rate. This calculation assumes the coal is blended without a specific order if there are multiple coal suppliers.

35The capacity factors are, on average, 92%, 90%, 29%, and 21% for coal, gas, wind, and solar, respectively.
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production cost. The resulting cost curve takes the following form:

𝐶𝑑𝑡(𝑄, 𝑐𝑑 , 𝑘𝑑𝑡) =

∑𝑛𝑑

𝑗=1 𝑐 𝑗𝑑 max
{
0,min

[
𝑘 𝑗𝑑𝑡 , 𝑄 −∑𝑗−1

𝑙=1 𝑘𝑙𝑑𝑡

]}
, if 0 ≤ 𝑄 ≤ ∑𝑛𝑑

𝑗=1 𝑘 𝑗𝑑𝑡 ,

∞, if 𝑄 >
∑𝑛𝑑

𝑗=1 𝑘 𝑗𝑑𝑡

where 𝑐𝑑 := {𝑐 𝑗𝑑}𝑛𝑑

𝑗=1 is the vector of marginal costs ordered such that 𝑐1𝑑 ≤ 𝑐2𝑑 ≤ · · · ≤ 𝑐𝑛𝑑𝑑,
and 𝑘𝑑𝑡 is the vector of generator capacities.

7.2.3 Downstream Electricity Demand and Profit

We model competition in the electricity market using a Cournot framework, following the
prior literature (Borenstein and Bushnell, 1999; Borenstein et al., 2002; Puller, 2007). In this
model, regulated firms and small firms (< 5% market share) act as price takers, while larger
firms behave strategically. Although only two power firms operate coal-fired generators,
our demand model includes all power firms with generation capacity in ERCOT.36 Since
both demand and capacity fluctuate hourly, we estimate a separate Cournot model for
each hour type 𝑡. The expected demand curve faced by strategic firms is given by

𝑄𝑡(𝑃) = �̄�𝐷
𝑡 −𝑄fr

𝑡 (𝑃),

where �̄�𝐷
𝑡 denotes the expected inelastic demand during hour type 𝑡, and 𝑄fr

𝑡 (𝑃) denotes
the quantity supplied by the competitive fringe firms at a price 𝑃. We assume that firms
have rational expectations, so �̄�𝐷

𝑡 equals the mean inelastic demand in hour type 𝑡.37
Let 𝑃𝑡(𝑄) denote the expected inverse demand curve faced by strategic firms. The profit
function of firm 𝑑 in hour type 𝑡 is given by

𝜋𝑑
𝑡 (𝑄𝑑𝑡 , 𝐶𝑑𝑡) = 𝑃𝑡(𝑄−𝑑𝑡 +𝑄𝑑𝑡)𝑄𝑑𝑡 − 𝐶𝑑𝑡(𝑄𝑑𝑡),

where 𝑄−𝑑𝑡 denotes the total production of all strategic firms except firm 𝑑. The annual
profit function is obtained by summing over hourly profits:

𝜋𝑑(𝑄𝑑 , 𝐶𝑑) =
∑
𝑡

𝑓𝑡𝜋
𝑑
𝑡 (𝑄𝑑𝑡 , 𝐶𝑑𝑡).

Here, 𝑓𝑡 represents the number of occurrences of hour type 𝑡 in a year, 𝑄𝑑 = {𝑄𝑑𝑡}𝑛𝑡𝑡=1 is
the vector of quantities, and 𝐶𝑑 = {𝐶𝑑𝑡}𝑛𝑡𝑡=1 denotes the set of cost functions of firm 𝑑.

36Five strategic and 247 fringe firms are present in our data. In Appendix G.6, we present the details of how
we implement the Cournot model.

37The realized demand is given by 𝑄𝜏𝑡 = �̄�𝐷
𝑡 + 𝜖𝜏𝑡 , where 𝜏 is an hour within an hour type 𝑡 and 𝜖𝜏𝑡 is the error

term. We compute the expected demand by taking the average of realized demand within 𝑡 as E𝑡[�̄�𝐷
𝑡 + 𝜖𝜏𝑡].
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7.2.4 Upstream Profit

Each upstream firm 𝑢 has a set of buyers 𝐷𝑢 , where quantity 𝑞𝑢𝑑 is traded with each
buyer 𝑑 at price 𝑤𝑢𝑑. The upstream firm’s profit function is the total revenue from these
transactions minus the total production cost:

𝜋𝑢(𝑤𝑢 , 𝑞𝑢) =
∑
𝑑∈𝐷𝑢

𝑤𝑢𝑑𝑞𝑢𝑑 − 𝐶𝑢

( ∑
𝑑∈𝐷𝑢

𝑞𝑢𝑑

)
.

Here, 𝑤𝑢 and 𝑞𝑢 represent the vector of all prices and quantities for firm 𝑢.

7.3 Bargaining Model Between Mining and Power Firms

We specify a sequential bargaining model in which mining and power firms negotiate
annual linear pricing contracts. After bargaining, either the upstream firm determines
how much coal to supply (monopsonistic bargaining) or the downstream firm determines
its downstream quantity (monopolistic bargaining), taking wholesale prices as given.38 We
also maintain the passive-belief assumption, so 𝑢 and 𝑑 condition on all other bargaining
outcomes when negotiating their wholesale price.

Empirical evidence supports our assumptions of annual contract durations and linear
pricing. As shown in Table 2, the average contract duration is 1.22 years, making annual
negotiation a reasonable approximation. Although our transaction data do not specify
pricing types during the sample period, historical data from 1980–2000 indicate that the
share of linear price contracts increased from just 3% in 1979 to over 75% by 2000 (Figure
OA-5).39 Assuming this trend continued beyond 2000, linear price contracts likely represent
the majority of contracts in our sample period.

Our assumption of annual contract duration enables us to abstract from the holdup
problem, as analyzed in the seminal work of Joskow (1985). Since the 1980s, coal markets
have experienced significant changes that reduce coal specificity through both technolog-
ical advancements and regulatory reforms. For instance, the introduction of scrubbers
has made coal more homogenous for power plants, mitigating the holdup problem. In
addition, environmental and railroad regulatory changes have further reduced supplier
specificity by incentivizing boiler upgrades and broadening access to coal markets (Eller-
man et al., 2000).40 These developments have substantially reduced the prevalence of

38We use the sequential timing assumption because it nests the classical monopsony and successive monopoly
models as special cases when 𝛽 ∈ {0, 1}.

39Coal contracts can take several forms, including base price plus escalation, market-indexed pricing, cost-plus
contracts, and linear price contracts (Kozhevnikova and Lange, 2009).

40The 1990 Clean Air Act Amendment led power plants to adopt technologies accommodating lower-sulfur
coal, increasing their fuel flexibility (Ellerman et al., 2000). Supporting this observation, Kacker (2014) finds
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long-term contracts, as illustrated in Figure OA-6.
In what follows, we first define each firm’s individual optimization problem under mo-

nopolistic and monopsonistic conduct in the second stage. We then present the bargaining
problem in the first stage.

7.3.1 Firms’ Problem in Monopolistic Bargaining

Under monopolistic bargaining, the downstream firm 𝑑 takes input prices as given, which
affects its cost curve 𝐶𝑑𝑡 , and chooses the level of production every hour to maximize profit:

𝑄
𝑚𝑝

𝑑𝑡
(𝐶𝑑𝑡) = arg max

𝑄𝑑𝑡

[𝑃𝑡(𝑄−𝑑𝑡 +𝑄𝑑𝑡)𝑄𝑑𝑡 − 𝐶𝑑𝑡(𝑄𝑑𝑡)] . (9)

Let 𝑞𝑚𝑝

𝑢𝑑𝑡
(𝐶𝑑𝑡 , 𝑤𝑢𝑑) be the factor demand of firm 𝑑 from mining firm 𝑢, which comes from

the share of coal units in producing 𝑄
𝑚𝑝

𝑑𝑡
(𝐶𝑑𝑡) based on firm 𝑢’s cost curve.41 Using this,

we can write the annual factor demand of firm 𝑑 from firm 𝑢 as:

𝑞
𝑚𝑝

𝑢𝑑
(𝑤𝑢𝑑) =

∑
𝑡

𝑓𝑡𝑞
𝑚𝑝

𝑢𝑑𝑡
(𝐶𝑑𝑡 , 𝑤𝑢𝑑)

For mining firms, the passive-belief assumption implies that coal shipments to all partners
except 𝑑 are fixed and predetermined. Thus, under monopolistic bargaining, mining firm
𝑢 meets power firm 𝑑’s input demand by producing from its lowest-cost available mines.42

7.3.2 Firms’ Problem in Monopsonistic Bargaining

Under monopsonistic bargaining, the upstream firm takes {𝑤𝑢𝑙}𝑙≠𝑑 and {𝑞𝑢𝑙}𝑙≠𝑑 as given
and decides how much to supply to firm 𝑑 with the following optimization problem:

𝑞𝑚𝑠
𝑢𝑑

(𝐶𝑢 , 𝑤𝑢𝑑) = arg max
𝑞𝑢𝑑

𝑤𝑢𝑑 𝑞𝑢𝑑 −
[
𝐶𝑢

(
𝑄−𝑑

𝑢 + 𝑞𝑢𝑑

)
− 𝐶𝑢

(
𝑄−𝑑

𝑢

)]
where 𝑄−𝑑

𝑢 =
∑

𝑙∈D\{𝑑}
𝑞𝑢𝑙 denotes the total quantity that is sold to partners other than 𝑑.

The solution to this problem is 𝑞𝑢𝑑 = (𝐶′
𝑢)−1 (𝑤𝑢𝑑) − 𝑄−𝑑

𝑢 , where firm 𝑢 supplies firm 𝑑

that during Phase I of the Amendment, plants required to switch technology were more likely to adopt
shorter-term and fixed-price contracts compared to unaffected plants. Moreover, the 1980 Railroad Reform
expanded the coal market for power plants by reducing transportation costs.

41We do not specify the problem that determines 𝑞𝑚𝑝 , because it simply follows the merit-order dispatch
principle—generating electricity from lowest-cost generators first—which is embedded in 𝑑’s cost function.

42This assumption would be violated if mining firms accounted for how their sales to 𝑑 affect the production
cost of coal sold to their other customers. However, we believe that passive belief is a reasonable assumption
in coal mining since upstream firms typically supply many downstream buyers.
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until its marginal cost equals the wholesale price 𝑤𝑢𝑑.43 For the downstream firm, 𝑢’s
supply decision does not directly determine downstream production, because electricity
generation involves multiple input types at the firm level, as in Extension 5.4. Thus, firm
𝑑 solves the following problem:

𝑄𝑚𝑠
𝑑𝑡

(𝑞𝑢𝑑) = argmax
�̃�𝑑𝑡

𝑃𝑡(𝑄−𝑑𝑡 +𝑄𝑑𝑡)𝑄𝑑𝑡 − �̃�−𝑢
𝑑𝑡

(𝑄𝑑𝑡) s.t. 𝑄𝑑𝑡 = �̃�𝑑𝑡 +𝑄𝑢𝑑𝑡(𝑞𝑚𝑠
𝑢𝑑

), (10)

where 𝑄𝑢𝑑𝑡(𝑞𝑚𝑠
𝑢𝑑

) represents the electricity generation from 𝑞𝑚𝑠
𝑢𝑑

—that is, the coal quantity
supplied from 𝑢—and �̃�−𝑢

𝑑𝑡
(𝑄𝑑𝑡) is the cost function after excluding the generation capacity

used for generating 𝑄𝑢𝑑𝑡(𝑞𝑚𝑠
𝑢𝑑

). In other words, firm 𝑑 takes the electricity generation from
firm 𝑢’s coal supply as given and maximizes its profit conditional on 𝑞𝑚𝑠

𝑢𝑑
.

7.3.3 Gains From Trade

Next, we calculate the gains from trade for the upstream and downstream firms. The
annual profit of firm 𝑢, if we exclude partner 𝑑, is given by

𝜋−𝑑
𝑢 (𝑤𝑢 , 𝑞𝑢) =

∑
𝑙∈D\{𝑑}

𝑤𝑢𝑙𝑞𝑢𝑙 − 𝐶𝑢

(
𝑄−𝑑

𝑢

)
Here, we assume that the upstream firm does not sell the quantity 𝑞𝑢𝑑 in the event of a
disagreement. With this, the gain from trade for firm 𝑢 with 𝑑 is given by

GFT𝑢
𝑢𝑑

=

[∑
𝑙∈D

𝑤𝑢𝑙𝑞𝑢𝑙 − 𝐶𝑢(𝑄𝑢)
]
−


∑

𝑙∈D\{𝑑}
𝑤𝑢𝑙𝑞𝑢𝑙 − 𝐶𝑢(𝑄−𝑑

𝑢 )


= 𝑤𝑢𝑑𝑞𝑢𝑑 −
[
𝐶𝑢(𝑄−𝑑

𝑢 + 𝑞𝑢𝑑) − 𝐶𝑢(𝑄−𝑑
𝑢 )

]
,

For the downstream firm, disagreement in bargaining primarily affects its cost function.
We assume that in the event of a disagreement, firm 𝑑 sources coal from the spot market
rather than from firm 𝑢. In the spot market, both price levels and their volatility impact
firm profitability, as firms generally dislike price uncertainty (Jha, 2022).44 We denote
firm 𝑑’s disagreement cost function as 𝐶−𝑢

𝑑𝑡
(𝑄), which can be obtained by replacing the

43If this quantity exceeds 𝑑’s coal capacity, we assume that 𝑢 supplies up to 𝑑’s capacity limit.
44As Jha (2022) notes, “plant managers may pay a premium for contract coal because delivery is guaranteed.

In contrast, plant managers have no assurance that they will find a spot supplier to purchase coal from every
month.” Jha (2022) finds that coal power plants are willing to trade a $1.62 increase in their expected costs
for a $1 decrease in their standard deviation of costs. Using this estimate, we assume that the disagreement
coal price is the mean coal price in the spot market plus 1.62 times its standard deviation. See Appendix G.7
for the implementation details of disagreement payoff calculations.
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wholesale price 𝑤𝑢𝑑 with the price in the spot market. The disagreement profit function is
thus:

𝜋−𝑢
𝑑𝑡
(𝑄𝑑𝑡) = 𝑃𝑡(𝑄−𝑑𝑡 +𝑄𝑑𝑡)𝑄𝑑𝑡 − 𝐶−𝑢

𝑑𝑡
(𝑄𝑑𝑡).

Let 𝑄−𝑢
𝑑𝑡

denote the output level that maximizes this profit function. The gain from trade
is given by

GFT𝑑
𝑢𝑑

=
∑
𝑡

𝑓𝑡

( [
𝑃𝑡(𝑄−𝑑𝑡 +𝑄𝑑𝑡)𝑄𝑑𝑡 − 𝐶𝑑𝑡(𝑄𝑑𝑡)

]
−

[
𝑃𝑡(𝑄−𝑑𝑡 +𝑄−𝑢

𝑑𝑡
)𝑄−𝑢

𝑑𝑡
− 𝐶−𝑢

𝑑𝑡
(𝑄−𝑢

𝑑𝑡
)
] )

With these definitions, we can represent the monopsonistic bargaining problem as follows:

𝑤𝑚𝑠
𝑢𝑑

= argmax
𝑤𝑢𝑑

{[
𝑤𝑢𝑑 𝑞

𝑚𝑠
𝑢𝑑

(𝑤𝑢𝑑) −
(
𝐶𝑢

(
𝑄−𝑑

𝑢 + 𝑞𝑚𝑠
𝑢𝑑

(𝑤𝑢𝑑)
)
− 𝐶𝑢

(
𝑄−𝑑

𝑢

) )]1−𝛽𝑢𝑑

×
[∑
𝑡
𝑓𝑡

( [
𝑃𝑡

(
𝑄−𝑑𝑡 +𝑄𝑚𝑠

𝑑𝑡

)
𝑄𝑚𝑠

𝑑𝑡
− 𝐶𝑑𝑡

(
𝑄𝑚𝑠

𝑑𝑡

) ]
−

[
𝑃𝑡

(
𝑄−𝑑𝑡 +𝑄−𝑢

𝑑𝑡

)
𝑄−𝑢

𝑑𝑡
− 𝐶−𝑢

𝑑𝑡

(
𝑄−𝑢

𝑑𝑡

) ] )]𝛽𝑢𝑑}
𝑞𝑚𝑠
𝑢𝑑

(𝐶𝑢 , 𝑤
𝑚𝑠
𝑢𝑑

) = argmax
𝑞𝑢𝑑

𝑤𝑚𝑠
𝑢𝑑

𝑞𝑢𝑑 −
[
𝐶𝑢

(
𝑄−𝑑

𝑢 + 𝑞𝑢𝑑
)
− 𝐶𝑢

(
𝑄−𝑑

𝑢

) ]
.

𝑄𝑚𝑠
𝑑𝑡

(𝑞𝑢𝑑) = argmax
�̃�𝑑𝑡

𝑃𝑡(𝑄−𝑑𝑡 +𝑄𝑑𝑡)𝑄𝑑𝑡 − �̃�−𝑢
𝑑𝑡

(𝑄𝑑𝑡) s.t 𝑄𝑑𝑡 = �̃�𝑑𝑡 +𝑄𝑢𝑑𝑡(𝑞ms
𝑢𝑑

), for all t

Similarly, we can write the monopolistic bargaining problem as follows:

𝑤
𝑚𝑝

𝑢𝑑
= argmax

𝑤𝑢𝑑

{[
𝑤𝑢𝑑 𝑞

𝑚𝑝

𝑢𝑑
(𝑤𝑢𝑑) −

(
𝐶𝑢

(
𝑄−𝑑

𝑢 + 𝑞
𝑚𝑝

𝑢𝑑
(𝑤𝑢𝑑)

)
− 𝐶𝑢

(
𝑄−𝑑

𝑢

) )]1−𝛽𝑢𝑑

×
[∑
𝑡
𝑓𝑡

( [
𝑃𝑡

(
𝑄−𝑑𝑡 +𝑄

𝑚𝑝

𝑑𝑡

)
𝑄

𝑚𝑝

𝑑𝑡
− 𝐶𝑑𝑡

(
𝑄

𝑚𝑝

𝑑𝑡

) ]
−

[
𝑃𝑡

(
𝑄−𝑑𝑡 +𝑄−𝑢

𝑑𝑡

)
𝑄−𝑢

𝑑𝑡
− 𝐶−𝑢

𝑑𝑡

(
𝑄−𝑢

𝑑𝑡

) ] )]𝛽𝑢𝑑}
𝑄

𝑚𝑝

𝑑𝑡
(𝐶𝑑𝑡), 𝑞𝑚𝑝

𝑢𝑑𝑡
(𝑤𝑚𝑝

𝑢𝑑
) = argmax

𝑄𝑑𝑡 ,𝑞𝑢𝑑𝑡

[𝑃𝑡(𝑄−𝑑𝑡 +𝑄𝑑𝑡)𝑄𝑑𝑡 − 𝐶𝑑𝑡(𝑄𝑑𝑡)] , 𝑞
𝑚𝑝

𝑢𝑑
(𝑤𝑚𝑝

𝑢𝑑
) =

∑
𝑡

𝑓𝑡𝑞
𝑚𝑝

𝑢𝑑𝑡

The solutions (𝑤𝑚𝑠
𝑢𝑑

, 𝑞𝑚𝑠
𝑢𝑑

) and (𝑤𝑚𝑝

𝑢𝑑
, 𝑞𝑚𝑝

𝑢𝑑
) to these problems characterize the equilibrium in

monopsonistic and monopolistic bargaining, respectively.

7.4 Estimation and Results

We solve the model for each contracting pair (mining and power firms) each year. We
first estimate the model primitives—the residual electricity demand of the downstream
firm and the cost of the upstream firm—to form the payoff functions. Then, we compute
equilibrium quantities and wholesale prices (𝑞𝑢𝑑(𝛽), 𝑤𝑢𝑑(𝛽)) under both monopsonistic
and monopolistic bargaining by solving the Nash-bargaining problem given in Section 7.3.
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Figure 7: Distribution of Cost and Demand Elasticities

(a) Upstream Cost Estimates (b) Downstream Demand Estimates

Notes: Panel (a) presents kernel density estimates of the distribution of the elasticity of marginal cost of mining
firms (the elasticity of 𝑚𝑐(𝑞)). Panel (b) presents kernel density estimates of the distribution of the absolute value
of the residual elasticity of demand of power firms (the elasticity of 𝑝−1(𝑞) in our notation). Each observation
corresponds to a mining firm-year in Panel (a) and an hour-type power firm in Panel (b). Since cost and demand
functions are estimated nonparametrically, we report the elasticities at the observed quantity levels in Panel (a)
and Panel (b). The dashed vertical line indicates the average in each panel.

We estimate 𝛽𝑚𝑠
𝑢𝑑

and 𝛽
𝑚𝑝

𝑢𝑑
as the value that minimizes the distance between the equilibrium

wholesale price 𝑤𝑢𝑑(𝛽) under each conduct and the observed wholesale price. We then
apply our conduct selection rule in Theorem 1 to select the vertical conduct for every pair.
See Appendix G.8 for the detailed implementation of our estimation algorithm.

7.4.1 Cost and Demand Elasticity Estimates

Figure 7(a) shows the distribution of marginal cost elasticity estimates by mine-year. The
estimates cluster around one, suggesting that many mines operate with approximately
constant marginal costs, while others show elasticities ranging from 1.5 to 3.5. This
heterogeneity in cost elasticity primarily reflects geographic differences: mines in the
Powder River Basin (Wyoming and Montana) feature large-capacity surface mines with
relatively flat marginal cost curves, whereas mines in the Gulf region are typically smaller
underground operations with heterogeneous marginal costs.

Figure 7(b) displays the distribution of residual demand elasticity estimates, with each
observation corresponding to an hour-firm pair. The estimates span a wide range, though
most are concentrated between 1 and 4. This variation primarily reflects the shape of the
fringe firms’ supply curve, which fluctuates with the time of day and season. We also
estimate the average elasticity of the market-level demand faced by strategic firms to be
-0.84, which aligns with Puller (2007)’s finding of an average demand elasticity of -1.24 in
the California electricity market.
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Figure 8: Bargaining Model Estimates

(a) Buyer Power Estimates (b) Comparison to Efficient Bargaining
Notes: Panel (a) shows kernel density of the estimates of buyer power (𝛽𝑢𝑑) and efficient level of buyer power
(𝛽∗

𝑢𝑑
) across each buyer-seller-year combination. Panel (b) compares the logarithm of observed coal-transaction

quantities in log MMBtu (log(𝑞)) to the logarithm of the efficient bargaining quantity (log(𝑞∗)) across each buyer-
seller-year combination. The red dashed line represents the 45-degree line.

7.4.2 Bargaining Parameter Estimates

We report the distribution of the bargaining weight estimates 𝛽𝑢𝑑 in Figure 8(a) together
with the optimal bargaining weights 𝛽∗

𝑢𝑑
. The distribution of 𝛽𝑢𝑑 is skewed toward one,

meaning that power firms have relatively more bargaining power than mining firms. While
the distribution of 𝛽∗

𝑢𝑑
shows a similar rightward skew, it is more pronounced than that of

𝛽𝑢𝑑. The relatively small difference between the distributions of 𝛽𝑢𝑑 and 𝛽∗
𝑢𝑑

suggests that
the total vertical distortions are likely to be modest in magnitude.

Next, we apply our conduct selection criteria of nonnegative markup and markdown.
Theorem 1 in Section 4 shows that vertical conduct is monopsonistic if the bargaining
weight exceeds 𝛽∗ and monopolistic otherwise. Applying this rule to the bargaining weight
estimates in Figure 8(a), we find that five bargaining relationships exhibit monopsonistic
conduct while the remaining relationships are monopolistic. This suggests that most
output distortion in this setting arises from seller power rather than buyer power, resulting
in double marginalization.

We also test whether our conduct selection criteria are supported by the data using
the falsifiable implication of Proposition 5: observed output quantities should be lower
than the efficient-bargaining output. Figure 8(b) compares the observed quantities with
the efficient-bargaining quantities for each trading relationship. With few exceptions, the
observed output is consistently lower than the efficient-bargaining output. A formal test
confirms this pattern, where we find that the log average efficient quantity is statistically
significantly larger than the log average observed quantity (difference coef. = 0.069, s.e. =
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0.003). These results provide empirical support for our conduct selection criterion.
Finally, we report two additional results as model validation exercises. First, since we

estimate bargaining weights using only wholesale prices without targeting any moments
of quantities, we can compare the model-predicted transaction quantities with the actual
quantities as an external validity test. Figure OA-8 shows that observed quantities cluster
around the fitted quantities, indicating that our model explains the data well. Second, our
dataset includes transactions between a vertically integrated buyer and seller. We apply
our bargaining model to this pair without imposing any efficiency assumptions. We find
substantially lower deadweight loss for the vertically integrated pair compared to other
transactions (3.51% vs. 14.7%), confirming more efficient bargaining due to integration.

7.5 Decomposing Vertical Distortions Into Monopolistic and Monopsonistic Con-
duct

In this section, we quantify the total vertical distortion and decompose it into compo-
nents attributable to monopsony power and monopoly power. Since short-run electricity
demand is inelastic, market power distortions in electricity markets arise primarily from al-
locative inefficiency rather than lost output (Borenstein et al., 2002). Specifically, monopoly
and monopsony distortions induce strategic firms to produce less than they would in the
absence of market power, shifting production to higher-cost fringe firms. Accordingly, we
measure the vertical distortion as the electricity generation allocated to higher-cost fringe
firms from strategic firms due to double marginalization or monopsony power.

To decompose the total vertical distortion into monopsony and monopoly components,
we first calculate the difference between the equilibrium output and efficient-bargaining
output shown in Figure 8(b) for each trading pair, separately for trades under monopson-
istic and monopolistic conduct. This gives us both the total underproduction of strategic
firms compared to a competitive benchmark and a decomposition of this amount into
monopsonistic and monopolistic components.

The results are reported in Table 3. We estimate the total misallocated output in the
ERCOT market to be 8.03% of the total output from coal transactions. While this figure is
relatively small, it is not surprising, given our finding that the distribution of buyer power
estimates 𝛽𝑢𝑑 is close to the distribution of efficient level of buyer power 𝛽∗

𝑢𝑑
. In terms of

sources, 74.9% of the vertical distortion is attributed to double marginalization resulting
from the monopoly power of coal mining firms, while the remaining portion is due to the
monopsony power of power companies. Therefore, in this market, an increase in buyer
power on average would be countervailing, whereas an increase in seller power would be
further distortionary.
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Table 3: Decomposing Vertical Distortions

Estimates

Panel A. Total Quantity Distortion (%)

Percent Misallocated Quantity 8.03 (0.67)

Panel B. Distortion Decomposition (%)

Due to Monopsony Power 25.10 (4.97)
Due to Monopoly Power 74.90 (4.97)

Notes: This table reports the share of total misallocated quantity (additional output produced by
fringe firms compared to a wholesale coal market with no vertical distortion) and decomposes it into
its monopsony and monopoly power components. Numbers in parentheses are bootstrapped standard
errors reported for the percentages.

8 Concluding Remarks

Vertical relationships between buyers and sellers are studied across a variety of set-
tings, ranging from labor unions to healthcare markets, to quantify market distortions
under monopsony/oligopsony and double-marginalization settings. In this paper, we
introduce a unified framework that nests both monopsonistic and monopolistic (double-
marginalization) vertical conduct. We first show that with increasing upstream marginal
costs and decreasing downstream marginal revenues, equilibria under both conduct types
exist with distinct welfare implications. We then provide a method to determine which
type of vertical conduct emerges in equilibrium based on the relative bargaining positions
of buyers and sellers and the underlying primitives of the cost and demand functions.

We illustrate our model using three empirical applications that include labor unions,
farmer cooperatives, and sellers with decreasing returns-to-scale production technology.
In our main empirical application, we use the model to quantify the sources of vertical
distortions in coal procurement by power plants in Texas. We find that inefficiencies
mainly come from double marginalization due to mining firms’ monopoly power rather
than from the monopsony power of power firms.

Our results provide several insights into antitrust policy. For horizontal mergers, we
characterize the conditions under which changes in the bargaining power of upstream
and downstream firms are distortionary or countervailing. Under monopolistic conduct,
increased buyer power countervails double-marginalization distortion and increases wel-
fare, whereas under monopsonistic conduct, increased buyer power increases monopsony
distortions and reduces welfare. For vertical mergers, our framework provides an ap-
proach to evaluate potential efficiencies from eliminating double marginalization using
the distance between the actual and efficient levels of buyer power.
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A Proofs for Results Under the Simultaneous Model
This section provides first and second-order conditions of monopolistic and monopsonistic bar-
gaining under simultaneous timing assumptions and provides the relevant proofs in Section 3.

A.1 First-Order Conditions

Under the simultaneous bargaining models, the maximization problems are given by:

max
𝑞

𝑝(𝑞)𝑞 − 𝑤𝑞 (Downstream’s problem)

max
𝑞

𝑤𝑞 − 𝑐(𝑞)𝑞 (Upstream’s problem)

max
𝑤

[(𝑝(𝑞)𝑞 − 𝑤𝑞)𝛽(𝑤𝑞 − 𝑐(𝑞)𝑞)1−𝛽] (Bargaining problem)

max
𝑤,𝑞

[(𝑝(𝑞)𝑞 − 𝑤𝑞)𝛽(𝑤𝑞 − 𝑐(𝑞)𝑞)1−𝛽] (Efficient bargaining problem)

These objective functions correspond to the following FOCs, for which we provide the proofs in
Appendix A.3: 

𝑤 = 𝑝′(𝑞)𝑞 + 𝑝(𝑞) (D-FOC)

𝑤 = 𝑐′(𝑞)𝑞 + 𝑐(𝑞) (U-FOC)

𝑤 = (1 − 𝛽) 𝑝(𝑞) + 𝛽 𝑐(𝑞) (B-FOC)

𝑞[𝑝′(𝑞) − 𝑐′(𝑞)] + [𝑝(𝑞) − 𝑐(𝑞)] = 0 (J-FOC)

Based on these FOCs, the equilibrium quantities are given by:
𝑝′(𝑞)𝑞 + 𝛽[𝑝(𝑞) − 𝑐(𝑞)] = 0 (MP-Q-FOC)

(1 − 𝛽)[𝑝(𝑞) − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞 = 0 (MS-Q-FOC)

𝑞 [𝑝′(𝑞) − 𝑐′(𝑞)] + [𝑝(𝑞) − 𝑐(𝑞)] = 0 (J-Q-FOC)

A.2 Second-Order Conditions

The second-order conditions are given by:
𝑝′′(𝑞)𝑞 + 2𝑝′(𝑞) < 0 (D-SOC)

−𝑐′′(𝑞)𝑞 − 2𝑐′(𝑞) < 0 (U-SOC)

−
[
𝛽/(𝑝(𝑞) − 𝑤)2 + (1 − 𝛽)/(𝑤 − 𝑐(𝑞))2

]
< 0 (B-SOC)

A.3 Derivations of FOCs Under Simultaneous Bargaining

D-FOC and U-FOC are straightforward and therefore omitted.

OA - 3



A.3.1 B-FOC

Take the natural logarithm of the objective function:

L(𝑤) ≡ 𝛽 ln(𝑝(𝑞)𝑞 − 𝑤𝑞) + (1 − 𝛽) ln(𝑤𝑞 − 𝑐(𝑞)𝑞). (OA.1)

Differentiating L(𝑤) with respect to 𝑤 and setting it to zero gives

𝛽 · −𝑞
𝑝(𝑞)𝑞 − 𝑤𝑞

+ (1 − 𝛽) · 𝑞

𝑤𝑞 − 𝑐(𝑞)𝑞 = 0.

Solving for 𝑤 gives 𝑤 = (1 − 𝛽)𝑝(𝑞) + 𝛽𝑐(𝑞).

A.3.2 J-FOC

Take the derivative of L(𝑤) from Equation (OA.1) with respect to 𝑞:

𝛽 ·
𝑝′(𝑞)𝑞 + 𝑝(𝑞) − 𝑤

𝑝(𝑞)𝑞 − 𝑤𝑞
+ (1 − 𝛽) ·

𝑤 − 𝑐′(𝑞)𝑞 − 𝑐(𝑞)
𝑤𝑞 − 𝑐(𝑞)𝑞 = 0.

Substitute 𝑤 = (1 − 𝛽)𝑝(𝑞) + 𝛽𝑐(𝑞) from (B-FOC) above:

𝛽 ·
𝑝′(𝑞)𝑞 + 𝑝(𝑞) − [(1 − 𝛽)𝑝(𝑞) + 𝛽𝑐(𝑞)]

𝑝(𝑞)𝑞 − [(1 − 𝛽)𝑝(𝑞) + 𝛽𝑐(𝑞)]𝑞 + (1 − 𝛽) ·
[(1 − 𝛽)𝑝(𝑞) + 𝛽𝑐(𝑞)] − 𝑐′(𝑞)𝑞 − 𝑐(𝑞)

[(1 − 𝛽)𝑝(𝑞) + 𝛽𝑐(𝑞)]𝑞 − 𝑐(𝑞)𝑞 = 0.

The numerator and denominator for both terms above simplify to:

𝑝′(𝑞)𝑞 + 𝛽[𝑝(𝑞) − 𝑐(𝑞)]
𝑞[𝑝(𝑞) − 𝑐(𝑞)] + (1 − 𝛽)(𝑝(𝑞) − 𝑐(𝑞)) − 𝑐′(𝑞)𝑞

𝑞(𝑝(𝑞) − 𝑐(𝑞)) = 0.

This expression results in the joint profit maximization FOC (J-FOC):

𝑞[𝑝′(𝑞) − 𝑐′(𝑞)] + [𝑝(𝑞) − 𝑐(𝑞)] = 0.

A.4 Proof of Proposition 1 for the Simultaneous Model

Proof. We will first show part (i) and part (ii). Note that the second-order conditions for either
bargaining model do not hold under the assumptions of this proposition since the profit function
of upstream is unbounded for 𝑤 > 𝑐 = 𝑐(𝑞) when marginal cost is constant, and the profit of
downstream is unbounded for 𝑝 = 𝑝(𝑞) < 𝑤 when marginal revenue is constant. As a result, the
first-order conditions cannot be relied on to find the equilibrium, and we must consider each of
the maximization programs in cases. We will provide the proof separately for monopsonistic and
monopolistic bargaining.

Monopsonistic Bargaining:
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The equilibrium (𝑤𝑒 , 𝑞𝑒) maximizes the objective functions below in the monopsonistic bargaining
model: 

max
𝑞

𝜋𝑢(𝑤𝑒 , 𝑞) (𝑈)

max
𝑤

𝜋𝑏(𝑤, 𝑞𝑒 , 𝛽) (𝐵)
s.t 𝜋𝑢(𝑤, 𝑞) ≥ 0, 𝜋𝑑(𝑤, 𝑞) ≥ 0,

where𝜋𝑏(𝑤, 𝑞, 𝛽) ≡ (𝜋𝑑(𝑤, 𝑞))𝛽(𝜋𝑢(𝑤, 𝑞))1−𝛽. For any 𝛽, (𝑤𝑒 , 𝑞𝑒) is an equilibrium if there is no other
𝑤 such that 𝜋𝑑(𝑤, 𝑞𝑒) > 𝜋𝑑(𝑤𝑒 , 𝑞𝑒) and there is no other 𝑞 such that 𝜋𝑏(𝑤𝑒 , 𝑞, 𝛽) > 𝜋𝑏(𝑤𝑒 , 𝑞𝑒 , 𝛽).
Our result follows from analyzing the equilibrium under different 𝛽 values.

Case I: 𝛽 ∈ (0, 1)

We will show that under constant upstream marginal cost, the equilibrium for 𝛽 ∈ (0, 1) is 𝑤𝑒 = 𝑐

and 𝑞𝑒 = 𝑝−1(𝑐). The profit functions are given by

𝜋𝑑(𝑤, 𝑞) =
(
𝑝(𝑞) − 𝑤

)
𝑞 and 𝜋𝑢(𝑤, 𝑞) =

(
𝑤 − 𝑐)𝑞.

Observe that at (𝑤𝑒 , 𝑞𝑒) we have 𝜋𝑑(𝑤𝑒 , 𝑞𝑒) = 0 and 𝜋𝑏(𝑤𝑒 , 𝑞𝑒 , 𝛽) = 0.
First we will verify that (𝑐, 𝑝−1(𝑐)) is indeed an equilibrium. Consider a deviation of �̃� from 𝑞𝑒 .
Observe that for any such deviation, the 𝜋𝑢 = 0, so there is no profitable deviation.

Now, consider a deviation of �̃� > 𝑐 from 𝑤𝑒 . Observe that since 𝑝(𝑞𝑒) = 𝑤, such a deviation
does not satisfy the participation constraint because 𝜋𝑑(�̃�, 𝑞𝑒) = (𝑝(𝑞𝑒) − �̃�

)
𝑞 < 0.

Next, consider a deviation of �̃� < 𝑐 from 𝑤𝑒 . Observe that since 𝑤𝑒 = 𝑐, such a deviation does
not satisfy the participation constraint because 𝜋𝑢(�̃�, 𝑞𝑒) = (�̃� − 𝑐)𝑞𝑒 < 0. This proves that 𝑤𝑒 = 𝑐

and 𝑞𝑒 = 𝑝−1(𝑐) is indeed an equilibrium. We now show that there is no other equilibrium by
considering cases separately.
(i) Suppose �̄� = 𝑐 and �̄� < 𝑞𝑒 is an equilibrium. Consider a deviation from this equilibrium such
that �̃� = 𝑐 + 𝜖, 𝜖 < 𝑝(�̄�) − 𝑝(𝑞𝑒). Noting that �̃� = 𝑤𝑒 + 𝜖, the profit functions are given by

𝜋𝑢(�̃�, �̄�) = (𝑐 + 𝜖 − 𝑐)�̄� > 0 and 𝜋𝑑(�̃�, �̄�) = (𝑝(�̄�) − (𝑝(𝑞𝑒) + 𝜖)
)
�̄� > 0.

Therefore,𝜋𝑏(�̃�, �̄�) > 𝜋𝑏(�̄�, �̄�), which means that there is a profitable deviation such that (�̄� = 𝑐, �̄� <

𝑞𝑒) cannot be an equilibrium. We can also eliminate (�̄� = 𝑐, �̄� > 𝑞𝑒) as a potential equilibrium since
it does not satisfy the participation constraint of upstream.
(ii) Suppose (�̄� > 𝑐, �̄�) is an equilibrium, where �̄� ∈ (0, 𝑝−1(�̄�)). In this case, �̃� = 𝑝−1(�̄�) is a
profitable deviation for 𝑈

𝜋𝑢(�̄�, �̃�) = (�̄� − 𝑐)�̃� > (�̄� − 𝑐)�̄� = 𝜋𝑢(�̄�, �̄�),

because �̄� < �̃� and 𝜋𝑑(�̄�, �̃�) = 0 still satisfies the participation constraint of the downstream.
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(iii) Now suppose that (�̄� > 𝑐, 𝑝−1(�̄�)) is an equilibrium. Note that 𝜋𝑑 = 𝜋𝑏 = 0 in this case.
Consider a deviation �̃� = �̄� − 𝜖 where 𝜖 < �̄� − 𝑐. We can write the profit functions as

𝜋𝑢(�̃�, �̄�) = (�̃� − 𝑐)�̄� > 0 and 𝜋𝑑(�̃�, �̄�) = (�̄� − (�̄� − 𝜖))�̄� > 0.

This deviation is profitable because𝜋𝑏 > 0. Therefore, (�̄� > 𝑐, �̄� = 𝑝−1(�̄�)) cannot be an equilibrium.
(iv) We can directly eliminate any case (�̃� < 𝑐, �̃�) because it does not satisfy the participation
constraint of upstream, and we can also eliminate any case (�̃� > 𝑐, �̃� > 𝑝−1(�̃�)) because it does not
satisfy the participation constraint of downstream. This concludes the proof.

Case II: 𝛽 = 1

We will show that if 𝛽 = 1, there is a continuum of equilibria given by 𝑤𝑒 = 𝑐 and 𝑞𝑒 ∈ [0, 𝑝−1(𝑐)].
The equilibrium (𝑤𝑒 , 𝑞𝑒) should solve the following problems:

max
𝑞

𝜋𝑢(𝑤𝑒 , 𝑞) (𝑈)

max
𝑤

𝜋𝑑(𝑤, 𝑞𝑒) (𝐷)
s.t 𝜋𝑢(𝑤, 𝑞) ≥ 0, 𝜋𝑑(𝑤, 𝑞) ≥ 0.

First we verify that 𝑤𝑒 = 𝑐 and 𝑞𝑒 ∈ [0, 𝑝−1(𝑐)] is indeed an equilibrium. Consider a deviation
of �̃� > 𝑐 from 𝑤𝑒 . This will reduce the downstream profit for any 𝑞

𝜋𝑑(�̃�, 𝑞) = (𝑝(𝑞) − �̃�)𝑞 < (𝑝(𝑞) − 𝑤𝑒)𝑞 = 𝜋𝑑(𝑤𝑒 , 𝑞).

Thus, there is no profitable deviation from 𝑤𝑒 = 𝑐 for any 𝑞. Similarly, when 𝑤 = 𝑐, the profit
function of 𝑈 is always zero regardless of 𝑞, so there is no profitable deviation from 𝑞𝑒 , and any 𝑞

that satisfies the participation constraint is an equilibrium. Therefore, 𝑤𝑒 = 𝑐 and 𝑞𝑒 ∈ [0, 𝑝−1(𝑐)] is
an equilibrium.

Next, we will show that no other equilibria exist. Suppose (�̄� > 𝑐, �̄�) is an equilibrium for any
�̄�. We cannot have �̄� < 𝑝−1(�̄�), because then �̃� = 𝑝−1(�̄�) will be a profitable deviation for upstream.
Similarly, we cannot have �̄� > 𝑝−1(�̄�) because that would violate the participation constraint of
downstream. Therefore, we only consider (�̄� > 𝑐, �̄� = 𝑝−1(�̄�)) as a potential equilibrium.

Note that at (�̄� > 𝑐, 𝑞 = 𝑝−1(�̄�)), we have 𝜋𝑑 = 0. Now, consider a deviation �̃� = �̄� − 𝜖 such
that 𝜖 < �̄� − 𝑐. The downstream profit, in this case, is positive:

𝜋𝑑(�̃�, �̄�) = (𝑝(�̄�) − �̃�)�̄� = (�̄� − �̃�)�̄� > 0.

Thus, there is a profitable deviation, and (�̄� > 𝑐, 𝑞 = 𝑝−1(�̄�)) cannot be an equilibrium. Finally, as
an equilibrium candidate, �̃� < 𝑐 violates the participation constraint of upstream, so it cannot be
an equilibrium.
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Case III: 𝛽 = 0

We will show that if 𝛽 = 0, there is a continuum of equilibria given by (𝑤𝑒 > 𝑐, 𝑝−1(𝑤𝑒)). The
equilibrium (𝑤𝑒 , 𝑞𝑒) should solve the following problems:

max
𝑞

𝜋𝑢(𝑤𝑒 , 𝑞) (𝑈)

max
𝑤

𝜋𝑑(𝑤, 𝑞𝑒) (𝐷)
s.t 𝜋𝑢(𝑤, 𝑞) ≥ 0 𝜋𝑑(𝑤, 𝑞) ≥ 0.

For any 𝑞, 𝐷 is maximized at 𝑤 = 𝑝(𝑞) subject to the participation constraint. Similarly for any 𝑤,
(U) is maximized at 𝑞 such that 𝑤 = 𝑝(𝑞) to make participation constraint binding. Therefore, 𝑤 is
indeterminate in this case, so any 𝑤 ≥ 𝑐 with 𝑞 = 𝑝−1(𝑤) is an equilibrium.

Monopolistic Bargaining:

When marginal revenue is constant, 𝑝(𝑞) = 𝑝, the equilibria for monopolistic bargaining for different
𝛽 values is given by 

(𝑤𝑒 = 𝑝, 𝑞𝑒 = 𝑐−1(𝑝)) if 𝛽 ∈ (0, 1)
(𝑤𝑒 = 𝑝, 𝑞𝑒 ∈ [0, 𝑐−1(𝑝)]) if 𝛽 = 0

(𝑤𝑒 ≤ 𝑝, 𝑐−1(𝑤𝑒)) if 𝛽 = 1.

We omit the proofs for these results as they follow in a very similar manner to the proof for the
cases above for the monopsonistic bargaining model.

Note that under these results for all 𝛽 ∈ [0, 1] values in both monopsonistic and monopolistic
bargaining, either the downstream profit or upstream profits are zero. This proves that no interior
equilibrium exists.

What’s left to show is that if 𝑚𝑐′(𝑞) > 0, and 𝑚𝑟′(𝑞) < 0, equilibrium exists for an interior
solution within the 𝛽 ∈ (0, 1) in both monopsonistic and monopolistic bargaining. The existence
of an equilibrium under monopsonistic and monopolistic bargaining follows from Lemmas OA-4
and OA-5, respectively. □

A.5 Proof of Lemma 1 for the Simultaneous Model

Proof. This result follows from an application of the Implicit Function Theorem. Note the first-order
condition for 𝑈 in the monopsonistic bargaining problem shown in Equation (A.3). Substituting 𝑤

from (U-FOC) into (B-FOC), we have 𝑐′(𝑞)𝑞 = (1 − 𝛽)[𝑝(𝑞) − 𝑐(𝑞)].
Put 𝐹(𝑞, 𝛽) ≡ (1 − 𝛽)[𝑝(𝑞) − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞, and observe that 𝐹(𝑞, 𝛽) = 0. As assumed in Section

2, we consider an interval (0, �̄�) such that 𝑝(𝑞) > 𝑐(𝑞) for all 𝑞 ∈ (0, �̄�). Hence,

𝜕𝐹(𝑞, 𝛽)
𝜕𝛽

= 𝑐(𝑞) − 𝑝(𝑞) < 0.
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We verify that 𝜕𝐹/𝜕𝑞 < 0. Indeed, by Assumption 1, we have

𝜕𝐹(𝑞, 𝛽)
𝜕𝑞

= (1 − 𝛽)

≤0︷           ︸︸           ︷
[𝑝′(𝑞) − 𝑐′(𝑞)] −

>0︷             ︸︸             ︷
[𝑐′′(𝑞)𝑞 + 𝑐′(𝑞)] < 0.

By the Implicit Function Theorem, we have 𝑑𝑞

𝑑𝛽 = − 𝜕𝐹/𝜕𝛽
𝜕𝐹/𝜕𝑞 < 0 which concludes the proof that 𝑑𝑞𝑚𝑠

𝑑𝛽 < 0.
Next, consider the markdown Δ𝑑(𝑞) = 1 − 𝑤/𝑚𝑟(𝑞). Differentiating with respect to 𝛽 yields:

𝑑Δ𝑑(𝑞)
𝑑𝛽

= −

𝑑𝑤

𝑑𝛽
𝑚𝑟(𝑞) − 𝑤

𝑑
(
𝑚𝑟(𝑞)

)
𝑑𝛽

(𝑚𝑟(𝑞))2 = −

𝑑𝑞

𝑑𝛽

(
𝑑𝑞

𝑑𝑤

)−1
𝑚𝑟(𝑞) − 𝑤

𝑑
(
𝑚𝑟(𝑞)

)
𝑑𝑞

𝑑𝑞

𝑑𝛽

(𝑚𝑟(𝑞))2 .

Note that 𝑚𝑟′(𝑞) < 0 by assumption. We already showed that 𝑑𝑞/𝑑𝛽 < 0 and 𝑑𝑞/𝑑𝑤 > 0 holds
from (U-FOC). Therefore, 𝑑Δ𝑑(𝑞)/𝑑𝛽 > 0 and markdown is increasing with 𝛽. □

A.6 Proof of Lemma 2 for the Simultaneous Model

Proof. This result follows from an application of the Implicit Function Theorem. Substituting 𝑤

from (D-FOC) into (B-FOC), we have 𝑝′(𝑞)𝑞 = 𝛽[𝑐(𝑞) − 𝑝(𝑞)].
Put 𝐹(𝑞, 𝛽) ≡ 𝑝′(𝑞)𝑞 − 𝛽[𝑐(𝑞) − 𝑝(𝑞)], and observe that 𝐹(𝑞, 𝛽) = 0. As assumed in Section 2.1,

we consider an interval (0, �̄�) such that 𝑝(𝑞) > 𝑐(𝑞) for all 𝑞 ∈ (0, �̄�). Hence,

𝜕𝐹(𝑞, 𝛽)
𝜕𝛽

= 𝑝(𝑞) − 𝑐(𝑞) > 0.

We next verify that 𝜕𝐹/𝜕𝑞 < 0. Indeed, by Assumption 2, we have

𝜕𝐹(𝑞, 𝛽)
𝜕𝑞

=

<0︷           ︸︸           ︷
𝑝′′(𝑞)𝑞 + 𝑝′(𝑞) +𝛽

≤0︷           ︸︸           ︷
[𝑝′(𝑞) − 𝑐′(𝑞)] < 0.

By the Implicit Function Theorem, we have 𝑑𝑞

𝑑𝛽 = − 𝜕𝐹/𝜕𝛽
𝜕𝐹/𝜕𝑞 > 0 which concludes the proof that

𝑑𝑞𝑚𝑝/𝑑𝛽 > 0. Next, consider upstream markup defined as 𝜇𝑢(𝑞) = 𝑤/𝑚𝑐(𝑞) − 1. Differentiating
with respect to 𝛽 yields:

𝑑𝜇𝑢(𝑞)
𝑑𝛽

=

𝑑𝑤

𝑑𝛽
𝑚𝑐(𝑞) − 𝑤

𝑑
(
𝑚𝑐(𝑞)

)
𝑑𝛽

(𝑚𝑐(𝑞))2 = −

𝑑𝑞

𝑑𝛽

(
𝑑𝑞

𝑑𝑤

)−1
𝑚𝑐(𝑞) − 𝑤

𝑑
(
𝑚𝑐(𝑞)

)
𝑑𝑞

𝑑𝑞

𝑑𝛽

(𝑚𝑐(𝑞))2

𝑚𝑐′(𝑞) > 0 by assumption. We already showed that 𝑑𝑞/𝑑𝛽 > 0 and 𝑑𝑞/𝑑𝑤 < 0 by (D-FOC).
Therefore, 𝑑𝜇𝑢(𝑞)/𝑑𝛽 < 0, and markup decreases with 𝛽. □
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A.7 Proof of Proposition 2 for the Simultaneous Model

Proof. First note that joint-profit maximizing quantity 𝑞∗ satisfies (J-FOC)

𝑝(𝑞∗) − 𝑐(𝑞∗) = −𝑞∗[𝑝′(𝑞∗) − 𝑐′(𝑞∗)], (OA.2)

which is equivalent to 𝑚𝑟(𝑞∗) = 𝑚𝑐(𝑞∗). Note that 𝑞∗ is unique by Lemma OA-10. Any 𝛽∗ that gives
𝑞∗ should satisfy the FOC of monopsonistic bargaining given in (MS-Q-FOC).

𝑝′(𝑞∗)𝑞∗ = 𝛽∗[𝑝(𝑞∗) − 𝑐(𝑞∗)]. (OA.3)

Substituting Equation (OA.2) into Equation (OA.3), we obtain:

𝑝′(𝑞∗) = −𝛽[𝑝′(𝑞∗) − 𝑐′(𝑞∗)] =⇒ 𝛽∗ = − 𝑝′(𝑞∗)
𝑝′(𝑞∗) − 𝑐′(𝑞∗) , (OA.4)

which shows the desired result. This also shows the uniqueness of 𝛽∗ because 𝑞∗ is unique by Lemma
OA-10. For the monopolistic bargaining, the proof is equivalent, which proceeds by substituting
Equation (OA.2) into the following FOC of the monopolistic bargaining in (MP-Q-FOC)

𝑐′(𝑞∗)𝑞∗ = (1 − 𝛽)[𝑝(𝑞∗) − 𝑐(𝑞∗)],

which gives the expression in Equation (OA.4). □

B Proofs for Results Under the Sequential Model
This section provides first and second-order conditions of monopolistic and monopsonistic bar-
gaining under sequential timing assumptions and provides the relevant proofs in Section 3.

B.1 First-Order Conditions

Under the sequential bargaining models, the maximization problems are given by:



max
𝑞𝑑

𝑝(𝑞𝑑) 𝑞𝑑 − 𝑤 𝑞𝑑 (Downstream’s problem)

max
𝑞𝑢

𝑤 𝑞𝑢 − 𝑐(𝑞𝑢) 𝑞𝑢 (Upstream’s problem)

max
𝑤

[(
𝑝
(
𝑞𝑑(𝑤)

)
𝑞𝑑(𝑤) − 𝑤 𝑞𝑑(𝑤)

)𝛽 (
𝑤 𝑞𝑑(𝑤) − 𝑐

(
𝑞𝑑(𝑤)

)
𝑞𝑑(𝑤)

)1−𝛽]
(MP bargaining problem)

max
𝑤

[(
𝑝
(
𝑞𝑢(𝑤)

)
𝑞𝑢(𝑤) − 𝑤 𝑞𝑢(𝑤)

)𝛽 (
𝑤 𝑞𝑢(𝑤) − 𝑐

(
𝑞𝑢(𝑤)

)
𝑞𝑢(𝑤)

)1−𝛽]
(MS bargaining problem)
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The corresponding first-order conditions, shown in Section B.3, are45:

𝑤 = 𝑝′(𝑞)𝑞 + 𝑝(𝑞) (D-FOC)

𝑤 = 𝑐′(𝑞)𝑞 + 𝑐(𝑞) (U-FOC)

𝛽

(−𝑞 + (𝑝′(𝑞)𝑞 + [𝑝(𝑞) − 𝑤]) (𝑑𝑞𝑑/𝑑𝑤)
[𝑝(𝑞) − 𝑤] · 𝑞

)
+ (1 − 𝛽)

(
𝑞 + ([𝑤 − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞) (𝑑𝑞𝑑/𝑑𝑤)

[𝑤 − 𝑐(𝑞)] · 𝑞

)
= 0 (D-B-FOC)

𝛽

(−𝑞 + (𝑝′(𝑞)𝑞 + [𝑝(𝑞) − 𝑤]) (𝑑𝑞𝑢/𝑑𝑤)
[𝑝(𝑞) − 𝑤] · 𝑞

)
+ (1 − 𝛽)

(
𝑞 + ([𝑤 − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞) (𝑑𝑞𝑢/𝑑𝑤)

[𝑤 − 𝑐(𝑞)] · 𝑞

)
= 0 (U-B-FOC)

Equilibrium quantities are given by:

𝛽

(
1

𝑝′(𝑞)

)
+ (1 − 𝛽)

©«
𝑞 + (𝑝(𝑞) − 𝑐(𝑞) + 𝑝′(𝑞)𝑞 − 𝑐′(𝑞)𝑞) · 1

2𝑝′(𝑞) + 𝑝′′(𝑞)𝑞
[𝑝(𝑞) − 𝑐(𝑞) + 𝑝′(𝑞)𝑞]

ª®®®¬ = 0 (MP-Q-FOC)

(1 − 𝛽)
(

1
𝑐′(𝑞)

)
+ 𝛽

©«
−𝑞 + ([𝑝(𝑞) − 𝑐(𝑞)] + [𝑝′(𝑞)𝑞 − 𝑐′(𝑞)𝑞]) 1

2𝑐′(𝑞) + 𝑐′′(𝑞)𝑞
[𝑝(𝑞) − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞

ª®®®¬ = 0 (MS-Q-FOC)

B.2 Second-Order Conditions

The second-order condition of monopsonistic bargaining under sequential timing is given by:

𝛽

{
1

𝑞𝐷(𝑞)

[
𝑁′(𝑞)𝑇(𝑞) − 𝑁(𝑞)𝑇′(𝑞)

𝑇(𝑞)3 − 1
𝑇(𝑞)

]
−

[
𝑁(𝑞) − 𝑞𝑇(𝑞)
𝑞𝐷(𝑞)𝑇(𝑞)

]2
}
+ (1 − 𝛽)

{
1

𝑇(𝑞)𝑞2𝑐′(𝑞) −
1

𝑞2𝑐′(𝑞)2

}
< 0.

where

𝐷(𝑞) ≡ 𝑝(𝑞) − 𝑐(𝑞) − 𝑞𝑐′(𝑞), 𝑁(𝑞) ≡ 𝑝(𝑞) − 𝑐(𝑞) + 𝑞[𝑝′(𝑞) − 𝑐′(𝑞)], 𝑇(𝑞) ≡ 2𝑐′(𝑞) + 𝑞𝑐′′(𝑞).

The second-order condition of the monopolistic bargaining under sequential timing is given by:

(1 − 𝛽)
{

1
𝑞�̃�(𝑞)

[
�̃�′(𝑞)�̃�(𝑞) − �̃�(𝑞)�̃�′(𝑞)

�̃�(𝑞)3
+ 1
�̃�(𝑞)

]
−

[
�̃�(𝑞) − 𝑞�̃�(𝑞)
𝑞�̃�(𝑞)�̃�(𝑞)

]2}
+ 𝛽

{
1

�̃�(𝑞)𝑞2𝑝′(𝑞)
− 1

𝑞2𝑝′(𝑞)2

}
< 0.

where

�̃�(𝑞) ≡ 𝑝(𝑞) + 𝑞𝑝′(𝑞) − 𝑐(𝑞), �̃�(𝑞) ≡ 𝑝(𝑞) − 𝑐(𝑞) + 𝑞[𝑝′(𝑞) − 𝑐′(𝑞)], �̃�(𝑞) ≡ 2𝑝′(𝑞) + 𝑞𝑝′′(𝑞).

45We use 𝑞 instead of 𝑞𝑢 and 𝑞𝑑 whenever there is no ambiguity to simplify the notation.
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B.3 Derivation of FOCs Under Sequential Bargaining

B.3.1 U-B-FOC

Proof. We differentiate the logarithm of the objective with respect to 𝑤:

𝛽

(
1

[𝑝(𝑞) − 𝑤] 𝑞 · 𝑑

𝑑𝑤
([𝑝(𝑞) − 𝑤] 𝑞)

)
+ (1 − 𝛽)

(
1

[𝑤 − 𝑐(𝑞)] 𝑞 · 𝑑

𝑑𝑤
([𝑤 − 𝑐(𝑞)] 𝑞)

)
= 0.

Note the following intermediate derivatives:
Derivative of [𝑝(𝑞) − 𝑤] 𝑞:

𝑑

𝑑𝑤
([𝑝(𝑞) − 𝑤] 𝑞) =

(
𝑑

𝑑𝑤
[𝑝(𝑞) − 𝑤]

)
𝑞 + [𝑝(𝑞) − 𝑤] 𝑑𝑞

𝑑𝑤
= −𝑞 + (𝑝′(𝑞)𝑞 + [𝑝(𝑞) − 𝑤])

𝑑𝑞

𝑑𝑤

Derivative of [𝑤 − 𝑐(𝑞)] 𝑞:

𝑑

𝑑𝑤
([𝑤 − 𝑐(𝑞)] 𝑞) =

(
𝑑

𝑑𝑤
[𝑤 − 𝑐(𝑞)]

)
𝑞 + [𝑤 − 𝑐(𝑞)]

𝑑𝑞

𝑑𝑤
= 𝑞 + ([𝑤 − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞)

𝑑𝑞

𝑑𝑤

Differentiating both sides of U-FOC, 𝑤 = 𝑐(𝑞) + 𝑐′(𝑞) 𝑞 with respect to 𝑤, we find

𝑑𝑞

𝑑𝑤
=

1
2 𝑐′(𝑞) + 𝑐′′(𝑞) 𝑞 .

Substituting the expressions above into the FOC yields:

𝛽
©«
−𝑞 + (𝑝′(𝑞)𝑞 + [𝑝(𝑞) − 𝑤])

𝑑𝑞

𝑑𝑤
[𝑝(𝑞) − 𝑤] 𝑞

ª®®¬ + (1 − 𝛽)
©«
𝑞 + ([𝑤 − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞)

𝑑𝑞

𝑑𝑤
[𝑤 − 𝑐(𝑞)] 𝑞

ª®®¬ = 0,

and plugging in
𝑑𝑞

𝑑𝑤
:

𝛽
©«
−𝑞 + (𝑝′(𝑞)𝑞 + [𝑝(𝑞) − 𝑤]) 1

2𝑐′(𝑞) + 𝑐′′(𝑞)𝑞
[𝑝(𝑞) − 𝑤] 𝑞

ª®®®¬ + (1 − 𝛽)
©«
𝑞 + ([𝑤 − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞) 1

2𝑐′(𝑞) + 𝑐′′(𝑞)𝑞
[𝑤 − 𝑐(𝑞)] 𝑞

ª®®®¬ = 0.

From U-FOC, substitute 𝑤 = 𝑐(𝑞) + 𝑐′(𝑞)𝑞 and simplify to obtain:

𝛽
©«
−𝑞 + ([𝑝(𝑞) − 𝑐(𝑞)] + [𝑝′(𝑞)𝑞 − 𝑐′(𝑞)𝑞]) 1

2𝑐′(𝑞) + 𝑐′′(𝑞)𝑞
[𝑝(𝑞) − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞

ª®®®¬ + (1 − 𝛽)
(

1
𝑞𝑐′(𝑞)

)
= 0.

□
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B.3.2 D-B-FOC

Proof. Calculate 𝑑𝑞

𝑑𝑤
using 𝑤 = 𝑝(𝑞) + 𝑝′(𝑞)𝑞:

𝑑𝑞

𝑑𝑤
=

1
2𝑝′(𝑞) + 𝑝′′(𝑞)𝑞 .

Substitute 𝑑𝑞

𝑑𝑤
and 𝑤 = 𝑝(𝑞) + 𝑝′(𝑞)𝑞 into the FOC:

𝛽

(−𝑞 + (𝑝′(𝑞)𝑞 + [𝑝(𝑞) − 𝑤]) · 1
2𝑝′(𝑞)+𝑝′′(𝑞)𝑞

[𝑝(𝑞) − 𝑤] · 𝑞

)
+ (1 − 𝛽)

(
𝑞 + ([𝑤 − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞) · 1

2𝑝′(𝑞)+𝑝′′(𝑞)𝑞

[𝑤 − 𝑐(𝑞)] · 𝑞

)
= 0.

From (D-FOC), substitute 𝑤 = 𝑝(𝑞) + 𝑝′(𝑞)𝑞 and simplify to obtain:

𝛽

(
1

𝑞𝑝′(𝑞)

)
+ (1 − 𝛽)

©«
𝑞 + (𝑝(𝑞) − 𝑐(𝑞) + 𝑝′(𝑞)𝑞 − 𝑐′(𝑞)𝑞) · 1

2𝑝′(𝑞) + 𝑝′′(𝑞)𝑞
[𝑝(𝑞) − 𝑐(𝑞) + 𝑝′(𝑞)𝑞]

ª®®®¬ = 0.

□

B.4 Proof of Proposition 1 for the Sequential Model

Proof. We will first show part (i) and part (ii). Since second-order conditions do not hold when
𝑚𝑟′(𝑞) = 0 and 𝑚𝑐′(𝑞) = 0, we cannot use first-order conditions to find an equilibrium. Therefore,
we will directly work with the maximization programs under each bargaining model. We split
each problem into multiple cases.

Monopsonistic Bargaining:

The equilibrium (𝑤𝑒 , 𝑞𝑒)maximizes the objective functions in the monopsonistic bargaining model:
max

𝑞
𝜋𝑢(𝑤𝑒 , 𝑞) (𝑈)

max
𝑤

𝜋𝑏(𝑤, 𝑞𝑒 , 𝛽) (𝐵)
s.t 𝜋𝑢(𝑤, 𝑞) ≥ 0 𝜋𝑑(𝑤, 𝑞) ≥ 0.

The subgame-perfect equilibrium (𝑤∗ , 𝑞∗(𝑤∗)) is determined by backward induction. Specifically,
for a given 𝑤, in the second stage, the upstream firm solves (U), yielding the best-response function
𝑞∗(𝑤). In the first stage, anticipating 𝑞∗(𝑤), the parties solve (B). Therefore, for any 𝛽, (𝑤∗ , 𝑞∗(𝑤∗)) is
a subgame-perfect equilibrium if there is no other 𝑤 such that 𝜋𝑏(𝑤, 𝑞∗(𝑤), 𝛽) > 𝜋𝑏(𝑤∗ , 𝑞∗(𝑤∗), 𝛽),
and 𝑞∗(𝑤) is indeed the maximizer of (U). We analyze equilibrium under different 𝛽 values.
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Case I: 𝛽 ∈ (0, 1)

If the marginal cost is constant, the equilibria for 𝛽 ∈ (0, 1) in sequential monopsonistic bargaining
are 𝑤𝑒 > 𝑐 and 𝑞𝑒(𝑤):

𝑞∗(𝑤) =


0 𝑤 < 𝑐

𝑝−1(𝑤) 𝑐 < 𝑤

[0, 𝑝−1(𝑤)] 𝑐 = 𝑤,

where 𝑞𝑒(𝑤) is the trivial reaction function of upstream when marginal cost is constant. Now, we
must show that any 𝑤 such that 𝑤 ≥ 𝑐 is an equilibrium. This follows because 𝜋𝑏 = 0 for any value
of 𝑤 since we have that 𝜋𝑢 = 0 and 𝜋𝑑 = 0 when 𝑤 = 𝑐 and 𝑤 > 𝑐, respectively. Therefore, there is
no profitable deviation.

Case II: 𝛽 = 1

If marginal cost is constant, there are two equilibria for 𝛽 = 1 in sequential monopsonistic bargain-
ing:

𝑞∗1(𝑤) =


0, 𝑤 < 𝑐,

𝑝−1(𝑤), 𝑐 < 𝑤,

(0, 𝑝−1(𝑤)), 𝑐 = 𝑤.

𝑤𝑒
1 = 𝑐 and 𝑞∗2(𝑤) =


0, 𝑤 < 𝑐,

𝑝−1(𝑤), 𝑐 < 𝑤,

𝑝−1(𝑤), 𝑐 = 𝑤.

𝑤𝑒
2 ≥ 𝑐.

(i) Observe that in the first equilibrium𝜋𝑑(𝑞𝑒1 , 𝑤
𝑒
1) > 0. This is an equilibrium because any deviation

from 𝑤𝑒
1 = 𝑐 to �̃� > 𝑐 gives the downstream zero profit. Moreover, upstream profit is zero at 𝑤 = 𝑐

for any value of 𝑞. Therefore, there is no profitable deviation for the upstream.
(ii) At 𝑞∗2(𝑤) the downstream profit is always zero so any 𝑤 is an equilibrium.

Case III: 𝛽 = 0

If marginal cost is constant for 𝛽 = 0, the equilibrium is given by:

𝑞∗1(𝑤) =


0, 𝑤 < 𝑐,

𝑝−1(𝑤), 𝑐 < 𝑤,

(0, 𝑝−1(𝑤)), 𝑐 = 𝑤.

𝑤𝑒
1 = argmax𝑤 (𝑤 − 𝑐)𝑝−1(𝑤).

When 𝑤 = 𝑐, upstream profit is zero, which cannot be an equilibrium since 𝑤 > 𝑐 leads to positive
profit for the upstream. For 𝑤 > 𝑐, the best response in the second stage is given by 𝑝−1(𝑤), which
leads to the profit function (𝑤 − 𝑐)𝑝−1(𝑤). The equilibrium 𝑤 maximizes this profit function.
Monopolistic Bargaining:

Since this proof closely follows the proofs of monopsonistic bargaining, they are omitted. We
just list the equilibria for different values of 𝛽 as follows:
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Case I: 𝛽 ∈ (0, 1)

𝑞∗(𝑤) =


0 𝑝 < 𝑤

𝑐−1(𝑤) 𝑝 > 𝑤

[0, 𝑐−1(𝑤)] 𝑝 = 𝑤

𝑤𝑒 < 𝑝.

Case II: 𝛽 = 1

𝑞∗1(𝑤) =


0 𝑝 < 𝑤

𝑐−1(𝑤) 𝑝 > 𝑤

(0, 𝑐−1(𝑤)) 𝑝 = 𝑤

𝑤𝑒
1 = 𝑝, and 𝑞∗2(𝑤) =


0 𝑝 < 𝑤

𝑐−1(𝑤) 𝑝 > 𝑤

𝑐−1(𝑤) 𝑝 = 𝑤

𝑤𝑒
2 ≤ 𝑝.

Case III: 𝛽 = 0

𝑞∗1(𝑤) =


0 𝑝 < 𝑤

𝑐−1(𝑤) 𝑝 > 𝑤

(0, 𝑐−1(𝑤)) 𝑝 = 𝑤

𝑤𝑒
1 = argmax𝑤 (𝑝 − 𝑤)𝑐−1(𝑤).

Note that for all 𝛽 values in both monopsonistic and monopolistic bargaining, either the downstream
profit or upstream profits are zero. This proves that no interior equilibrium exists.

What’s left to show is part (iii). That is, when 𝑚𝑐′(𝑞) > 0, and 𝑚𝑟′(𝑞) < 0, equilibrium exists
for an interior solution within the 𝛽 ranges specified in the proposition in both monopsonistic and
monopolistic bargaining. This result follows from Lemma OA-8. □

B.5 Proof of Lemma 1 for the Sequential Model

Proof. By the Implicit Function Theorem, we have 𝑑𝑤/𝑑𝛽 = −(𝜕 𝑓 /𝜕𝛽)/(𝜕 𝑓 /𝜕𝑤) where

𝑓 (𝛽, 𝑤) = 𝛽

(−𝑞 + (𝑝′(𝑞)𝑞 + [𝑝(𝑞) − 𝑤]) (𝑑𝑞𝑢/𝑑𝑤)
[𝑝(𝑞) − 𝑤] · 𝑞

)
+ (1 − 𝛽)

(
𝑞 + ([𝑤 − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞) (𝑑𝑞𝑢/𝑑𝑤)

[𝑤 − 𝑐(𝑞)] · 𝑞

)
= 0

Let 𝑓 (𝛽, 𝑤) = 𝛽𝐴+ (1− 𝛽)𝐵 so (𝜕 𝑓 /𝜕𝛽) = 𝐴− 𝐵. Substituting 𝑐(𝑞) −𝑤 = −𝑐′(𝑞)𝑞, 𝐵 simplifies to 𝐵 =

1/(𝑐′(𝑞)𝑞) > 0. Since 𝛽𝐴+(1−𝛽)𝐵 = 0, 𝐴 < 0, which implies that (𝜕 𝑓 /𝜕𝛽) = 𝐴−𝐵 < 0. (𝜕 𝑓 /𝜕𝑤) < 0
by the second-order conditions. Therefore, 𝑑𝑤/𝑑𝛽 < 0. Since 𝑑𝑞/𝑑𝛽 = (𝑑𝑞/𝑑𝑤)(𝑑𝑤/𝑑𝛽) and
(𝑑𝑞/𝑑𝑤) > 0 in the monopsonistic bargaining, this implies that 𝑑𝑞/𝑑𝛽 < 0.

The proof of 𝑑Δ𝑑/𝑑𝛽 > 0 is identical to the proof of Lemma 1 for the simultaneous model and
is therefore omitted. □
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B.6 Proof of Lemma 2 for the Sequential Model

Proof. By the Implicit Function Theorem, we have 𝑑𝑤/𝑑𝛽 = −(𝜕 𝑓 /𝜕𝛽)/(𝜕 𝑓 /𝜕𝑤) where

𝑓 (𝛽, 𝑤) = 𝛽

(−𝑞 + (𝑝′(𝑞)𝑞 + [𝑝(𝑞) − 𝑤]) (𝑑𝑞𝑑/𝑑𝑤)
[𝑝(𝑞) − 𝑤] · 𝑞

)
+ (1 − 𝛽)

(
𝑞 + ([𝑤 − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞) (𝑑𝑞𝑑/𝑑𝑤)

[𝑤 − 𝑐(𝑞)] · 𝑞

)
= 0

Let 𝑓 (𝛽, 𝑤) = 𝛽𝐴+(1− 𝛽)𝐵 so (𝜕 𝑓 /𝜕𝛽) = 𝐴−𝐵. Substituting 𝑝(𝑞)−𝑤 = −𝑝′(𝑞)𝑞, 𝐴 simplifies to 𝐴 =

1/(𝑝′(𝑞)𝑞) < 0. Since 𝛽𝐴+(1−𝛽)𝐵 = 0, 𝐵 > 0, which implies that (𝜕 𝑓 /𝜕𝛽) = 𝐴−𝐵 < 0. (𝜕 𝑓 /𝜕𝑤) < 0
by the second-order conditions. Therefore, 𝑑𝑤/𝑑𝛽 < 0. Since 𝑑𝑞/𝑑𝛽 = (𝑑𝑞/𝑑𝑤)(𝑑𝑤/𝑑𝛽) and
(𝑑𝑞/𝑑𝑤) < 0 in the monopolistic bargaining, this implies that 𝑑𝑞/𝑑𝛽 > 0.

The proof of 𝑑𝜇𝑢/𝑑𝛽 > 0 is identical to the proof of Lemma 2 for the simultaneous model and
is therefore omitted. □

B.7 Proof of Proposition 2 for the Sequential Model

Proof. Any 𝛽∗ that gives the 𝑞∗ in the monopsonistic bargaining model satisfies

(1 − 𝛽∗)
(

1
𝑐′(𝑞∗)

)
+ 𝛽∗

(−𝑞∗ + ([𝑝(𝑞∗) − 𝑐(𝑞∗)] + [𝑝′(𝑞∗)𝑞∗ − 𝑐′(𝑞∗)𝑞∗]) 1
2𝑐′(𝑞∗)+𝑐′′(𝑞∗)𝑞∗

[𝑝(𝑞∗) − 𝑐(𝑞∗)] − 𝑐′(𝑞∗)𝑞∗

)
= 0.

Substituting (J-FOC) 𝑝(𝑞∗) − 𝑐(𝑞∗) = −𝑞∗[𝑝′(𝑞∗) − 𝑐′(𝑞∗)] in this expression, we obtain

𝛽

𝑝′(𝑞∗) +
1 − 𝛽

𝑐′(𝑞∗) = 0.

which gives the desired result: 𝛽∗ =
−𝑝′(𝑞∗)

𝑐′(𝑞∗) − 𝑝′(𝑞∗) .

For monopolistic conduct, the proof proceeds similarly. Substituting (J-FOC) into the following
monopsony FOC,

𝛽∗
(

1
𝑝′(𝑞∗)

)
+ (1 − 𝛽∗)

©«
𝑞∗ + (𝑝(𝑞∗) − 𝑐(𝑞∗) + 𝑝′(𝑞∗)𝑞∗ − 𝑐′(𝑞∗)𝑞∗) · 1

2𝑝′(𝑞∗) + 𝑝′′(𝑞∗)𝑞∗
[𝑝(𝑞∗) − 𝑐(𝑞∗) + 𝑝′(𝑞∗)𝑞∗]

ª®®®¬ = 0,

yields 𝛽∗ =
−𝑝′(𝑞∗)

𝑐′(𝑞∗) − 𝑝′(𝑞∗) . In both models, 𝛽∗ is unique because 𝑞∗ is unique by Lemma OA-10. □

B.8 Analysis of Second Order Condition under Sequential Timing

In this section, we will analyze the second-order conditions given in Section B.2. Since the second-
order conditions are complex, there are no simple primitive conditions that guarantee that they
hold. However, we develop two sufficient conditions under which the second order conditions
hold separately under our conduct selection criteria given in Section 4 and also globally.
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Lemma OA-1. The second-order conditions for the sequential monopsonistic bargaining model hold if
𝑚𝑐′′(𝑞) ≥ 0 and Δ𝑑 ≥ 0. The second-order conditions for the sequential monopolistic bargaining hold if
𝑚𝑟′′(𝑞) ≤ 0 and 𝜇𝑢 ≥ 0.

The second-order conditions of the sequential monopsonistic bargaining model are given by:

𝛽

{
1

𝑞𝐷(𝑞)︸ ︷︷ ︸
(+)

[ (−)︷      ︸︸      ︷
𝑁′(𝑞)𝑇(𝑞) −𝑁(𝑞)

(+)︷︸︸︷
𝑇′(𝑞)

𝑇(𝑞)3︸︷︷︸
(+)

− 1
𝑇(𝑞)︸︷︷︸
(+)

]
−

[
𝑁(𝑞) − 𝑞𝑇(𝑞)
𝑞𝐷(𝑞)𝑇(𝑞)

]2

︸               ︷︷               ︸
(+)

}
+ (1 − 𝛽) 1

𝑞2𝑐′(𝑞)︸  ︷︷  ︸
(+)

{
1

𝑇(𝑞) −
1

𝑐′(𝑞)

}
︸             ︷︷             ︸

(−)

where

𝐷(𝑞) = 𝑝(𝑞) − 𝑐(𝑞) − 𝑞𝑐′(𝑞) ≥ 0, 𝐷′(𝑞) = 𝑝′(𝑞) − 2𝑐′(𝑞) − 𝑞𝑐′′(𝑞) < 0

𝑁(𝑞) = 𝑝(𝑞) + 𝑞𝑝′(𝑞) − [𝑐(𝑞) + 𝑞𝑐′(𝑞)], 𝑁′(𝑞) = [2𝑝′(𝑞) + 𝑞𝑝′′(𝑞)] − [2𝑐′(𝑞) + 𝑞𝑐′′(𝑞)] < 0

𝑇(𝑞) = 2𝑐′(𝑞) + 𝑞𝑐′′(𝑞) > 0, 𝑇′(𝑞) = 3𝑐′′(𝑞) + 𝑞𝑐′′′(𝑞)

Therefore, we need to show that 𝑁(𝑞) ≥ 0. Note that 𝑁(𝑞) = 𝑚𝑟(𝑞) − 𝑚𝑐(𝑞). Since under
monopsonistic bargaining 𝑚𝑐(𝑞) = 𝑤, 𝑚𝑟(𝑞) ≥ 𝑤 implies that 𝑁(𝑞) ≥ 0.
The second-order conditions of the sequential monopolistic bargaining model are given by:

𝛽

{
1

𝑞�̃�(𝑞)︸ ︷︷ ︸
(+)

[ (+)︷      ︸︸      ︷
�̃�′(𝑞)�̃�(𝑞) −�̃�(𝑞)

(−)︷︸︸︷
�̃�′(𝑞)

�̃�(𝑞)3︸︷︷︸
(−)

+ 1
�̃�(𝑞)︸︷︷︸
(−)

]
−

[
�̃�(𝑞) − 𝑞�̃�(𝑞)
𝑞�̃�(𝑞)�̃�(𝑞)

]2

︸               ︷︷               ︸
(+)

}
+ (1 − 𝛽) 1

𝑞2𝑝′(𝑞)︸  ︷︷  ︸
(−)

{
1

�̃�(𝑞)
− 1

𝑝′(𝑞)

}
︸             ︷︷             ︸

(+)

< 0.

where

�̃�(𝑞) ≡ 𝑝(𝑞) + 𝑞𝑝′(𝑞) − 𝑐(𝑞) ≥ 0 �̃�′(𝑞) = −𝑐′(𝑞) + 2𝑝′(𝑞) + 𝑞𝑝′′(𝑞) < 0

�̃�(𝑞) ≡ 𝑝(𝑞) + 𝑞𝑝′(𝑞) − [𝑐(𝑞) + 𝑞𝑐′(𝑞)] �̃�′(𝑞) = [2𝑝′(𝑞) + 𝑞𝑝′′(𝑞)] − [2𝑐′(𝑞) + 𝑞𝑐′′(𝑞)] < 0

�̃�(𝑞) ≡ 2𝑝′(𝑞) + 𝑞𝑝′′(𝑞) < 0 �̃�′(𝑞) = 3𝑝′′(𝑞) + 𝑞𝑝′′′(𝑞) < 0

Therefore, we need to show that �̃�(𝑞) ≥ 0. Note that 𝑁(𝑞) = 𝑚𝑟(𝑞) − 𝑚𝑐(𝑞). Since under
monopolistic bargaining 𝑚𝑟(𝑞) = 𝑤, and positive markup implies that 𝑚𝑐(𝑞) ≤ 𝑤, it follows that
𝑁(𝑞) ≥ 0.

Lemma OA-2. The second-order conditions of the sequential monopsonistic bargaining model are satisfied
for all 𝛽 if (1/𝑚𝑐(𝑞))′′ ≥ 0 and 𝑚𝑐′′(𝑞) ≥ 0.46

46Even though this condition seems strong, we note that this is a sufficient condition. This condition is satisfied
by some common functional form classes, such as exponential, polynomials, and linear functions.
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Proof. As shown in the proof of Lemma OA-1, since all other terms are negative by assumption, we
will focus on the following term:

1
𝑞𝐷(𝑞)

[
𝑁′(𝑞)𝑇(𝑞) − 𝑁(𝑞)𝑇′(𝑞)

𝑇(𝑞)3 − 1
𝑇(𝑞)

]
=

1
𝑞𝐷(𝑞)𝑇(𝑞)

[
𝑁′(𝑞)𝑇(𝑞) − 𝑁(𝑞)𝑇′(𝑞)

𝑇(𝑞)2 − 1

]
Note that 𝑁(𝑞) = 𝑚𝑟(𝑞) − 𝑚𝑐(𝑞) and 𝑇(𝑞) = 𝑚𝑐′(𝑞). Substituting these:[

𝑁′(𝑞)𝑇(𝑞) − 𝑁(𝑞)𝑇′(𝑞)
𝑇(𝑞)2 − 1

]
=

[
(𝑚𝑟′(𝑞) − 𝑚𝑐′(𝑞))𝑚𝑐′(𝑞) − (𝑚𝑟(𝑞) − 𝑚𝑐(𝑞))𝑚𝑐′′(𝑞)

𝑚𝑐′(𝑞)2 − 1

]
=

[
𝑚𝑟′(𝑞)
𝑚𝑐′(𝑞) − 𝑚𝑟(𝑞)𝑚𝑐′′(𝑞)

𝑚𝑐′(𝑞)2 + 𝑚𝑐(𝑞)𝑚𝑐′′(𝑞)
𝑚𝑐′(𝑞)2 − 2

]
We need to show that this expression is negative because 𝐷(𝑞) > 0 and 𝑇(𝑞) > 0. The first term is
negative since 𝑚𝑟′(𝑞) < 0 and 𝑚𝑐(𝑞) > 0. The second term is also negative because 𝑚𝑟(𝑞) > 0 and
𝑚𝑐′′(𝑞) > 0. Therefore, in order for this term to be negative, we need that 𝑚𝑐(𝑞)𝑚𝑐′′(𝑞)/𝑚𝑐′(𝑞)2 ≤ 2.
Note that this condition is equivalent to (1/𝑚𝑐(𝑞))′′ ≥ 0, which concludes the proof. □

Lemma OA-3. The second-order conditions of the sequential monopolistic bargaining model are satisfied
for all 𝛽 if 𝑚𝑟(𝑞)𝑚𝑟′′(𝑞)/𝑚𝑟′(𝑞)2 ≥ −2 and 𝑚𝑟′′(𝑞) ≤ 0.

Proof. As shown in the proof of Lemma OA-1, since all other terms are negative by assumption, we
will focus on the following term in the second-order condition:

1
𝑞�̃�(𝑞)

[
�̃�′(𝑞)�̃�(𝑞) − �̃�(𝑞)�̃�′(𝑞)

�̃�(𝑞)3
+ 1
�̃�(𝑞)

]
=

1
𝑞�̃�(𝑞)�̃�(𝑞)

[
�̃�′(𝑞)�̃�(𝑞) − �̃�(𝑞)�̃�′(𝑞)

�̃�(𝑞)2
+ 1

]
Note that �̃�(𝑞) = 𝑚𝑟(𝑞) − 𝑚𝑐(𝑞) and �̃�(𝑞) = 𝑚𝑟′(𝑞). Substituting these:[

�̃�′(𝑞)�̃�(𝑞) − �̃�(𝑞)�̃�′(𝑞)
�̃�(𝑞)2

+ 1

]
=

[
(𝑚𝑟′(𝑞) − 𝑚𝑐′(𝑞))𝑚𝑟′(𝑞) − (𝑚𝑟(𝑞) − 𝑚𝑐(𝑞))𝑚𝑟′′(𝑞)

𝑚𝑟′(𝑞)2 + 1

]
=

[
− 𝑚𝑐′(𝑞)

𝑚𝑟′(𝑞) − 𝑚𝑐(𝑞)𝑚𝑟′′(𝑞)
𝑚𝑟′(𝑞)2 + 𝑚𝑟(𝑞)𝑚𝑟′′(𝑞)

𝑚𝑟′(𝑞)2 + 2

]
We need to show that this expression is positive because �̃�(𝑞) > 0 and �̃�(𝑞) < 0. The first term is
positive since 𝑚𝑟′(𝑞) < 0 and 𝑚𝑐′(𝑞) > 0. The second term is also positive because 𝑚𝑐(𝑞) > 0 and
𝑚𝑟′′(𝑞) < 0. Therefore, in order for this term to be positive, we need that 𝑚𝑟(𝑞)𝑚𝑟′′(𝑞)/𝑚𝑟′(𝑞)2 ≥
−2. □
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C Proofs of Other Results

C.1 Proof of Corollary 1

Proof. 𝜇𝑢(𝑞) = 0 follows immediately from (U-FOC) in the monopsonistic bargaining problem,
which implies that 𝑤(𝑞) = 𝑚𝑐(𝑞). Δ𝑑(𝑞) = 0 follows immediately from (D-FOC) in the monopolistic
bargaining problem, which implies that 𝑤(𝑞) = 𝑚𝑟(𝑞). □

C.2 Proof of Corollary 2

Proof. We examine changes in the absolute value of the derivative of 𝑝′(𝑞∗), |𝑝′(𝑞∗)|, and in the
derivative 𝑐′(𝑞∗), both with respect to 𝛽∗, holding all else equal. In particular, changes in |𝑝′(𝑞)| and
𝑐′(𝑞) also affect 𝑞∗ that is present in the formula of 𝛽∗. Therefore, we condition on 𝑞∗ and analyze
the changes of |𝑝′(𝑞)| and 𝑐′(𝑞) at 𝑞∗.

Given that 𝑝′(𝑞∗) ≤ 0, an increase in 𝑐′(𝑞∗) weakly increases the denominator of 𝛽∗, so 𝛽∗ is
weakly decreasing with 𝑐′(𝑞∗) (’steeper cost curve’) . Observe that 1/𝛽∗ = 1 − 𝑐′(𝑞∗)/𝑝′(𝑞∗). Since
𝑐′(𝑞∗)/𝑝′(𝑞∗) ≤ 0, 1/𝛽∗ is weakly decreasing with |𝑝′(𝑞∗)|, which implies that 𝛽∗ is weakly increasing
with |𝑝′(𝑞∗)| (’steeper demand curve’). □

C.3 Proof of Proposition 3

Proof. First, consider monopolistic conduct. As is shown in Appendices D.1.7 and D.1.3, at 𝛽 = 1
we have that 𝑤𝑚𝑝 = 𝑐(𝑞𝑚𝑝) = 𝑚𝑟(𝑞𝑚𝑝). Achieving any �̃� > 𝑞𝑚𝑝 requires a wholesale price �̃� < 𝑐(�̃�).
This leads to negative profits for the upstream firm and, hence, violates the participation constraint
for upstream.

Second, consider monopsonistic conduct. As is proven in Appendices D.1.5 and D.1.1, at
𝛽 = 0 we have that 𝑝𝑚𝑠 = 𝑚𝑐(𝑞𝑚𝑠) = 𝑤𝑚𝑠 . Achieving any �̃� > 𝑞𝑚𝑠 requires a wholesale price
�̃� < 𝑤𝑚𝑠 . This leads to negative profits downstream and, hence, violates the participation constraint
downstream. □

C.4 Proof of Proposition 4

Proof. Total welfare is maximized if prices are equal to marginal costs. Let 𝑞† be the total-welfare
maximizing output level:

𝑝(𝑞†) = 𝑚𝑐(𝑞†).

First, consider monopsonistic bargaining. As shown in Appendix D.1.2, 𝛽 = 0 results in
the condition 𝑝(𝑞) = 𝑚𝑐(𝑞). This is the first-best any planner could achieve, so total welfare is
maximized at this point. Second, consider monopolistic bargaining. At 𝛽 = 𝛽∗, 𝑚𝑟(𝑞∗) = 𝑚𝑐(𝑞∗).
Given that prices are set by downstream at a markup above marginal costs, this implies that
𝑝(𝑞) > 𝑚𝑐(𝑞) at the joint-profit-maximization level of buyer power 𝛽∗, which is lower than the
first-best total welfare maximizing quantity.
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As is proven in Appendix D.1.3, at 𝛽 = 1 we have that 𝑚𝑟(𝑞) = 𝑐(𝑞). Hence, prices are above
average costs:

𝑝(𝑞(𝛽 = 1)) = 𝑐(𝑞(𝛽 = 1)) + 𝜇(𝑞(𝛽 = 1)).

Let 𝑏(𝑞(𝛽 = 1)) = 𝑚𝑐(𝑞(𝛽 = 1)) − 𝑐(𝑞(𝛽 = 1)). It follows that there are three possibilities:
𝑏(𝑞(𝛽 = 1)) = 𝜇(𝑞(𝛽 = 1)) ⇒ 𝛽† = 1

𝑏(𝑞(𝛽 = 1)) < 𝜇(𝑞(𝛽 = 1)) ⇒ 𝛽† = 1

𝑏(𝑞(𝛽 = 1)) > 𝜇(𝑞(𝛽 = 1)) ⇒ 𝛽† ∈ (𝛽∗ , 1)

First, if 𝑏(𝑞(𝛽 = 1)) = 𝜇(𝑞(𝛽 = 1)), 𝛽 = 1 maximizes total welfare and leads to the first-best
solution 𝑝(𝑞(𝛽 = 1)) = 𝑚𝑐(𝑞(𝛽 = 1)). Second, if 𝑏(𝑞(𝛽 = 1)) < 𝜇(𝑞(𝛽 = 1)), prices are still too
high at 𝛽 = 1, as 𝑝(𝑞(𝛽 = 1)) > 𝑚𝑐(𝑞(𝛽 = 1)). However, given that 𝛽 = 1 is the highest possible
value of 𝛽, welfare is maximized at this value. Third, if 𝑏(𝑞(𝛽 = 1)) > 𝜇(𝑞(𝛽 = 1)), the price at
𝛽 = 1 is below marginal costs, meaning that there is overproduction. Given that 𝜕𝑞

𝜕𝛽 > 0 under
monopolistic conduct and 𝛽∗ leads to a total quantity lower than first-best, this implies that total
welfare is maximized at 𝛽∗ < 𝛽 < 1. □

C.5 Proof of Theorem 1

Proof. We formally define the bargaining game as follows. Let 𝜅 > 0 be a constant.

• Players: i = {U, D}

• Actions: 𝑎𝑖 = {𝐵, 𝐷𝐵} (Bargain, Don’t Bargain)

• States: 𝑠 = {𝑀𝑆, 𝑀𝑃} (Monopsonistic Conduct, Monopolistic Conduct)

• Payoffs:

𝜋𝑖(𝑎𝑖 = 𝐷𝐵, 𝑎−𝑖) = 0 ∀𝑖
𝜋𝑢(𝑎𝑢 = 𝐵, 𝑎𝑑 = 𝐵) = −𝜅 if 𝜇𝑢 < 0
𝜋𝑑(𝑎𝑢 = 𝐵, 𝑎𝑑 = 𝐵) = −𝜅 if Δ𝑑 < 0
𝜋𝑢(𝑎𝑢 = 𝐵, 𝑎𝑑 = 𝐵, 𝑠 = 𝑀𝑆) = 𝜋𝑚𝑠

𝑢 if 𝜇𝑢 ≥ 0
𝜋𝑢(𝑎𝑢 = 𝐵, 𝑎𝑑 = 𝐵, 𝑠 = 𝑀𝑃) = 𝜋

𝑚𝑝
𝑢 if 𝜇𝑢 ≥ 0

𝜋𝑑(𝑎𝑢 = 𝐵, 𝑎𝑑 = 𝐵, 𝑠 = 𝑀𝑆) = 𝜋𝑚𝑠
𝑑

if Δ𝑑 ≥ 0
𝜋𝑑(𝑎𝑢 = 𝐵, 𝑎𝑑 = 𝐵, 𝑠 = 𝑀𝑃) = 𝜋

𝑚𝑝

𝑑
if Δ𝑑 ≥ 0

Players make the actions 𝑎 in stage 0.5 of the game, bargaining takes place in stage 1, and payoffs
are formed in stage 1 (under simultaneous bargaining) or stage 2 (under sequential bargaining).
There are eight possible subgame perfect equilibria (𝑠, 𝑎𝑢 , 𝑎𝑑) that we need to examine, four for each
conduct state: (i) (𝑀𝑆, 𝐵, 𝐵), (ii) (𝑀𝑆, 𝐷𝐵, 𝐵), (iii) (𝑀𝑆, 𝐵, 𝐷𝐵), (iv) (𝑀𝑆, 𝐷𝐵, 𝐷𝐵), (v) (𝑀𝑃, 𝐵, 𝐵),
(vi) (𝑀𝑃, 𝐷𝐵, 𝐵), (vii) (𝑀𝑃, 𝐵, 𝐷𝐵), (viii) (𝑀𝑃, 𝐷𝐵, 𝐷𝐵).
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First, consider the monopsonistic bargaining model in stage 0.5 of the game. Both players
decide on whether to bargain or not by comparing their expected profits under bargaining and not
bargaining, which are identical to realized profits due to the perfect information assumption. It
follows from (U-FOC) that 𝑤 = 𝑚𝑐(𝑞), so the restriction 𝑤 ≥ 𝑚𝑐(𝑞) is satisfied at any 𝛽. At 𝛽 = 𝛽∗,
the monopsonistic bargaining model equates joint profit maximization, so 𝑚𝑐(𝑞(𝛽∗)) = 𝑚𝑟(𝑞(𝛽∗)).
Hence, 𝑤(𝛽∗) = 𝑚𝑟(𝑞(𝛽∗)), so the markdown is zero, Δ𝑑(𝛽∗) = 0.

Consider 𝛽 = 𝛽∗ − 𝜖, for 𝜖 > 0. Given Lemma OA-13, it follows that the wholesale price
markdown is negative, Δ𝑑(𝛽∗− 𝜖) < 0 in the monopsonistic bargaining model if 𝛽 < 𝛽∗. This implies
that when 𝛽 < 𝛽∗, 𝜋𝑑(𝑎𝑑 = 𝐵, 𝑠 = 𝑀𝑆) < 𝜋𝑑(𝑎𝑑 = 𝐷𝐵, 𝑠 = 𝑀𝑆). Hence, subgames (i) and (ii)
cannot be a subgame perfect equilibrium if 𝛽 < 𝛽∗: the downstream player decides not to bargain
in stage 0.5 because it expects a negative markdown. The only subgame perfect equilibria under
monopsonistic bargaining are subgames (iii) and (iv), which are observationally identical equilibria
in which no trade occurs.

Analogously, it follows that markdowns are positive for values of 𝛽 > 𝛽∗ in the monopsonistic
model, again from Lemma OA-13. Given that 𝜋𝑚𝑠

𝑑
> 0, this means that for 𝛽 > 𝛽∗, 𝜋𝑑(𝑎𝑑 = 𝐵, 𝑠 =

𝑀𝑆) > 𝜋𝑑(𝑎𝑑 = 𝐷𝐵, 𝑠 = 𝑀𝑆). Hence, subgames (ii) and (iv) are not subgame-perfect equilibria if
𝛽 > 𝛽∗. Given that 𝜋𝑚𝑠

𝑢 > 0, it follows that 𝜋𝑢(𝑎𝑢 = 𝐵, 𝑎𝑑 = 𝐵) > 𝜋𝑢(𝑎𝑢 = 𝐷𝐵, 𝑎𝑑 = 𝐵). Hence, only
subgame (i) is a subgame perfect equilibrium if 𝛽 > 𝛽∗.

Second, consider the monopolistic bargaining model, again at stage 0.5 when firms decide
whether they want to bargain or not. The restriction 𝑤 ≤ 𝑚𝑟(𝑞) is always satisfied under mo-
nopolistic conduct because (D-FOC) implies that 𝑤 = 𝑚𝑟(𝑞), so Δ𝑑 = 0. Turning to supplier
markups, consider a 𝛽 = 𝛽∗ + 𝜖, for 𝜖 > 0. Following the same logic as above, at 𝛽 = 𝛽∗, we have
𝑤(𝛽∗) = 𝑚𝑐(𝑞(𝛽∗)). Given Lemma OA-14, it follows that 𝜇𝑢(𝛽∗ + 𝜖) < 0: seller markups are negative
in the monopolistic bargaining model if 𝛽 > 𝛽∗.

This implies that if 𝛽 > 𝛽∗, 𝜋𝑢(𝑎𝑑 = 𝐵, 𝑠 = 𝑀𝑃) < 𝜋𝑢(𝑎𝑑 = 𝐷𝐵, 𝑠 = 𝑀𝑃): the upstream firm
decides not to bargain in stage 0.5 as it anticipates a negative markup. Hence, subgames (v) and
(vi) cannot be a subgame perfect equilibrium if 𝛽 > 𝛽∗. Hence, the only subgame perfect equilibria
under monopolistic bargaining are subgames (vii) and (viii), which are observationally identical
equilibria in which no trade occurs.

Again, it is straightforward to repeat the same argument to show that markups are positive
as soon as 𝛽 < 𝛽∗ in the monopolistic bargaining model 𝜇𝑢(𝛽∗ − 𝜖) > 0. Hence, if 𝛽 < 𝛽∗,
𝜋𝑢(𝑎𝑑 = 𝐵, 𝑠 = 𝑀𝑃) > 𝜋𝑢(𝑎𝑑 = 𝐷𝐵, 𝑠 = 𝑀𝑃), which means that subgames (vi) and (viii) are
both not a subgame perfect equilibrium. Given that 𝜋𝑚𝑝

𝑑
> 0 , this means that if 𝛽 < 𝛽∗, 𝜋𝑑(𝑎𝑑 =

𝐵, 𝑠 = 𝑀𝑃) > 𝜋𝑑(𝑎𝑑 = 𝐷𝐵, 𝑠 = 𝑀𝑃). Hence, subgames (vii) and (viii) cannot be a subgame perfect
equilibrium if 𝛽 < 𝛽∗. Hence, the only subgame perfect equilibrium under monopolistic bargaining
if 𝛽 < 𝛽∗ is subgame (iii), in which bargaining occurs.

To summarize, if 𝛽 > 𝛽∗, only monopsonistic conduct yields a subgame perfect equilibrium
with successful bargaining. Conversely, if 𝛽 < 𝛽∗, only monopolistic conduct yields such an equi-
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librium. Furthermore, since all lemmas and results used in the proof hold under both simultaneous
and sequential timing assumptions, the proof remains valid regardless of the bargaining timing
structure.

□

C.6 Proof of Corollary 3

Proof. This follows immediately from Theorem 1 and Lemmas 1 and 2. □

C.7 Proof of Proposition 5

Proof. First, suppose 𝑞 < 𝑞∗ and monopsonistic conduct applies. Given Lemma OA-13, this implies
Δ𝑑 < 0; the downstream markdown is negative. Second, suppose 𝑞 > 𝑞∗ and monopolistic conduct
applies. Given Lemma OA-14, this implies that 𝜇𝑢 < 0; the upstream markup is negative. □

C.8 Proof of Theorem 2

Proof. We formally define the bargaining game as follows:

• Players: i = {U, D}

• Actions: 𝑎𝑖 = {𝐿, 𝑁𝐿} (Linear pricing (set q), Nonlinear pricing (bargain over q))

• States: 𝑠 = {𝑀𝑆, 𝑀𝑃} (Monopsonistic Conduct, Monopolistic Conduct)

• Payoffs:

𝜋𝑖(𝑎𝑖 = 𝑁𝐿, 𝑠) = Π∗
𝑖 ∀𝑖

𝜋𝑢(𝑎𝑢 = 𝐿, 𝑠 = 𝑀𝑆) = Π𝑚𝑠
𝑢

𝜋𝑑(𝑎𝑢 = 𝐿, 𝑠 = 𝑀𝑆) = Π𝑚𝑠
𝑑

𝜋𝑢(𝑎𝑑 = 𝐿, 𝑠 = 𝑀𝑃) = Π
𝑚𝑝
𝑢

𝜋𝑑(𝑎𝑑 = 𝐿, 𝑠 = 𝑀𝑃) = Π𝑚𝑑
𝑑

We assume that the side that can pick 𝑞 (upstream under monopsony, downstream under monopoly)
sets the action 𝑎𝑖 : it decides whether to set 𝑞𝑖 unilaterally (in which case 𝑎𝑖 = 𝐿) or to bargain over
𝑞𝑖 (in which case 𝑎𝑖 = 𝑁𝐿). Hence, there are four possible subgame equilibria that we need to
examine, two for each conduct state: (i) 𝑠 = 𝑀𝑆, 𝑎𝑢 = 𝐿, (ii) 𝑠 = 𝑀𝑆, 𝑎𝑢 = 𝑁𝐿, (iii) 𝑠 = 𝑀𝑃, 𝑎𝑑 = 𝐿,
(iv) 𝑠 = 𝑀𝑃, 𝑎𝑑 = 𝑁𝐿.

First, consider monopsonistic conduct. Both players decide on whether to set quantities or
bargain over quantities in stage 0.5 of the game by comparing their respective expected profits.
Suppose 𝛽 < 𝛽∗. From Lemma OA-16, it follows that 𝜋𝑚𝑠

𝑢 < 𝜋∗
𝑢 . Hence, 𝑎𝑢 = 𝐿 is not a subgame

perfect equilibrium in this case, whereas 𝑎𝑑 = 𝑁𝐿 is: the game ends at stage 1 when downstream
chooses nonlinear pricing, by bargaining over both 𝑤 and 𝑞.

In contrast, if 𝛽 > 𝛽∗, Lemma OA-16 implies that 𝜋𝑚𝑠
𝑢 > 𝜋∗

𝑢 . Hence, 𝑎𝑢 = 𝑁𝐿 is not a subgame
perfect equilibrium in this case, whereas 𝑎𝑢 = 𝐿 is: the game proceeds to stage 1 in which 𝑈 and 𝐷

bargain over wholesale prices, which is followed by stage 2, in which 𝑈 sets a quantity.
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Second, consider monopolistic conduct. Suppose 𝛽 < 𝛽∗. From Lemma OA-16, it follows that
𝜋
𝑚𝑝

𝑑
> 𝜋∗

𝑑
: downstream expects that if it sets quantities in stage 1, this will result in higher profits

than under nonlinear pricing. Hence, 𝑎𝑑 = 𝑁𝐿 is not a subgame perfect equilibrium in this case,
whereas 𝑎𝑑 = 𝐿 is: firms bargain over wholesale prices in stage 1, which is followed by downstream
setting quantities in stage 2.

In contrast, if 𝛽 > 𝛽∗, Lemma OA-16 implies that 𝜋𝑚𝑝

𝑑
< 𝜋∗

𝑑
. Hence, 𝑎𝑑 = 𝐿 is not a subgame

perfect equilibrium in this case, whereas 𝑎𝑑 = 𝑁𝐿 is: the game ends at stage 1 when downstream
chooses to bargain over both output and wholesale prices.

In summary, if a linear price contrast is observed (either 𝑎𝑑 = 𝐿 or 𝑎𝑢 = 𝐿), this only happens
under monopsonistic bargaining if 𝛽 > 𝛽∗ and under monopolistic bargaining if 𝛽 < 𝛽∗ □

C.9 Proof of Proposition 6

Proof. First, note that consumer surplus is monotonically increasing in output. Proposition 5 states
that under our conduct selection criteria, output is maximized at 𝛽 = 𝛽∗. Hence, consumer surplus
is maximized at 𝛽 = 𝛽∗.

Total surplus is defined as 𝑇𝑆 =
∫ 𝑞

0 [𝑝(𝑞) − 𝑚𝑐(𝑞)]𝑑𝑞. We take the derivative of total surplus
with respect of output, which results in 𝜕𝑇𝑆

𝜕𝑞 = 𝑝(𝑞) − 𝑚𝑐(𝑞).
Let �̄� be defined as 𝑝(�̄�) = 𝑚𝑐(�̄�). �̄� > 𝑞∗ because 𝑚𝑟(𝑞∗) = 𝑚𝑐(𝑞∗), 𝑚𝑟(𝑞) < 𝑝(𝑞) for any

𝑞, and 𝑚𝑐(𝑞) is an increasing function. Therefore, the total surplus is monotonically increasing
for 𝑞 ∈ (0, 𝑞∗). This implies that it is also monotonically increasing in 𝛽 in the range 𝛽 ∈ (0, 𝛽∗)
under monopolistic bargaining because 𝑞 is monotonically increasing in 𝛽 by Lemma 1 and 𝑞𝑚𝑠(𝛽 =

𝛽∗) = 𝑞∗. This also implies that total surplus is monotonically decreasing for 𝛽 ∈ (𝛽∗ , 1) under
monopsonistic bargaining because 𝑞 is monotonically decreasing in 𝛽 in the range 𝛽 by Lemma 2
and 𝑞𝑚𝑙(𝛽 = 1) = 𝑞∗. Therefore, 𝛽∗ is the unique value that maximizes total surplus. □

D Auxiliary Lemmas and Results

D.1 Equilibrium Under Limit Cases for 𝛽

We solve each version of the model (combination of monopolistic-monopsonistic and simultaneous-
sequential) as a constrained profit-maximization model in the limiting cases of 𝛽 = 1 and 𝛽 = 0 and
compare these corner solutions to the solutions obtained from the first-order conditions stated in
the main text. These results are summarized in Table OA-2.

The most important takeaways from this appendix are that (i) the sequential monopsony has
a solution at 𝛽 = 0 using the constrained optimization problem but not using the FOCs, and (ii)
the sequential monopolistic bargaining has a solution at 𝛽 = 1 using the constrained optimization
problem, but not using the FOCs. Hence, the participation constraints 𝜋𝑑 ≥ 0 and 𝜋𝑢 ≥ 0 are only
binding in these two instances.
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D.1.1 Simultaneous Monopsony, 𝛽 = 1
max

𝑞
𝜋𝑢(𝑤, 𝑞)

max
𝑤

𝜋𝑑(𝑤, 𝑞) s.t. 𝜋𝑢(𝑤, 𝑞) ≥ 0.

The constrained profit-maximization problem yields no solution if 𝑚𝑐(𝑞) ≠ 𝑐(𝑞):

max
𝑞

𝜋𝑢(𝑤, 𝑞), max
𝑤

𝜋𝑑(𝑤, 𝑞) ⇒ 𝑤 = 𝑐(𝑞), mc(𝑞) = 𝑤.

The FOCs don’t yield a solution because they imply average cost equals marginal cost:

𝑐(𝑞) = 𝑐′(𝑞)𝑞 + 𝑐(𝑞) ⇒ 𝑤 = 𝑐(𝑞), mc(𝑞) = 𝑐(𝑞).

In this case, as 𝛽 → 1, the 𝑞 will converge to 0.

D.1.2 Simultaneous Monopsony, 𝛽 = 0
max

𝑞
𝜋𝑢(𝑤, 𝑞)

max
𝑤

𝜋𝑢(𝑤, 𝑞) s.t. 𝜋𝑑(𝑤, 𝑞) ≥ 0.

Solving the constrained profit-maximization problem implies a TIOLI offer being made by up-
stream, which results in the wholesale price being set equal to the downstream price:

max
𝑞

𝜋𝑢(𝑤, 𝑞), max
𝑤

𝜋𝑢(𝑤, 𝑞) ⇒ 𝑤 = 𝑝(𝑞), mc(𝑞) = 𝑝(𝑞).

The FOC results in the same condition:

𝑝(𝑞) = 𝑐′(𝑞)𝑞 + 𝑐(𝑞) ⇒ 𝑤 = 𝑝(𝑞), mc(𝑞) = 𝑝(𝑞).

D.1.3 Simultaneous Monopoly, 𝛽 = 1
max

𝑞
𝜋𝑑(𝑤, 𝑞)

max
𝑤

𝜋𝑑(𝑤, 𝑞) s.t. 𝜋𝑢(𝑤, 𝑞) ≥ 0.

In this scenario, the downstream makes a TIOLI offer to the upstream, which results in the wholesale
price being set equal to the upstream’s average cost:

max
𝑤,𝑞

𝜋𝑑(𝑤, 𝑞) ⇒ mr(𝑞) = 𝑐(𝑞), 𝑤 = 𝑐(𝑞).

This corner solution is identical to the solution obtained from the FOC:

𝑐(𝑞) = 𝑝′(𝑞)𝑞 + 𝑝(𝑞) ⇒ mr(𝑞) = 𝑐(𝑞), 𝑤 = 𝑐(𝑞).
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D.1.4 Simultaneous Monopoly, 𝛽 = 0
max

𝑞
𝜋𝑑(𝑤, 𝑞)

max
𝑤

𝜋𝑢(𝑤, 𝑞) s.t. 𝜋𝑢(𝑤, 𝑞) ≥ 0.

This yields no solution if 𝑚𝑟(𝑞) ≠ 𝑝(𝑞):

max
𝑞

𝜋𝑑(𝑤, 𝑞), max
𝑤

𝜋𝑢(𝑤, 𝑞) ⇒ 𝑤 = 𝑝(𝑞), mr(𝑞) = 𝑝(𝑞).

Working out the first-order conditions does not yield a solution either:

𝑝(𝑞) = 𝑝′(𝑞)𝑞 + 𝑝(𝑞) ⇒ 𝑤 = 𝑝(𝑞), mr(𝑞) = 𝑝(𝑞).

D.1.5 Sequential Monopsony, 𝛽 = 1
max

𝑞
𝜋𝑢(𝑤, 𝑞)

max
𝑤

𝜋𝑑(𝑤, 𝑞) s.t. 𝜋𝑢(𝑤, 𝑞) ≥ 0.

The solution based on constrained profit maximization is the classical monopsony outcome:

max
𝑞

𝜋𝑢(𝑤, 𝑞), max
𝑤

𝜋𝑑(𝑤, 𝑞) ⇒ 𝑤 = 𝑚𝑐(𝑞), 𝑚𝑟(𝑞) = 𝑚𝑐′(𝑞)𝑞 + 𝑚𝑐(𝑞)

The FOC results in the same condition:

𝑝(𝑞) − 𝑐(𝑞) + 𝑝′(𝑞)𝑞 − 3𝑞𝑐′(𝑞) − 𝑞2𝑐′′(𝑞) = 0 ⇒ 𝑤 = 𝑚𝑐(𝑞), 𝑚𝑟(𝑞) = 𝑚𝑐′(𝑞)𝑞 + 𝑚𝑐(𝑞).

D.1.6 Sequential Monopsony, 𝛽 = 0
max

𝑞
𝜋𝑢(𝑤, 𝑞)

max
𝑤

𝜋𝑢(𝑤, 𝑞) s.t. 𝜋𝑑(𝑤, 𝑞) ≥ 0.

The solution based on constrained profit maximization is a TIOLI offer by upstream, which results
in 𝑚𝑐(𝑞) = 𝑝(𝑞):

max
𝑞

𝜋𝑢(𝑤, 𝑞), max
𝑤

𝜋𝑢(𝑤, 𝑞) ⇒ 𝑤 = 𝑝(𝑞), 𝑚𝑐(𝑞) = 𝑝(𝑞).

The first-order condition does not yield a solution if 𝑚𝑐′(𝑞) > 0:

𝑐(𝑞) = 𝑝′(𝑞)𝑞 + 𝑝(𝑞) ⇒ mc(𝑞) = 𝑤, 1/(𝑚𝑐′(𝑞)𝑞) = 0.
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D.1.7 Sequential Monopoly, 𝛽 = 1
max

𝑞
𝜋𝑑(𝑤, 𝑞)

max
𝑤

𝜋𝑑(𝑤, 𝑞) s.t. 𝜋𝑢(𝑤, 𝑞) ≥ 0.

The solution based on constrained profit-maximization is:

max
𝑤,𝑞

𝜋𝑑(𝑤, 𝑞) ⇒ mr(𝑞) = 𝑐(𝑞), 𝑤 = 𝑐(𝑞).

Using the FOCs does not yield a solution if 𝑝′(𝑞) > 0:

𝑐(𝑞) = 𝑝′(𝑞)𝑞 + 𝑝(𝑞) ⇒ mr(𝑞) = 𝑤, 1/(𝑝′(𝑞)𝑞) = 0.

D.1.8 Sequential Monopoly, 𝛽 = 0
max

𝑞
𝜋𝑑(𝑤, 𝑞)

max
𝑤

𝜋𝑢(𝑤, 𝑞) s.t. 𝜋𝑑(𝑤, 𝑞) ≥ 0.

The solution based on constrained profit-maximization is full double marginalization:

max
𝑞

𝜋𝑑(𝑤, 𝑞), max
𝑤

𝜋𝑢(𝑤, 𝑞) ⇒ mr(𝑞) = 𝑤, 𝑚𝑐(𝑞) = 𝑚𝑟′(𝑞)𝑞 + 𝑚𝑟(𝑞).

The FOC results in the same condition:

𝑐(𝑞) − 𝑝(𝑞) + 𝑐′(𝑞)𝑞 − 3𝑞𝑝′(𝑞) − 𝑞2𝑝′′(𝑞) = 0 ⇒ mr(𝑞) = 𝑤, 𝑚𝑐(𝑞) = 𝑚𝑟′(𝑞)𝑞 + 𝑚𝑟(𝑞).

D.2 Auxiliary Lemmas on Equilibrium Existence

In this appendix, we discuss the existence and unicity of the monopolistic and monopsonistic
equilibrium in both the simultaneous and sequential bargaining models.

D.2.1 Equilibrium Existence in the Simultaneous Model

In Lemmas OA-4 and OA-5, we find that in the simultaneous bargaining model, the monopsonistic
and monopolistic equilibria both exist and are unique for a different range of buyer power values.

Lemma OA-4. Assume that 𝑚𝑐′(𝑞) > 0. In simultaneous monopsonistic bargaining, equilibrium exists
and is unique in the following 𝛽 range:

𝛽 ∈ [0, 1 − lim
𝑞→0+

𝑠(𝑞)),

where 𝑠(𝑞) = 𝑐′(𝑞) 𝑞
𝑝(𝑞)−𝑐(𝑞) which is bounded below by 0.
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Proof. In simultaneous monopsonistic bargaining, combining (U-FOC) and (B-FOC) gives

1 − 𝛽 =
𝑐′(𝑞)𝑞

𝑝(𝑞) − 𝑐(𝑞) . (OA.5)

This means that 𝛽 can take any value in support of 𝑠(𝑞). Note that 𝑠(𝑞) > 0 because 𝑝(𝑞) − 𝑐(𝑞) > 0
and 𝑐′(𝑞) > 0. Since 𝑐′(𝑞) > 0 and 𝑝(𝑞) − 𝑐(𝑞) is decreasing with 𝑞, the min

𝑞
𝑠(𝑞) = lim

𝑞→0+
𝑠(𝑞).

Therefore, the minimum value 𝛽 could take in monopsonistic bargaining is

1 − lim
𝑞→0+

𝑠(𝑞)

Similarly since 𝑐′(𝑞) > 0, 𝑞 > 0 and there exists �̄� such that 𝑝(�̄�) = 𝑐(�̄�), 𝑠(𝑞) can be arbitrarily large
max

𝑞
𝑠(𝑞) > 1. Combining these two observations derives the bound for 𝛽

𝛽 ∈ [0, 1 − lim
𝑞→0+

𝑠(𝑞)).

Moreover, since 𝑠(𝑞) is a continuous function, by Intermediate Value Theorem, there exists 𝑞 that
satisfies Equation (OA.5) for all 𝛽 in the range given above. This proves the existence of equilibrium
for all 𝛽 ∈ [0, 1 − lim

𝑞→0+
𝑠(𝑞)). □

Lemma OA-5. Assume that 𝑚𝑟′(𝑞) < 0. In the simultaneous monopolistic bargaining model, equilibrium
exists only in the following 𝛽 range:

𝛽 ∈ ( lim
𝑞→0+

𝑠(𝑞), 1],

where 𝑠(𝑞) = − 𝑝′(𝑞) 𝑞
𝑝(𝑞)−𝑐(𝑞) .

Proof. In the simultaneous monopolistic bargaining, combining (D-FOC) and (B-FOC) gives

𝛽 = −
𝑝′(𝑞) 𝑞

𝑝(𝑞) − 𝑐(𝑞) . (OA.6)

This means that 𝛽 can take any value in support of 𝑠(𝑞). Note that 𝑠(𝑞) > 0 because 𝑝(𝑞) − 𝑐(𝑞) ≥ 0
and 𝑝′(𝑞) ≤ 0. Since 𝑝′(𝑞) ≤ 0 and 𝑝(𝑞) − 𝑐(𝑞) is decreasing with 𝑞, the min

𝑞
𝑠(𝑞) = lim

𝑞→0+
𝑠(𝑞).

Therefore, the maximum value 𝛽 could take in monopolistic bargaining is

lim
𝑞→0+

𝑠(𝑞).

Similarly since 𝑝′(𝑞) ≤ 0 and 𝑞 > 0 and there exists �̄� such that 𝑝(�̄�) = 𝑐(�̄�), 𝑠(𝑞) can be arbitrarily
large, which impies that max

𝑞
𝑠(𝑞) > 1. Combining these two observations derives the bound for 𝛽

𝛽 ∈ ( lim
𝑞→0+

𝑠(𝑞), 1].
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Moreover, since 𝑠(𝑞) is a continuous function, by Intermediate Value Theorem, there exists 𝑞 that
satisfies Equation (OA.6) for all 𝛽 in the range given above. This proves the existence of equilibrium
for all 𝛽 values. □

D.2.2 Equilibrium Existence in the Sequential Model

For the sequential monopolistic and monopolistic bargaining cases, we proceed as follows. In
monopsonistic bargaining, we have already shown that when 𝛽 = 1, the solution from the first-
order conditions (FOC) corresponds to the constrained optimization problem. However, this result
does not hold when 𝛽 = 0. For this case, we will prove via lemma that as 𝛽 → 0, the FOC solution
converges to the solution of the constrained optimization problem.

Conversely, in monopolistic bargaining, when 𝛽 = 0, the FOC solution corresponds to the
constrained optimization problem. This result breaks down when 𝛽 = 1. In this case, we will
prove via lemma that as 𝛽 → 1, the FOC solution converges to the solution of the constrained
optimization problem.

Then, we will rely on the continuity of FOCs to show that equilibrium exists for all values of 𝛽.

Lemma OA-6. The solution to the sequential monopolistic bargaining, characterized by its FOCs given in
Appendix B.1 approaches as 𝛽 → 1 to the solution of the constraint-optimization problem at 𝛽 = 1 provided
in Appendix D.1.7.

Proof. Define

𝐴(𝑞) ≡ 1
𝑝′(𝑞) and 𝐵(𝑞) ≡ 𝑁(𝑞)

𝐷(𝑞) =
𝑞 + [𝑝(𝑞) − 𝑐(𝑞) + 𝑝′(𝑞)𝑞 − 𝑐′(𝑞)𝑞] 1

2𝑝′(𝑞)+𝑝′′(𝑞)𝑞

𝑝(𝑞) − 𝑐(𝑞) + 𝑝′(𝑞)𝑞

The FOC that characterizes equilibrium 𝑞 is 𝛽 𝐴(𝑞) + (1 − 𝛽) 𝐵(𝑞) = 0. Rewrite 𝛽 as 1 − 𝜀. Then,
the equation becomes

(1 − 𝜀)𝐴(𝑞) + 𝜀 𝐵(𝑞) = 0 =⇒ 1 − 𝜀
𝜀

𝐴(𝑞) = − 𝐵(𝑞).

As 𝜀 → 0, the left side tends to ±∞ (unless 𝑝′(𝑞) = ∞, which we rule out). Thus, 𝐵(𝑞) must also
become unbounded in magnitude. If the numerator of 𝐵(𝑞) is finite, the denominator of 𝐵(𝑞) must
vanish. Since

𝐵(𝑞) =
𝑁(𝑞)
𝐷(𝑞) with 𝐷(𝑞) = 𝑝(𝑞) − 𝑐(𝑞) + 𝑞 𝑝′(𝑞),

the only way 𝐵(𝑞) goes to infinity is if 𝐷(𝑞) vanishes. Hence, as 𝛽 → 1, we have 𝑝(𝑞) − 𝑐(𝑞) +
𝑞𝑝′(𝑞) = 0, which corresponds to the solution given in the constraint-optimization problem given
in Appendix D.1.7. □
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Lemma OA-7. The solution to sequential monopsonistic bargaining characterized by its FOC given in
Appendix B.1 approaches as 𝛽 → 0 to the solution of the constraint-optimization problem at 𝛽 = 0 given in
Appendix D.1.6

Proof. Define

𝐴(𝑞) = 1
𝑐′(𝑞) and 𝐵(𝑞) ≡

𝑁(𝑞)
𝐷(𝑞) =

−𝑞 +
(
[𝑝(𝑞) − 𝑐(𝑞)] + [𝑝′(𝑞)𝑞 − 𝑐′(𝑞)𝑞] 1

2𝑐′(𝑞)+𝑐′′(𝑞)𝑞
)

𝑝(𝑞) − 𝑐(𝑞) − 𝑐′(𝑞)𝑞

The FOC that characterizes equilibrium 𝑞 is (1 − 𝛽)𝐴(𝑞) + 𝛽 𝐵(𝑞) = 0. Rewrite 𝛽 as 𝜀. Then, the
equation becomes

(1 − 𝜀)𝐴(𝑞) + 𝜀𝐵(𝑞) = 0 =⇒ 𝜀
1 − 𝜀

=
𝐴(𝑞)
𝐵(𝑞)

As 𝜀 → 0 (i.e., 𝛽 → 0), the multiplier 𝜀
1−𝜀 tends to 0. If 𝐴(𝑞) ≠ 0 is finite, we must have 𝐵(𝑞) become

unbounded (go to ±∞) in order to satisfy the above equality. This implies that as 𝛽 → 0, we have
𝑝(𝑞) − 𝑐(𝑞) − 𝑞 𝑐′(𝑞) = 0, which corresponds to the solution given in the constraint-optimization
problem in Appendix D.1.6. □

Lemma OA-8. If𝑚𝑐′(𝑞) > 0 and𝑚𝑟′(𝑞) < 0 for both sequential monopolistic and monopsonistic bargaining
problems, there exists a solution for 𝛽 ∈ [0, 1]. The solution is interior for 𝛽 ∈ (0, 1).

Proof. For monopsonistic bargaining, we show in Section D.1.5 that the solution to sequential
monopsonistic bargaining exists for 𝛽 = 1, and this solution coincides with the solution given
by FOCs. Moreover, in Section D.1.6 we show that the solution to sequential monopsonistic
bargaining exists for 𝛽 = 0. Lemma OA-7 shows that the solution from FOC as 𝛽 → 0 corresponds
to the solution obtained from constraint optimization Section D.1.6. Therefore, the solution to FOC
converges to the corner cases of 𝛽 = 0 and 𝛽 = 1. The continuity of the FOCs implies that the
solution exists for any 𝛽 ∈ (0, 1). Since this solution is given by the FOC, it is in the interior.

For monopolistic bargaining, we show in Section D.1.8 that the solution to the sequential
monopolistic bargaining exists for 𝛽 = 0, and this solution coincides with the solution given
by FOCs. Moreover, in Section D.1.7 we show that the solution to the sequential monopolistic
bargaining exists for 𝛽 = 1. Lemma OA-6 shows that the solution from FOC as 𝛽 → 1 corresponds
to the solution obtained from constraint optimization in Section D.1.7. Therefore, the solution to
FOC converges to the corner cases of 𝛽 = 0 and 𝛽 = 1. The continuity of FOCs implies that the
solution exists for any 𝛽 ∈ (0, 1). Since this solution is given by the FOC, it is in the interior. □

D.3 Loglinear Version of the Model

We solve the simultaneous bargaining model with log-linear costs and demand:

𝑐(𝑞) = 1
1 + 𝜓

𝑞𝜓 and 𝑝(𝑞) = 𝑞
1
𝜂 .
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Solving the first-order condition for output in the monopsonistic conduct case (U-FOC) results in
the factor supply curve 𝑤 = 𝑞𝜓. Solving the first-order condition for output in the monopolistic
conduct case (D-FOC) results in the factor demand curve 𝑤 = 𝑞

1
𝜂 (𝜂+1

𝜂 ). The joint-profit-maximizing

output level is found by equating marginal costs to marginal revenue, which results in 𝑞∗ = (1+𝜂
𝜂 )

1
𝜓− 1

𝜂 .
Solving the bargaining problem (B-FOC) and setting it equal to the monopsonistic and monop-

olistic cases to find the intersection of the two output-buyer power curves results in the output-
maximizing bargaining parameter

𝛽∗ =

(
1 + 𝜂

1 + 𝜓
− 𝜂

)−1
.

D.3.1 Corollary 2 in terms of elasticities

In the log-linear version of the model, we can write Corollary 2 as a function of supply and demand
elasticities rather than the first derivatives of costs and demand.

Corollary OA-1. The efficient level of buyer power 𝛽∗ weakly decreases with the elasticity of downstream
demand and weakly increases with the elasticity of upstream supply.

Proof. The 𝛽∗ expression in the log-linear model that was derived above:

𝛽∗ =

(
1 + 𝜂

1 + 𝜓
− 𝜂

)−1
.

The elasticity of downstream demand is 𝜂 is negative, we conduct comparative statics in terms of
(−𝜂) in order to have a higher value of this parameter indicate more elastic demand. Taking the
first derivative of 𝛽∗ to (−𝜂) results in:

𝜕𝛽∗

𝜕(−𝜂) = − 𝜓(1 + 𝜓)
(1 − 𝜂𝜓)2 ≤ 0

Hence, more elastic downstream demand implies a lower efficient level of buyer power 𝛽∗.
The elasticity of upstream supply is 1

𝜓 . Taking the first derivative of 𝛽∗ to 𝜓 results in:

𝜕𝛽∗

𝜕𝜓
= −

(
1 + 𝜂

1 + 𝜓
− 𝜂

)
(−(1 + 𝜂)) ≤ 0

This expression is weakly positive because 𝜂 ≤ −1 is required for profit maximization, and because
1+𝜂
1+𝜓 − 𝜂 = 1

𝛽∗ ≥ 0. It follows that the more inelastic the upstream supply is, the lower 𝛽∗. Hence, the
more elastic the upstream supply, the higher 𝛽∗. □
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Equilibrium existence under monopolistic bargaining

Solving the first-order conditions for the monopolistic bargaining problem, 𝑞(𝛽), is given by

𝑞𝑚𝑝𝑙 =

(
𝜓 + 1
𝛽𝜂

+ 1 + 𝜓

) 1
𝜓− 1

𝜂
.

Given that 𝜓 − 1
𝜂 = 5

12 < 1 in our numerical example, equilibrium existence requires(
𝜓 + 1
𝛽𝜂

)
+ 1 + 𝜓 > 0.

Hence, it must hold that 𝛽 > −1/𝜂. In our numerical example, this condition is satisfied for 𝛽 > 1/6,
so the monopolistic equilibrium is defined only for this range of bargaining parameters.

Equilibrium existence under monopsonistic bargaining

Solving the FOCs of the monopsonistic bargaining model delivers the following 𝛽(𝑞) relationship:

𝛽 =
𝑞𝜓 − 𝑞

1
𝜂

𝑞
1
𝜂 + 𝑞𝜓

1+𝜓

.

Given that 𝜓 > 0 and 𝜂 < 0, output is well-defined for any 𝛽 > 0. Hence, the monopsonistic
equilibrium always exists for the range of bargaining parameters we consider.

D.3.2 Limits in the Numerical Example

When we apply the bounds for existence from Proposition OA-5, the limit of monopolistic bargain-
ing corresponds to

lim
𝑞→0+

−
𝑝′(𝑞) 𝑞

𝑝(𝑞) − 𝑐(𝑞) = lim
𝑞→0

𝑞1/𝜂

𝑞1/𝜂 − (1 + 𝜓)−1𝑞𝜓
.

Using l’Hôpital’s rule, this limit can be found as

lim
𝑞→0+

− (1/𝜂)𝑞1/𝜂

𝑞1/𝜂 − (1 + 𝜓)−1𝑞𝜓
= −1

𝜂

Since we set 𝜂 = −6, the limit is 1/6.
In monopsonistic bargaining, the upper bound is given by the limit:

lim
𝑞→0+

𝑐′(𝑞) 𝑞
𝑝(𝑞) − 𝑐(𝑞) = lim

𝑞→0+
(𝜓/(1 + 𝜓))𝑞𝜓

𝑞1/𝜂 − (1 + 𝜓)−1𝑞𝜓
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Using l’Hôpital’s rule, this limit can be found as

lim
𝑞→0+

(𝜓/(1 + 𝜓))𝑞𝜓

𝑞1/𝜂 − (1 + 𝜓)−1𝑞𝜓
= 0.

D.4 Lemmas on Markups and Markdowns

Lemma OA-9. The results in equilibrium condition, quantity, markdown, markup, upstream profit, and
downstream profits results in Table OA-1 hold.

Proof. We will prove the results column by column.
(i) Equilibrium conditions: These are derived in Section D.1.
(ii) Quantities: We will only show this result for sequential monopsonistic bargaining because
the results for other cases are identical and similar to derive. The equilibrium quantities are
characterized by

For 𝛽 = 1 : 𝑚𝑟(𝑞1) = 𝑚𝑐′(𝑞1)𝑞1 + 𝑚𝑐(𝑞1)
For 𝛽 = 𝛽∗ : 𝑚𝑟(𝑞∗) = 𝑚𝑐(𝑞∗)
For 𝛽 = 0 : 𝑚𝑐(𝑞3) = 𝑝(𝑞3)

where 𝑞1 and 𝑞3 are equilibrium quantities when 𝛽 = 1 and 𝛽 = 0. Note that since 𝑚𝑐′(𝑞) > 0, we
have that 𝑚𝑐′(𝑞)𝑞+𝑚𝑐(𝑞) > 𝑚𝑐(𝑞). Since 𝑚𝑟(𝑞) is a decreasing function, it follows that 𝑞∗ > 𝑞1. For
the comparison of 𝑞3 and 𝑞∗ note that 𝑝(𝑞) > 𝑚𝑟(𝑞) because 𝑝′(𝑞) < 0, Since 𝑚𝑐(𝑞) is an increasing
function, it follows that 𝑞3 > 𝑞∗.
(iii) Markups: Observe that in monopsonistic bargaining 𝑤 = 𝑚𝑟(𝑞), so the markup is given by
(𝑚𝑐(𝑞) − 𝑚𝑟(𝑞))/𝑚𝑐(𝑞) as defined in Section 2.5. It immediately follows from the relationship
between 𝑚𝑐(𝑞) and 𝑚𝑟(𝑞) for different 𝛽 values that 𝑚𝑐(𝑞1) − 𝑚𝑟(𝑞1) < 0, 𝑚𝑐(𝑞) = 𝑚𝑟(𝑞) and
𝑚𝑐(𝑞3) − 𝑚𝑟(𝑞3) > 0.
(iv) Markdowns: Markdown results can be developed analogously to markup results and therefore
are omitted.
(v) Upstream Profit: The equivalence of profit at 𝛽∗ to joint-profit maximization profit follows from
Proposition 2. The cases where 𝜋𝑢 = 0 are also trivial because either the quantity approaches zero
or the downstream firm makes a take-it-or-leave-it offer. Therefore, the only nontrivial cases are (i)
Sim.MS with 𝛽 = 0, (ii) Seq.MS with 𝛽 = 0, (iii) Seq.MS with 𝛽 = 1, and (iv) Seq.MP with 𝛽 = 0. We
will analyze these cases one by one.

Consider first simultaneous monopsony (Sim.MS) with 𝛽 = 0 and Seq.MS with 𝛽 = 0. When
𝛽 = 0, under joint profit maximization, the upstream firm captures the entire profit so that 𝜋𝑢(𝛽 =

0) = 𝜋∗
𝑢 . Note that in both of these two cases, 𝑚𝑐(𝑞) = 𝑝(𝑞), meaning that the equilibrium quantity

is less than the optimal quantity. This implies that the total profit, which is captured entirely by
the upstream firm since 𝛽 = 0, is below 𝜋∗

𝑢 .
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Table OA-1: Equilibrium Outcomes under Limit Cases for 𝛽

Model Equilibrium Condition Explanation 𝑞 Δ𝑑 𝜇𝑢 𝜋𝑢 𝜋𝑑

Sim. MS, 𝛽 = 1 𝑞 → 0 – 𝑞 < 𝑞∗ Δ𝑑 > 0 𝜇𝑢 = 0 𝜋𝑢 = 0 𝜋𝑑 = 0
Sim. MS, 𝛽 = 𝛽∗ 𝑚𝑐(𝑞) = 𝑚𝑟(𝑞) (JPM) 𝑞 = 𝑞∗ Δ𝑑 = 0 𝜇𝑢 = 0 𝜋𝑢 = 𝜋∗

𝑢 𝜋𝑑 = 𝜋∗
𝑑

Sim. MS, 𝛽 = 0 𝑚𝑐(𝑞) = 𝑝(𝑞) (U-TIOLI) 𝑞 > 𝑞∗ Δ𝑑 < 0 𝜇𝑢 = 0 𝜋𝑢 < 𝜋∗
𝑢 𝜋𝑑 = 0

Sim. MP, 𝛽 = 1 𝑚𝑟(𝑞) = 𝑐(𝑞) (D-TIOLI) 𝑞 < 𝑞∗ Δ𝑑 = 0 𝜇𝑢 < 0 𝜋𝑢 = 0 𝜋𝑑 = 0
Sim. MP, 𝛽 = 𝛽∗ 𝑚𝑟(𝑞) = 𝑚𝑐(𝑞) (JPM) 𝑞 = 𝑞∗ Δ𝑑 = 0 𝜇𝑢 = 0 𝜋𝑢 = 𝜋∗

𝑢 𝜋𝑑 = 𝜋∗
𝑑

Sim. MP, 𝛽 = 0 𝑞 → 0 – 𝑞 < 𝑞∗ Δ𝑑 = 0 𝜇𝑢 > 0 𝜋𝑢 = 0 𝜋𝑑 > 𝜋∗
𝑑

Seq. MS, 𝛽 = 1 𝑚𝑟(𝑞) = 𝑚𝑐′(𝑞)𝑞 + 𝑚𝑐(𝑞) (C.M.) 𝑞 < 𝑞∗ Δ𝑑 > 0 𝜇𝑢 = 0 𝜋𝑢 > 𝜋∗
𝑢 𝜋𝑑 = 0

Seq. MS, 𝛽 = 𝛽∗ 𝑚𝑐(𝑞) = 𝑚𝑟(𝑞) (JPM) 𝑞 = 𝑞∗ Δ𝑑 = 0 𝜇𝑢 = 0 𝜋𝑢 = 𝜋∗
𝑢 𝜋𝑑 = 𝜋∗

𝑑

Seq. MS, 𝛽 = 0 𝑚𝑐(𝑞) = 𝑝(𝑞) (U-TIOLI) 𝑞 > 𝑞∗ Δ𝑑 < 0 𝜇𝑢 = 0 𝜋𝑢 < 𝜋∗
𝑢 𝜋𝑑 = 0

Seq. MP, 𝛽 = 1 𝑚𝑟(𝑞) = 𝑐(𝑞) (D-TIOLI) 𝑞 < 𝑞∗ Δ𝑑 = 0 𝜇𝑢 < 0 𝜋𝑢 = 0 𝜋𝑑 < 𝜋∗
𝑑

Seq. MP, 𝛽 = 𝛽∗ 𝑚𝑟(𝑞) = 𝑚𝑐(𝑞) (JPM) 𝑞 = 𝑞∗ Δ𝑑 = 0 𝜇𝑢 = 0 𝜋𝑢 = 𝜋∗
𝑢 𝜋𝑑 = 𝜋∗

𝑑

Seq. MP, 𝛽 = 0 𝑚𝑐(𝑞) = 𝑚𝑟′(𝑞)𝑞 + 𝑚𝑟(𝑞) (D.M.) 𝑞 < 𝑞∗ Δ𝑑 = 0 𝜇𝑢 > 0 𝜋𝑢 < 𝜋∗
𝑢 𝜋𝑑 > 𝜋∗

𝑑

Now consider the sequential monopsony case (Seq.MS) with 𝛽 = 1, which corresponds to the
classical monopsony model. Under joint profit maximization, 𝜋𝑢 = 0 because the downstream firm
captures the entire profit. However, in the case of sequential monopsony, 𝑤 = 𝑚𝑐(𝑞) > 𝑐(𝑞) and
the upstream profit is 𝜋𝑢 = (𝑤 − 𝑐(𝑞))𝑞 > 0. This implies that 𝜋𝑚𝑠

𝑢 (𝛽 = 1) > 𝜋∗
𝑢(𝛽 = 1).

Finally, consider the case of the sequential monopoly (Seq.MP) with 𝛽 = 0. The joint-profit
maximization gives the entire joint profit, which also equals the highest profit the upstream firm
can reach. However, when Seq.MP with 𝛽 = 0, the downstream profit is positive because 𝜋𝑑 =

(𝑝(𝑞) − 𝑤)𝑞 and 𝑤 = 𝑚𝑟(𝑞) < 𝑝(𝑞). Since the total joint profit cannot be greater than 𝜋∗
𝑢 + 𝜋∗

𝑑
, it

follows that 𝜋𝑚𝑝
𝑢 (𝛽 = 0) < 𝜋∗

𝑢 + 𝜋∗
𝑑
.

(vi) Downstream Profit: The proof for downstream profit follows very similarly to that of upstream
profit and is therefore omitted. □

Lemma OA-10. Joint profit-maximizing quantity 𝑞∗ that is characterized by the problem in Equation (7) is
unique.

Proof. 𝑞∗ is characterized by (J-Q-FOC), which is given by 𝑚𝑟(𝑞∗) − 𝑚𝑐(𝑞∗) = 0. Since 𝑚𝑟′(𝑞) < 0
and 𝑚𝑐′(𝑞) > 0, there is a unique solution to this equation. □

Lemma OA-11. In the monopsonistic bargaining model, Δ𝑑 = 0 if and only if q equals 𝑞∗.

Proof. Since, in monopsonistic bargaining (U-FOC) implies that 𝜇𝑢(𝑞) = 0, Δ𝑑(𝑞) = 0 if and only
if 𝜇𝑢(𝑞) + Δ𝑑(𝑞) = 0. Furthermore 𝜇𝑢(𝑞) + Δ𝑑(𝑞) = 0 implies that 𝑚𝑐(𝑞) = 𝑚𝑟(𝑞). Note that this
equation only holds at 𝑞∗ by Lemma OA-10, which concludes the proof. □

Lemma OA-12. In monopolistic bargaining, 𝜇𝑢 = 0 if and only if the equilibrium 𝑞 equals 𝑞∗.
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Proof. Since, in monopolistic bargaining (D-FOC) implies that Δ𝑑(𝑞) = 0, 𝜇𝑢 = 0 if and only if
𝜇𝑢(𝑞) + Δ𝑑(𝑞) = 0. Furthermore 𝜇𝑢(𝑞) + Δ𝑑(𝑞) = 0 implies that 𝑚𝑐(𝑞) = 𝑚𝑟(𝑞). Note that this
equation only holds at 𝑞∗ by Lemma OA-10, which concludes the proof. □

Lemma OA-13. In simultaneous/sequential monopsonistic bargainingΔ𝑑 < 0 when 𝛽 ∈ (0, 𝛽∗) andΔ𝑑 > 0
when 𝛽 ∈ (𝛽∗ , 1).

Proof. By Lemma OA-9, we have Δ𝑑(𝛽 = 0) < 0 and by Lemma OA-11 Δ𝑑(𝑞∗) = 0. Lemma OA-10
shows that 𝛽∗ is the unique value of 𝛽 that gives 𝑞∗ as the equilibrium quantity. The continuity of Δ𝑑

as a function of 𝛽, this proves that Δ𝑑 < 0 when 𝛽 ∈ (0, 𝛽∗). Similarly, we showed that at 𝛽∗, Δ𝑑 = 0
and at 𝛽 = 1, Δ𝑑 > 0. Continuity of Δ𝑑 as a function of 𝛽 implies that Δ𝑑 > 0 when 𝛽 ∈ (𝛽∗ , 1) □

Lemma OA-14. In simultaneous/sequential monopolistic bargaining 𝜇𝑢 > 0 when 𝛽 ∈ (0, 𝛽∗) and 𝜇𝑢 < 0
for 𝛽 ∈ (𝛽∗ , 1).

Proof. This proof is identical to the proof of Lemma OA-13 and therefore omitted. □

D.5 Other Auxiliary Lemmas

Lemma OA-15. The condition 𝑐′′(𝑞)𝑞 + 𝑐′(𝑞) > 0 is equivalent to 𝜕(𝑚𝑐(𝑞)−𝑐(𝑞))
𝜕𝑞 > 0. The condition

𝑝′′(𝑞)𝑞 + 𝑝′(𝑞) < 0 is equivalent to 𝜕(𝑚𝑟(𝑞)−𝑝(𝑞))
𝜕𝑞 < 0

Proof. Since 𝑚𝑐(𝑞) = 𝑑(𝑐(𝑞)𝑞)/𝑑𝑞, the difference between marginal and average cost is given by
𝑚𝑐(𝑞) − 𝑐(𝑞) = 𝑐′(𝑞)𝑞 whose derivative is 𝑐′′(𝑞)𝑞 + 𝑐′(𝑞). Since 𝑐′(𝑞) > 0, the condition given in
Assumption 1, 𝑐′′(𝑞)𝑞 + 𝑐′(𝑞) > 0 implies 𝑚𝑐′(𝑞) > 0. The proof with respect to marginal revenue
is the same after replacing 𝑐(𝑞) functions with 𝑝(𝑞) functions. □

Lemma OA-16. In the sequential bargaining model, the following inequalities about profits apply:


𝜋𝑚𝑠
𝑑

> 𝜋∗
𝑑

𝜋𝑚𝑠
𝑢 < 𝜋∗

𝑢

(𝛽 < 𝛽∗)

𝜋
𝑚𝑝

𝑑
> 𝜋∗

𝑑

𝜋
𝑚𝑝
𝑢 < 𝜋∗

𝑢

(𝛽 < 𝛽∗)

𝜋𝑚𝑠
𝑑

< 𝜋∗
𝑑

𝜋𝑚𝑠
𝑢 > 𝜋∗

𝑢

(𝛽 > 𝛽∗)

𝜋
𝑚𝑝

𝑑
< 𝜋∗

𝑑

𝜋
𝑚𝑝
𝑢 > 𝜋∗

𝑢

(𝛽 > 𝛽∗)

Proof. First note that by Proposition 2, 𝛽∗ is the only value that reaches the joint-profit maximization
quantity 𝑞∗. In Lemma OA-9, we showed that the inequalities given in the Lemma hold in the corner
cases of 𝛽 = 0 and 𝛽 = 1. We also know that 𝜋𝑚𝑠

𝑢 = 𝜋
𝑚𝑝
𝑢 = 𝜋∗

𝑢 and 𝜋𝑚𝑠
𝑑

= 𝜋
𝑚𝑝

𝑑
= 𝜋∗

𝑑
at 𝛽∗. Since

no other value of 𝛽 gives 𝜋∗ other than 𝛽∗ and the profit functions are continuous, the inequalities
given in the Lemma are satisfied. □

E Extension Details
This section provides the details of the extensions provided in Section 5 together with the relevant
figures.
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E.1 Nonzero Disagreement Payoffs

E.1.1 Proof of Theorem 3

Proof. With the disagreement payoffs, the firms’ optimization problem for the simultaneous bar-
gaining model becomes

max
𝑞

𝑝(𝑞)𝑞 − 𝑤𝑞 (Downstream’s problem)

max
𝑞

𝑤𝑞 − 𝑐(𝑞)𝑞 (Upstream’s problem)

max
𝑤

[(𝑝(𝑞)𝑞 − 𝑤𝑞 − 𝑜𝑑𝑞)𝛽(𝑤𝑞 − 𝑐(𝑞)𝑞 − 𝑜𝑢𝑞)1−𝛽] (Bargaining problem)

(OA.7)

which leads to the following FOCs


𝑤 = 𝑝′(𝑞) 𝑞 + 𝑝(𝑞) (D-FOC)
𝑤 = 𝑐′(𝑞) 𝑞 + 𝑐(𝑞) (U-FOC)
𝑤 = (1 − 𝛽)

[
𝑝(𝑞) − 𝑜𝑑

]
+ 𝛽

[
𝑐(𝑞) + 𝑜𝑢

]
(B-O-FOC)

(OA.8)

(B-O-FOC) and (U-FOC) imply that

(1 − 𝛽)[𝑝(𝑞) − 𝑐(𝑞)] = 𝑐′(𝑞)𝑞 + (1 − 𝛽)𝑜𝑑 − 𝛽𝑜𝑢 .

(B-O-FOC) and (D-FOC) imply that

𝛽[𝑐(𝑞) − 𝑝(𝑞)] = 𝑝′(𝑞)𝑞 + (1 − 𝛽)𝑜𝑑 − 𝛽𝑜𝑢 .

First, consider the monopsony case. Using the Implicit Function Theorem, 𝑑𝑞/𝑑𝑜𝑢 and 𝑑𝑞/𝑑𝑜𝑑 can
be obtained as

𝑑𝑞

𝑑𝑜𝑢
= −𝑑𝐹/𝑑𝑜𝑢

𝑑𝐹/𝑑𝑞 = − 𝛽

𝑠′(𝑞) and
𝑑𝑞

𝑑𝑜𝑑
= −𝑑𝐹/𝑑𝑜𝑑

𝑑𝐹/𝑑𝑞 =
(1 − 𝛽)
𝑠′(𝑞) ,

where
𝐹(𝑞, 𝑜𝑢 , 𝑜𝑑) = (1 − 𝛽)[𝑝(𝑞) − 𝑐(𝑞)] − 𝑐′(𝑞)𝑞︸                              ︷︷                              ︸

𝑠(𝑞)

−(1 − 𝛽)𝑜𝑑 + 𝛽𝑜𝑢 .

𝑠′(𝑞) is given by

𝑠′(𝑞) = (1 − 𝛽)(𝑝′(𝑞) − 𝑐′(𝑞)) − [𝑐′′(𝑞)𝑞 + 𝑐′(𝑞)].

We have 𝑐′′(𝑞)𝑞 + 𝑐′(𝑞) > 0 by assumption. 𝑝′(𝑞) ≤ 0 and 𝑐′(𝑞) ≥ 0, therefore 𝑠′(𝑞) < 0. Hence, this
proves that in monopsonistic bargaining, 𝑑𝑞/𝑑𝑜𝑑 < 0 and 𝑑𝑞/𝑑𝑜𝑢 > 0.
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Second, consider monopolistic bargaining. The Implicit Function Theorem gives

𝑑𝑞

𝑑𝑜𝑢
= −𝑑𝐹/𝑑𝑜𝑢

𝑑𝐹/𝑑𝑞 = −
𝛽

𝑠′(𝑞) and
𝑑𝑞

𝑑𝑜𝑑
= −𝑑𝐹/𝑑𝑜𝑑

𝑑𝐹/𝑑𝑞 =
(1 − 𝛽)
𝑠′(𝑞) ,

where
𝐹(𝑞, 𝑜𝑢 , 𝑜𝑑) = 𝛽[𝑐(𝑞) − 𝑝(𝑞)] − 𝑝′(𝑞)𝑞︸                       ︷︷                       ︸

𝑠(𝑞)

−(1 − 𝛽)𝑜𝑑 + 𝛽𝑜𝑢 .

𝑠′(𝑞) is given by
𝑠′(𝑞) = 𝛽[𝑐′(𝑞) − 𝑝′(𝑞)] − [𝑝′′(𝑞)𝑞 + 𝑝′(𝑞)].

We have 𝑐′(𝑞) ≥ 0, 𝑝′(𝑞) ≤ 0 and (𝑝′′(𝑞)𝑞 + 𝑝′(𝑞)) < 0, so 𝑠′(𝑞) > 0. This proves that under
monopolistic conduct, 𝑑𝑞/𝑑𝑜𝑑 > 0 and 𝑑𝑞/𝑑𝑜𝑢 < 0. □

E.1.2 Nonzero Disagreement Payoffs: Loglinear Case

For the simple functional forms 𝑐(𝑞) = 1
1+𝜓 𝑞

𝜓 and 𝑝(𝑞) = 𝑞
1
𝜂 , we obtain Equation (OA.9) for the

monopolistic model, and Equation (OA.10) for the monopsonistic model:

𝑞
1
𝜂

(
1 − 𝛽 −

(
1 + 𝜂

𝜂

))
+ 𝛽

1 + 𝜓
𝑞𝜓 − ((1 − 𝛽)𝑜𝑑 − 𝛽𝑜𝑢) = 0 (OA.9)

𝑞
1
𝜂 (1 − 𝛽) +

(
𝛽

1 + 𝜓
− 1

)
𝑞𝜓 − ((1 − 𝛽)𝑜𝑑 − 𝛽𝑜𝑢) = 0. (OA.10)

Neither of these equations has a closed-form solution. Hence, we numerically solve these
equations for 𝑞 at given values of 𝜂, 𝜓, and 𝛽. We calibrate 𝜂 = −10 and 𝜓 = 0.25, as before. We
express 𝑞 as a function of the difference between the outside option of the buyer compared to the
outside option of the seller, 𝑜𝑑 − 𝑜𝑢 . We let this difference in disagreement payoffs be uniformly
distributed on the interval [−1/4, 1/4]. We set the bargaining parameter to 𝛽 = 0.5.

E.2 Multiple Buyers That Compete Downstream

Let there be firms 𝑗 = 1, ..., 𝐽, with
∑𝐽

𝑗=1 𝑞 𝑗 = 𝑄. Assume 𝑝(𝑄) is the industry inverse demand
function. The firms’ optimization problem becomes

max
𝑞 𝑗

𝑝(𝑄)𝑞 𝑗 − 𝑤 𝑗𝑞 𝑗 (Downstream’s problem)

max
𝑞 𝑗

𝑤 𝑗𝑞 𝑗 − 𝑐(𝑞 𝑗)𝑞 𝑗 (Upstream’s problem)

max
𝑤 𝑗

[(𝑝(𝑄)𝑞 𝑗 − 𝑤 𝑗𝑞 𝑗)𝛽(𝑤 𝑗𝑞 𝑗 − 𝑐(𝑞 𝑗)𝑞 𝑗)1−𝛽] (Bargaining problem)

(OA.11)

Compared to the single-buyer version of the model, in which −𝜂 was the firm-level price
elasticity of demand, −𝜂 is now the market-level price elasticity of demand. In the Cournot case,
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the residual price elasticity of demand at the firm level becomes 𝜂
𝑠 𝑗

, with 𝑠 𝑗 =
𝑞 𝑗
𝑄 . Hence, the more

competing firms there are in the downstream market, the more elastic residual demand becomes,
and the lower the efficient level of buyer power 𝛽∗. This implies that the more competitive the
downstream market becomes, the more likely it is that the wholesale market is monopsonistic; the
range of bargaining parameters for which equilibrium conduct is monopsonistic increases.

Numerical Example

We simulate the same parametric version of our model used earlier but with multiple buyers that
compete downstream, à la Cournot. We keep 𝜓 = 0.25 but now set the market-level elasticity
𝜂 = −3, which implies that firm-level demand elasticities are between −3 (if there is a single
downstream firm) to −12 (if there are four equally sized downstream firms). Figure OA-2 shows
the resulting output-buyer power graphs when there are one to three firms per downstream market.
As competition increases, residual demand faced by the buyers becomes more elastic. Hence, the
efficient level of buyer power decreases, and monopsonistic competition is the equilibrium form of
vertical conduct for an increasing range of relative bargaining abilities.

E.3 Multi-Input Downstream Production

E.3.1 Monopolistic Bargaining

In this section, we show how to adjust the bargaining model in the case of a multi-input production
function for the downstream firm. Assume that the downstream firm produces according to the
following CES production function with two inputs :

𝑞 = (𝛼1𝑥
𝜌
1 + 𝛼2𝑥

𝜌
2 )

1/𝜌.

For simplicity, we assume that there is no productivity term. For input 𝑥2, the downstream
firm negotiates through monopolistic bargaining while taking the price of input 𝑥1 as given in the
market. Under monopolistic bargaining, the downstream firm takes the input price 𝑤1 as given and
negotiates over 𝑤2. Given the negotiation outcome of 𝑤2 and market price 𝑤1, it then determines
its profit-maximizing quantity. From this, we can express the firm’s demand for 𝑥2 as a function of
its target output quantity 𝑞:

𝑥2(𝑞) =
(
𝛼2
𝑤2

) 1
1−𝜌

𝑞
(
(𝛼1/𝑤1)1/(1−𝜌) + (𝛼2/𝑤2)1/(1−𝜌)

)−1/(1−𝜌)
.

The CES function leads to the following cost function:

𝐶𝑑(𝑞) = 𝑞
(
(𝛼1/𝑤1)1/(1−𝜌) + (𝛼2/𝑤2)1/(1−𝜌)

)1−1/𝜌
.
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Taking the derivative to find the marginal cost,

𝑚𝑐𝑑(𝑤2) =
(
(𝛼1/𝑤1)1/(1−𝜌) + (𝛼2/𝑤2)1/(1−𝜌)

)1−1/𝜌
,

which is the same as the average cost 𝑐𝑑(𝑤2) due to constant returns to scale. With these objects,
we can write the firm’s maximization problems as

𝜋𝑑(𝑤2 , 𝑞) =
(
𝑝(𝑞) − 𝑚𝑐𝑑(𝑤2)

)
𝑞

𝜋𝑢(𝑤2 , 𝑞) =
(
𝑤2 − 𝑐𝑢(𝑥2(𝑞))

)
𝑥2(𝑞).

These problems resemble the problem in the paper with the following exceptions: 𝑤2 in the
upstream firm’s maximization problem shows up in 𝑐𝑑(𝑤1 , 𝑤2) instead of as a simple linear function
in 𝑤2. Similarly, 𝑞 in the downstream firm’s problem shows up as 𝑥2(𝑞) instead of as a simple linear
function. Since 𝑐𝑑(𝑤1 , 𝑤2) is increasing in 𝑤2 and 𝑥2(𝑞) is increasing in 𝑞, having a multi-input
downstream firm does not change the main economics of the problem.

We evaluate this model for two extreme cases of the elasticity of substitution 𝜌. First, consider
the limiting case of 𝜌 → −∞. In this case, the production function takes the Leontief form:

𝑞 = min{𝛼1𝑥1 , 𝛼1𝑥2}

In this case, we are back to the model in the main text, but with an additional marginal cost term
𝑤1, which is non-negotiated.

Second, consider the limiting case of 𝜌 = 1, which corresponds to perfect substitutes:

𝑞 = 𝛼1𝑥1 + 𝛼2𝑥2

Under this production function, the firm will only use 𝑥2 if 𝑎2
𝑤2

≥ 𝑎1
𝑤1

. Hence, the bargaining
problem over 𝑤2 is only relevant to the extent that this condition holds.

Finally, for any −∞ < 𝜌 < 1, firms bargain over 𝑤2 while internalizing that 𝑥1 and 𝑥2 are either
gross complements (if 𝜌 < 0) or gross substitutes (if 𝜌 > 0). We refer to Rubens (2022) for an
empirical implementation of the monopsonistic bargaining model with a CES production function
under gross complements.

E.3.2 Monopsonistic Bargaining

Now we will consider monopsonistic bargaining. In monopsonistic bargaining, the production
function remains the same, but since the upstream firm determines the input 𝑥2, the downstream
firm will take 𝑥2 as given. Therefore, the firm will solve the constrained cost minimization problem
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conditional on 𝑥2

min𝑥1 𝑤1𝑥1 s.t 𝑞 ≤ (𝛼1𝑥
𝜌
1 + 𝛼2𝑥

𝜌
2 )

1/𝜌.

This leads to a conditional factor demand conditional on 𝑥2:

𝑥1(𝑞, 𝑥2) =
(
𝛼1
𝑤1

) 1
1−𝜌

(
𝑞𝜌 − 𝛼2𝑥

𝜌
2

(𝛼1/𝑤𝜌
1 )1/(1−𝜌)

)1/𝜌

.

Similarly, we obtain a conditional cost function:

𝐶𝑑(𝑞, 𝑥2) = (𝑞 − 𝛼2𝑥
𝜌
2 )

1/𝜌
(
(𝛼1/𝑤𝜌

1 )
1/(1−𝜌)

) (𝜌−1)/𝜌
+ 𝑤2𝑥2.

Denote the average cost as 𝑐𝑑(𝑞, 𝑤2) = 𝐶𝑑(𝑞, 𝑤2)/𝑞. Taking the derivative to find the marginal cost,

𝑚𝑐𝑑(𝑞, 𝑥2) =
1
𝜌

(
𝑤

𝜌
1

𝛼1

)1/𝜌

(𝑞 − 𝛼2𝑥
𝜌
2 )

1
𝜌−1

Given 𝑥2, the firm will set marginal cost to marginal revenue: 𝑚𝑐𝑑(𝑞, 𝑥2) = 𝑝′(𝑞)𝑞 + 𝑝(𝑞). Let the
solution to this problem be 𝑞𝑑(𝑥2). Now, we can write the firms’ maximization problems as

𝜋𝑑(𝑤2 , 𝑥2) =
(
𝑝(𝑞) − 𝑐𝑑(𝑞𝑑(𝑥2), 𝑤2)

)
𝑞𝑑(𝑥2)

𝜋𝑢(𝑤2 , 𝑥2) =
(
𝑤2 − 𝑐𝑢(𝑥2)

)
𝑥2.

where 𝑐𝑢(𝑥2) is the average cost function of the upstream firm. These problems resemble the
problem in the paper with the following exceptions: 𝑤2 in the downstream firm’s maximization
problem shows up as 𝑐𝑑(𝑞, 𝑤2) instead of as a simple linear function 𝑤2. Similarly, 𝑞 in the
downstream problem appears as 𝑞𝑑(𝑥2) instead of as itself. In this case, we do not see any change
in the upstream firm’s cost function. Since both 𝑐𝑑(𝑤2) and 𝑞𝑑(𝑥2) are monotone functions, they do
not change the basic mechanisms of the model.

F Empirical Application Appendix: Unions and Cooperatives

F.1 Labor Unions Application

In our labor unions application, we rely on the estimates for labor supply and demand for U.S.
construction workers from Kroft et al. (2020). Given that their labor supply model is log-linear, it
has the same functional form as our numerical example from Appendix D.3. Using their notation
of firms being indexed as 𝑗, wages 𝑊𝑗 and number of workers 𝐿 𝑗 , their inverse labor supply curve
at the firm level is

𝑊𝑗𝑡 = 𝐿𝜃𝑗𝑡𝑈 𝑗𝑡 .
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Denoting output as𝑄 𝑗𝑡 , the goods price as 𝑃𝑗𝑡 , and an aggregate price index as �̄�𝑡 , their downstream
residual demand curve is

𝑄 𝑗𝑡 =

(𝑃𝑗𝑡

�̄�𝑡

) −1
𝜖
.

Hence, their inverse elasticity of labor supply is 𝜃 and their inverse elasticity of goods demand is 𝜖.
The production function is Leontief in materials and a composite term of labor and capital.

Given that we study wage bargaining on the short term, we treat capital as fixed, which results
in output being proportional to the labor input. Translating their notation into the notation of
Appendix D.3, we have that 𝜂 = − 1

𝜖 and 𝜓 = 𝜃.
We use the 𝛽∗ formula applied to the loglinear example, as worked out in Appendix D.3. Using

the notation from Kroft et al. (2020), this gives

𝛽∗ =

(
1 − 1

𝜖

1 + 𝜃
+ 1

𝜖

)−1

.

We use the estimated inverse demand elasticity 𝜖 = 0.137 from Table 2, Panel B, and the RDD
estimate for the inverse labor supply elasticity 𝜃 = 0.286 from Table 2, Panel A. Plugging these into
the 𝛽∗ formula above results in 𝛽∗ = 0.417.

F.2 Farmer Cooperatives Application

In our farmer cooperatives application, we focus on the setting of tobacco farmers in China, as
analyzed in Rubens (2023). Although Rubens (2023) presents a discrete-choice oligopsony model
in Appendix A1, we take a first-order approximation of this model by modeling loglinear leaf supply
and assuming monopsonistic competition instead. Denoting total leaf production at manufacturer
𝑓 as 𝑀 𝑓 , the leaf price at firm 𝑓 as 𝑃𝑚

𝑓
, an aggregate leaf price as �̄�𝑚 , and a demand residual as 𝐴 𝑓 ,

leaf supply is given by

𝑀 𝑓 =

(𝑃𝑚
𝑓

�̄�𝑚

) 1
𝜓
𝐴 𝑓 .

In equilibrium, the ratio of the marginal revenue product of tobacco leaf 𝑀𝑅𝑃𝑀 over the leaf price
is equal to one plus the inverse leaf-supply elasticity:

𝑀𝑅𝑃𝑀

𝑃𝑀
= 1 + 𝜓.

Using the preferred GMM specification in the third column of Table 1, Panel B, the MRPM/Leaf
price ratio is estimated at 2.904, which implies an inverse leaf-supply elasticity of 𝜓 = 1.904.

Given that the production function is Leontief in tobacco leaf, cigarette production is propor-
tional to tobacco-leaf usage. We approximate cigarette demand by the same loglinear demand
function used above, denoting cigarette production at firm 𝑓 as 𝑄 𝑓 , the cigarette price as 𝑃 𝑓 , a price
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aggregator as �̄�𝑡 , and the inverse demand elasticity as 𝜖:

𝑄 𝑓 =

(𝑃 𝑓

�̄�𝑡

) −1
𝜖
.

As an estimate of the cigarette demand elasticity −1
𝜖 , we rely on the estimates of Ciliberto and

Kuminoff (2010). Given that only median own-price elasticities (rather than average elasticities)
are reported, we rely on these median elasticities. We use the estimate of 1

𝜖 = 1.14 from Table 4,
column 6, given that this is one of the two preferred specifications that relies on GMM. Using the
formula above results in 𝛽∗ = 0.916. Alternatively, using the other GMM specification (in column
7) of 1

𝜖 = 1.11 results in a very similar efficient level of buyer power of 𝛽∗ = 0.933.

G Empirical Application Appendix: Coal Procurement

G.1 Data Sources

Coal-Mine Characteristics and Production Data. For coal mines, we use two datasets: one from
the Mine Safety and Health Administration (MSHA) (Mine Safety and Health Administration, 2024)
and one from Velocity Suite. The MSHA data provides information on production, employment,
and technical mine characteristics. Quarterly production and employment (in hours worked and
total employment) come from MSHA Form 8. Mine characteristics, such as the number and type
of openings and the vein thickness, are obtained from MSHA Form 10. We merge these MSHA
datasets with each other by matching on the MSHA mine identifier. We use the Velocity data to
obtain ownership information. While ownership details are also available in the MSHA data, we
found it unreliable due to the lack of unique owner IDs, inconsistent spellings, and unaccounted
ownership changes.
Coal-Mine Cost Data. We purchased cost information for coal mines from the 2019 Coal Cost
Guide published by Costmine Intelligence. This data source provides detailed data on operating
costs, capital costs, labor requirements, and equipment expenses for different mining technologies
used in the United States and Canada. The Coal Cost Guide provides data on five types of
operating expenses (in USD per short tons) and nine types of capital expenses (in USD). The data
is provided at the level of mine characteristics, which consist of a combination of: (i) the mine
type (Surface, Continuous Underground with Ramp Access, Continuous Underground with Shaft
Access, Longwall Underground with Ramp Access, Longwall Underground with Shaft Access,
Room & Pillar Underground with Ramp Access, Room & Pillar Underground with Shaft Access),
(ii) the mine’s daily capacity (in short kilotons: 1, 2, 4, 8, 24, 72, 216 short kilotons), (iii) the average
vein thickness (in meters: 1.5, 2.5, 3.5 meters for underground mines, 1, 3, 12, 18, 24, and 27 meters
for surface mines). We obtain this data from pages 5-74 in Chapter 3 of the 2019 Coal Cost Guide
(InfoMine USA, 2019).
Power-Plant Characteristics, Cost and Generation Data. For data on power plants, we rely

OA - 40



on data from Velocity Suite, which compiled data from EIA 860, EIA 906, EIA 923, NERC 411
forms, EPA, as well as from their own proprietary research. We use five different datasets from
Velocity. The first dataset is at the month-generator level and includes the universe of all generators
in the U.S., capturing characteristics such as age, fuel type, boiler type, capacity, location, ISO
region, installation date, operating status, ownership and regulation status of the owner. Velocity
collects this data from various public sources and their proprietary research. The second dataset
provides hourly generation data for fossil fuel generation units, sourced from the EPA’s CEMS
database, which includes details on generation, fuel usage, heat rate, and emissions. The third
dataset contains monthly plant-level data, offering information on plant characteristics and monthly
generation by fuel type, compiled from the EIA-923 form. The fourth dataset is hourly load data
for ERCOT, sourced directly from ERCOT’s website. Finally, the fifth dataset consists of hourly
generation data for generation units in ERCOT, obtained from ERCOT’s 60-Day SCED Disclosure
Report.
BLS Wage Data. We obtain weekly earnings of coal miners from the Quarterly Census of Em-
ployment of Wages of the U.S. Bureau of Labor Statistics (U.S. Bureau of Labor Statistics, 2024).
We download the data at the 4-digit industry level for industry ‘2121 Coal Mining’.47 We keep
weekly earnings at the state-quarter level and average across quarters to obtain annual averages
of weekly earnings per state. For some states in some years, earnings are not reported. In these
cases, we impute wages by averaging over broader regions that correspond to the coal basins:
Northwest, Southwest, Midwest, Appalachia, and Southeast. We recompute weekly earnings into
hourly wages by assuming a 45-hour work week, following average data reported by the CDC.48
Coal Transaction Data [2005-2014]. Velocity Suite provides two datasets related to coal transac-
tions between power plants and coal mines. The first dataset is transaction-level, where each record
includes coal mine and plant IDs, quantity shipped, FOB price, transportation price, contract infor-
mation (ID and duration), and coal characteristics (ash, sulfur, and type). Most of the information
in this dataset comes from the EIA-923 form, and Velocity augments this data with FOB prices
obtained from railroad waybills and their own internal model. The second dataset focuses on coal
routes and includes leg-level transportation information, such as the mode of transport (railroad,
truck, vessel), carrier details for railroads, costs, and routing points. This data is sourced from
waybills and Velocity’s proprietary research.
Coal Transaction Data [1979-2000]. This dataset provides historical information on coal transac-
tions and contracts from 1979 to 2000, sourced from the EIA’s Coal Transportation Rate Database.
It includes details on transportation rates, contract terms, and other relevant information about
coal shipments during this period. We use this dataset to obtain historical information on contract
types and duration.

47The data is available at more disaggregated industry levels (e.g., surface vs. underground mining) and
geographical levels (e.g., county), but both of these more detailed data sources have the disadvantage of
being much sparser, both along the time and geographical dimension.

48https://www.cdc.gov/niosh/mining/content/economics/safetypayscostesttechguide.html
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G.2 Hourly Electricity Generation Construction for Power Plants

Since we estimate Cournot competition for every hour, we must observe hourly generation data of
all generators operating in ERCOT. This data is sourced from three main datasets: (i) the CEMS
database of hourly generation from the EPA, (ii) the ERCOT 60-day hourly generation report, and
(iii) EIA monthly generation data at the plant-fuel level. The CEMS data cover all fossil-fuel
generation units subject to environmental regulations but exclude renewables and other plants
not regulated under these standards. For renewables, we rely on unit-level data from the ERCOT
60-day generation report. For a small subset of units without hourly generation data from either
source, we use EIA Form 923 to obtain monthly generation information and assume that monthly
generation is uniformly distributed across hours within the given month.

G.3 Capacity Estimation of Coal Mines and Power Plants

Power Plants

We calculate capacities separately for fossil-fuel power plants and other generation sources. For
fossil fuel power plants, we obtain capacity factor information by fuel type from the GADS database,
calculated based on the maintenance frequency of power plants using different fuel types. In our
analysis, these capacity factors are applied uniformly across all hours; we do not account for
strategic maintenance timing, as this involves a complex, dynamic problem that is beyond the
scope of this study. The effective capacity of each unit is thus determined by multiplying its
capacity factor by its nameplate capacity.

For solar, wind, hydroelectric, geothermal, other renewables, and nuclear power plants, we
calculate capacity factors based on their generation, as these are zero-marginal-cost generators, and
their actual generation should reflect their availability to produce electricity. For these generators,
we compute a unit-level capacity factor by averaging their generation within a given month-hour-
weekend/weekday bin and dividing it by their nameplate capacity. Multiplying this capacity factor
with the nameplate capacity provides the effective capacity of the generator by hour type.

Coal Mines

The EIA collects data on coal mine capacity, which have been used in prior research (Johnsen et al.,
2019). However, the EIA no longer makes this data available to researchers. Consequently, we infer
mine capacity from production data. For each year, we define a mine’s capacity as the maximum
historical production observed at that mine up to that year. This approach makes mine capacity
time-varying, as it reflects changes in production over time.

G.4 Heat Rate Calculations and Coal Weight to Heat Content Conversion

To determine the cost of fossil-fuel generators, we calculate their heat rate annually by dividing
their total MMBtu fuel consumption by their total electricity generation. This heat rate is assumed
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to remain constant throughout the year. To estimate the cost per MMBtu, we multiply the inverse
of the heat rate by the per-MMBtu cost of coal.

To convert coal quantities from short tons to MMBtu, we calculate an annual conversion factor
by dividing the total coal production (in short tons) by the total heat content of coal produced
during the same year. This conversion factor is then assumed to remain constant throughout the
year.

G.5 Marginal Cost Estimation Details for Coal Mines

Matching the Coal Cost Guide with the MSHA data

We match the Coal Cost Guide dataset to the MSHA data as follows. First, we rely on the ’tech-
nology’ variable in the MSHA data to match the mine types. We group ’surface’, ’strip/open pit’,
and ’mountain top’ mines in the MSHA data into the ’surface mine’ category of the Coal Cost
Guide, and the ’continuous’, ’longwall’, and ’room-pillar’ technologies from the MSHA into the
corresponding technologies in the Coal Cost Guide. If the technology variable is unobserved in the
MSHA dataset, we categorize the mine type as ’other’. We keep only mines of the types ’Auger’,
’Bank’, ’Surface’, ’Underground’, and ’Surface at Underground’ from the MSHA data, in order to
exclude non-production units such as administrative offices.

We categorize mines for which there are one or more shafts reported in the MSHA dataset
as ’shaft access’ in the Coal Cost Guide, and the remaining mines as ’ramp access’. We use the
’maximum vein thickness’ variable in the MSHA data to classify the mines into the corresponding
vein thickness category in the Coal Cost Guide. If the vein thickness is unobserved in the MSHA
data, we assign the smallest vein thickness type (which corresponds to the highest marginal cost).
We assign each mine to the Coal Cost Guide capacity categories based on its capacity as calculated
in Section G.3.

Computation of Labor-to-Material-Cost Ratios

We use the ’hourly labor cost’ subdivision of the operating costs variable in the Coal Cost Guide as
our definition of variable labor costs, and the remaining operating costs reported as intermediate
input costs. We also add the ’equipment costs’ reported under capital expenditure into intermediate
input costs because extracting more coal requires more equipment. Given that equipment costs are
unlikely to fully depreciate within a year, unlike the other operating costs listed, we let it depreciate
linearly over a period of 5 years. We consider the remaining capital expenses that are listed in the
Coal Cost Guide, ’Preproduction Development’, ’Surface Facilities’, ’Working Capital’, ’Engineering
& Construction Management’, and ’Contingency’ to be fixed costs, so we do not include these in
our marginal costs measures.

Taking the ratio of these two operating costs, variable labor and intermediate input expenditure,
results in the variable �̄�𝜃(𝑖𝑢)

𝑝𝑚

𝑤 𝑙 . We assume that the ratio of intermediate input prices over wages is
the same across mines in a given year, which allows us to recover �̄�𝜃(𝑖𝑢) up to a constant. Combining
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this information with the mine-specific hourly wage that we described below allows us to recover
𝛾𝜃(𝑖𝑢).

Computation of Mining Marginal Costs

The unit labor and intermediate input costs in the Coal Cost Guide are based on the average input
requirements within a mine type. However, the mines in our dataset can diverge from the average
daily labor requirements in the Coal Cost Guide because mines are heterogeneous in terms of their
productivity. This prevents us from directly using the cost information in the Coal Cost Guide.
To address this, we compute observed labor productivity for mine 𝑖 as hours worked per ton of
coal extracted 𝑙𝑖𝑢/𝑞𝑐𝑖𝑢 from the MSHA data. This labor productivity corresponds to total factor
productivity under the Leontieff production function assumption as shown in Equation (8).

One complication is that the MSHA data reports the total hours worked per year for all labor,
including production and non-production workers. Since non-production workers should be con-
sidered as fixed costs, we isolate the production worker hours using the ‘hourly labor’ information
in the Coal Cost Guide. In particular, we convert the total hours reported in the MSHA data to the
total hours worked by hourly workers by taking the ratio of the hourly worker requirement to the
total worker requirement reported in the Coal Cost Guide. We compute this ratio as an average at
the level of the mine type 𝜃, as surface and underground mines and mines with different capacities
differ in their labor-to-material ratios. We multiply this ratio by the total hours reported in the
MSHA data to obtain the total hours worked by hourly workers in mine 𝑖 in a given year.

We compute hourly wages 𝑤 𝑙
𝑖𝑢

from the BLS data as explained above. We multiply hourly
wages with labor productivity to compute the labor cost per ton in each mine, and combine this
with the ratio of intermediate to labor costs to compute marginal costs for each mine, as shown in
Equation (8).

We then aggregate these marginal costs to firm-level as described in Section 7.2.1. For firms
with a small number of mines, this leads to a discrete cost function, which makes it difficult to
obtain the solution of Nash bargaining. Therefore, we smooth the cost function at the firm level
using a polynomial approximation.

G.6 Cournot Demand Estimation Details

As described in the main text, we assume a Cournot competition model with strategic and fringe
firms. We estimate a separate and independent Cournot competition model in each hour type,
which is a month-hour-weekday/weekend combination. We assume that all regulated firms and
firms whose total capacity is below 5% are fringe firms in a given year. With these assumptions,
modeling downstream competition requires the consumer demand and supply of fringe firms
every hour type.

We assume that total demand is fully inelastic in the short run and calculate the inelastic demand
by averaging the actual observed demand in each hour type. We assume that this average is the
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expected demand during the bargaining between upstream and downstream firms. For fringe
supply, we first calculate the cost curve of each fringe firm and aggregate them to the industry
level. We assume that fringe firms supply a quantity in a given hour such that the price equals the
marginal cost.

Subtracting this fringe supply curve from the inelastic demand yields the industry demand
curve faced by strategic firms. The analysis then follows standard Cournot competition modeling,
where each strategic firm faces a residual demand curve determined by the industry demand minus
observed generation from other strategic firms.

G.7 Disagreement Payoff Estimation

Coal Mines

We assume that the disagreement payoff of mining firms equals the profit from sales to all other
firms, implying that if a negotiation fails, the coal mine will not produce the quantity that is
negotiated. We think this assumption is reasonable because for mining firms, each transaction is
small relative to total capacity as mining firms transact with many partners.

Power Plants

For power firms, the assumption of no production in the event of a disagreement is unrealistic, as
coal power plants contribute significantly to the total capacity of power firms and require substantial
upfront capital investments. Moreover, power plants are subject to reliability requirements. Thus,
it is more reasonable to assume that coal power generators would continue operating even if
negotiations fail. In such cases, we assume that the power firm would procure coal from the spot
market. However, the spot market is volatile, and delivery is not guaranteed. If power firms are
risk-averse, as supported by Jha (2022) in the context of regulated power plants, it is necessary to
account for disutility from uncertainty. To address this, we calculate the yearly mean spot price of
coal sold from the same basin and coal type, along with its standard deviation. Using the estimates
from Jha (2022), who finds that "plants are willing to trade a $1.62 increase in their expected costs
for a $1 decrease in their standard deviation of costs", we assume that the power plants perceive
the cost of coal in the spot market as the mean spot price plus 1.62 times its standard deviation.

G.8 Bargaining Model Estimation Algorithm

Consider a grid of potential wholesale coal prices, denoted by [0, �̄�]. The following steps outline
the procedure to compare the resulting equilibria across these different prices:

Monopsonistic Bargaining

1. First, calculate how much quantity will be supplied by the upstream firm at any price 𝑤.
Denote this as 𝑞𝑚𝑠(𝑤).

2. Calculate upstream profits as a function of 𝑤 and 𝑞𝑚𝑠(𝑤).
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3. Calculate downstream profit as a function of 𝑤 and 𝑞𝑚𝑠(𝑤). To find the downstream profit,
we need to construct the cost curve of the downstream firm for a given 𝑞𝑚𝑠(𝑤). Since
in monopsonistic bargaining, the upstream firm chooses the quantity, we assume that the
downstream firm will use that quantity in production. The way we operationalize this is as
follows:

• We construct the supply curve of all other power plants in the power company’s port-
folio. We take that as given, and it is not affected by the negotiation between coal mines
and the power company.

• We also take as given other prices such as price of natural gas and coal from other
mining companies. This, together with the assumption above, constructs the supply
curve from all inputs other than the one negotiated with the mining company.

• We assume that the quantity supplied by 𝑈 , 𝑞𝑚𝑠(𝑤), is allocated to each coal generator
in the portfolio of the power company proportionally to their capacity. For example,
if the downstream quantity is 100 tons, and we have two coal power plants, A and B,
whose capacity is 50 tons and 200 tons, respectively, we assume that 20 tons (100 tons x
(50/250)) will go to plant A and 80 tons will go to plant B. This will matter to the extent
that plant A’s heat rate is different than plant B’s. If their heat rates are the same, this is
without loss of generality.

• We further assume that the coal quantity is distributed uniformly throughout each
hour of the day. For example, there are 8,760 hours in a given year, so plant A will have
20/8,760 tons of coal to use in a given hour. This assumption ignores the optimal in-
tertemporal allocation of limited coal quantity over the course of the year. For example,
if coal is limited, Plant A might want to use all of it when the price is high. However, we
think the potential role of this dynamic channel is limited as coal generators operated
the majority of the time during our sample period.

• With these steps, we now have the tons of coal allocated to each plant in a given
hour. The downstream firm takes as given that the allocated coal is used for electricity
generation under any market conditions. Then, it optimizes the production of the rest
of its portfolio following static profit maximization under Cournot competition.

4. Now we have the profits as a function of wholesale prices for both parties. Construct the
Nash product.

5. For each 𝛽, find 𝑤 that maximizes the Nash product. This gives us 𝑞𝑚𝑠(𝛽) and 𝑤𝑚𝑠(𝛽).

Monopolistic Bargaining

1. In the monopoly setting, we calculate how much quantity will be demanded by the down-
stream firm. To find this quantity, take 𝑤 as given and construct the downstream firm’s
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Figure OA-1: Conduct Identification: Intuition

Notes: This figure illustrates how we identify vertical conduct for two different observed values of the wholesale
price: 𝑤0 and 𝑤1.

supply curve as a function of 𝑤. When doing this, we condition on all prices except 𝑤𝑢𝑑 so
the part of the supply curve that comes from non-coal generators or parts of the coal gener-
ators that come from other coal mines (−𝑢) remains fixed. In other words, if 𝑑 receives coal
from multiple suppliers, then 𝑤𝑢𝑑 affects only the remaining capacity of coal generators in
the firm’s cost curve. After obtaining the cost curve as a function of 𝑤𝑢𝑑, we solve the Cournot
model to calculate the quantity produced by firm 𝑑. The firm produces this quantity from
their lowest cost generators. Using this, we calculate the corresponding coal input demand
of 𝑑 from 𝑢, 𝑞𝑚𝑝(𝑤𝑢𝑑).

2. Given 𝑞𝑚𝑝(𝑤𝑢𝑑) and 𝑤𝑢𝑑, find the upstream profit for each 𝑤𝑢𝑑.

3. We fix a 𝛽 and construct the Nash product.

4. For each 𝛽, find 𝑤 that maximizes the Nash product, which gives us 𝑞𝑚𝑝(𝛽) and 𝑤𝑚𝑝(𝛽) for
𝛽 ∈ (0, 1).

Vertical Conduct Identification

To identify the vertical conduct, we use 𝑤𝑚𝑠(𝛽) and 𝑤𝑚𝑝(𝛽) calculated in the estimation. Then we
find 𝛽𝑚𝑠 and 𝛽𝑚𝑝 such that 𝑤𝑚𝑠(𝛽𝑚𝑠) = 𝑤𝑜𝑏𝑠 and 𝑤𝑚𝑝(𝛽𝑚𝑝) = 𝑤𝑜𝑏𝑠 . With these 𝛽 values, we apply
Theorem 1 to select the conduct, which implies that the monopsonistic equilibrium exists if 𝛽 ≥ 𝛽∗,
while the monopolistic equilibrium exists if 𝛽 ≤ 𝛽∗. Lemmas 1-2 guarantee that either 𝛽𝑚𝑠 < 𝛽∗ and
𝛽𝑚𝑝 < 𝛽∗ or 𝛽𝑚𝑠 > 𝛽∗ and 𝛽𝑚𝑝 > 𝛽∗. To see this, note that 𝑑𝑞𝑚𝑠/𝑑𝛽 < 0 by Lemma 1 and 𝑑𝑞𝑚𝑝/𝑑𝛽 > 0
by Lemma 2. By the FOCs, we also have that 𝑑𝑞/𝑑𝑤𝑚𝑠 > 0 and 𝑑𝑞/𝑑𝑤𝑚𝑝 < 0. The chain rule
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implies that 𝑑𝑤𝑚𝑠/𝑑𝛽 < 0 and 𝑑𝑤𝑚𝑝/𝑑𝛽 < 0. Therefore, 𝑤 is decreasing with 𝛽 under both types
of conduct. Since 𝑤𝑚𝑠(𝛽∗) = 𝑤𝑚𝑝(𝛽∗), it follows that either 𝛽𝑚𝑝 < 𝛽∗ or 𝛽𝑚𝑝 > 𝛽∗, implying a unique
conduct.

Figure OA-1 provides a graphical intuition for our procedure to identify vertical conduct.
Assume a certain wholesale price 𝑤0 is observed. The corresponding monopsonistic and mo-
nopolistic quantities 𝑞𝑚𝑠

0 and 𝑞
𝑚𝑝

0 are computed using the two estimation algorithms that were
explained above. We determine vertical conduct by comparing these quantity values to the joint-
profit-maximizing output value 𝑞∗, following Proposition 5. In this particular example, 𝑞𝑚𝑠

0 < 𝑞∗

and 𝑞
𝑚𝑝

0 > 𝑞∗ , so vertical conduct is monopsonistic. For a different wholesale price 𝑤1, we obtain
the opposite result, so vertical conduct is monopolistic for wholesale price 𝑤1. The bargaining
parameter 𝛽 is estimated as the value that rationalizes the observed wholesale price under the
vertical conduct model that was found to apply.

Standard Error Calculations

The only source of uncertainty in our model is the inelastic demand curve in the market for a given
hour type. We calculate the inelastic demand in a given hour type 𝑡 as the average demand value
across a finite sample of hours of that type in our estimation. To account for this uncertainty in the
estimates, we implement a bootstrap procedure with 100 iterations, where we calculate the average
demand of hour type 𝑡 after resampling hours within that hour type with replacement. We then
repeat the entire estimation procedure to obtain a bootstrap distribution of our estimates.
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H Additional Tables
Table OA-2: Summary of limit cases for 𝛽

Case Equilibrium Condition Explanation

FOC Cons. Max FOC Cons. Max

Sim. MP, 𝛽 = 1 𝑚𝑟(𝑞) = 𝑐(𝑞) 𝑚𝑟(𝑞) = 𝑐(𝑞) (D-TIOLI) (D-TIOLI)
Sim. MP, 𝛽 = 0 – – – –
Sim. MS, 𝛽 = 1 – – – –
Sim. MS, 𝛽 = 0 𝑚𝑐(𝑞) = 𝑝(𝑞) 𝑚𝑐(𝑞) = 𝑝(𝑞) (U-TIOLI) (U-TIOLI)
Seq. MP, 𝛽 = 1 – 𝑚𝑟(𝑞) = 𝑐(𝑞) – (D-TIOLI)
Seq. MP, 𝛽 = 0 𝑚𝑟(𝑞) = 𝑤 𝑚𝑟(𝑞) = 𝑤 (D.M.) (D.M.)
Seq. MS, 𝛽 = 1 𝑚𝑐(𝑞) = 𝑤 𝑚𝑐(𝑞) = 𝑤 (C.M.) (C.M.)
Seq. MS, 𝛽 = 0 – 𝑚𝑐(𝑞) = 𝑝(𝑞) – (U-TIOLI)

Notes: This table summarizes the equilibrium of monopsonistic and monopolistic bargaining in the
limit cases separately using FOCs and from the constraint maximization problems. We use the fol-
lowing abbreviations: “D-TIOLI” (downstream take-it-or-leave-it) and “U-TIOLI” (upstream take-it-or-
leave-it), “D.M.” (double marginalization), “C.M.” (classical monopsony). “–” denotes that equilibrium
does not exist.

Table OA-3: Key Notation Used in the Model

Mining (Upstream) Power (Downstream)

𝑞𝑐
𝑖𝑢

Coal output of mine 𝑖 (short tons) 𝑄𝐷
𝑡 Electricity demand in hour 𝑡

𝑙𝑖𝑢 Labor hours used at mine 𝑖 𝑄fr
𝑡 Fringe supply in hour 𝑡

𝑚𝑖𝑢 Intermediate inputs at mine 𝑖 𝑄st
𝑡 Strategic supply in hour 𝑡

𝜃(𝑖𝑢) Mine type for mine 𝑖 𝑃𝑡 Electricity price in hour 𝑡
𝛾𝜃(𝑖𝑢) Labor–material ratio by mine type 𝑐 𝑗𝑑 Marginal cost of generator 𝑗 in firm 𝑑
𝜔𝑖𝑢 Productivity shifter at mine 𝑖 𝑘 𝑗𝑑𝑡 Capacity of generator 𝑗 in hour 𝑡
𝑤 𝑙

𝑖𝑢
Hourly wage at mine 𝑖 𝐶𝑑𝑡(𝑄𝑑𝑡) Downstream cost function in hour 𝑡

𝑝𝑚
𝑖𝑢

Material unit cost at mine 𝑖 𝑄−𝑑𝑡 Output of other downstream firms in hour 𝑡
𝜆𝑖𝑢 Conversion factor (short ton to MMBtu)
𝑐𝑖𝑢 Marginal cost at mine 𝑖 Bargaining

𝑐𝑢 Vector of mine marginal costs for firm 𝑢 𝐷𝑢 Set of downstream partners for firm 𝑢
�̄�𝑢 Vector of mine capacities for firm 𝑢 𝑞𝑢𝑑 Quantity traded between 𝑢 and 𝑑
𝐶𝑢(𝑄𝑢) Upstream cost curve for firm 𝑢 𝑤𝑢𝑑 Wholesale coal price between 𝑢 and 𝑑
𝑄𝑢 Total coal output of firm 𝑢 𝜋𝑢 Profit function of firm 𝑢
𝑛𝑢 Number of mines owned by 𝑢 𝜋𝑑𝑡 Period-𝑡 profit of downstream firm 𝑑
�̄�𝑖𝑢 Capacity of mine 𝑖 𝑄𝑚𝑠

𝑑𝑡
Monopsonistic downstream quantity in hour 𝑡

𝑄
𝑚𝑝

𝑑𝑡
Monopolistic downstream quantity in hour 𝑡

𝛽𝑢𝑑 Bargaining power of buyer in pair (𝑢, 𝑑)
𝑄−𝑑 Total coal output supplied to downstream part-

ners other than 𝑑
𝑄−𝑢

𝑑𝑡
Disagreement output (without upstream 𝑢) for
firm 𝑑 in hour 𝑡

Notes: Subscripts 𝑖, 𝑗, 𝑢, 𝑑, and 𝑡 denote mine index, generator index, upstream firm, downstream firm, and hour
type, respectively.
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Table OA-4: Buyer Power from the Empirical Bargaining Literature

Sources Industry Range Mean Median Std. Dev.

Panel A. Firm-to-Firm

Crawford and Yurukoglu (2012) Television [0.170, 0.770] 0.559 0.595 0.159
Gowrisankaran et al. (2015) Healthcare {0.500} 0.500 0.500 0
Crawford et al. (2018) Television [0.280, 0.370] 0.325 0.325 0.064
Ho and Lee (2017, 2019) Healthcare [0.310, 0.470] 0.387 0.38 0.080
Hosken et al. (2024) Healthcare [0.370, 0.990] - 0.93 -
Alviarez et al. (2023) Intl. Trade - 0.812 - 0.101
Cuesta et al. (2024) Healthcare [0.167, 0.680] 0.476 0.518 0.187

Panel B. Union-to-Firm

Svejnar (1986) Multiple [0.140, 0.890] 0.513 0.555 0.281
Doiron (1992) Woodworking [0.499, 0.791] 0.648 0.678 0.116
Abowd and Lemieux (1993) Multiple [0.608, 0.850] 0.727 0.738 0.078
Mumford and Dowrick (1994) Coal {0.141} - - -
Cahuc et al. (2006) Multiple [0.020, 1.000] 0.804 0.855 0.247
Coles and Hildreth (2000) Manufacturing - 0.144 - 0.088
Breda (2014) Multiple [0.636, 0.805] 0.713 0.709 0.061
Fuess (2001) Multiple [0.176, 0.592] 0.357 0.250 0.099

Panel C. Cooperative-to-Firm

Prasertsri and Kilmer (2008) Dairy [0.217, 0.334] 0.267 0.267 0.034
Ahn and Sumner (2012) Dairy [0.861, 0.912] 0.889 0.896 0.020
Ge et al. (2015) Dairy [0.880, 0.881] 0.8804 0.8803 0.000
Hayashida (2018) Dairy [0.209, 1.179] 0.8739 0.9765 0.2470
Shokoohi et al. (2019) Dairy {0.690} - - -
Sano et al. (2022) Vegetables [0.481, 0.844] 0.707 0.707 0.089

Notes: This table summarizes bargaining parameters from empirical papers implementing models with a Nash-
in-Nash bargaining protocol. All weights denote buyer power. We summarize the estimates from the authors’
preferred specifications when available. Some papers (e.g., Crawford and Yurukoglu (2012)) provide weights
from bargaining pairs (some only report the distribution, e.g., Coles and Hildreth (2000)), and others (e.g., Abowd
and Lemieux (1993)) provide weights under different model specifications. Cahuc et al. (2006) do not specifically
study union-based wage negotiation, but we include them in this panel for their focus on wage bargaining.

Table OA-5: List of Firms

Upstream Firms Downstream Firms
A. With Coal Plants B. Without Coal Plants

Peabody Energy Corp NRG Energy Inc Energy Capital Partners
Rio Tinto Energy America Vistra Energy Energy Future Holdings Corp

Westmoreland Coal Co NextEra Energy Inc
Cloud Peak Energy
Arch Resources Inc

Foundation Coal Corp
Peter Kiewit Sons Inc

Alpha Natural Resources LLC
Vistra Energy

Notes: This table lists the upstream and downstream firms in Section 7. The list of upstream firms and downstream
firms with coal power plants is included in the bargaining model. Downstream firms without coal power plants
are strategic firms in the demand model with more than 5% market share.
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I Additional Figures
Figure OA-2: Change in 𝛽∗ with the Number of Downstream Firms

Notes: This figure presents numerical simulation results showing the relationship between output (𝑞) and
buyer power (𝛽) when there are one to three firms in each downstream market.

Figure OA-3: Buyer Power from the Empirical Bargaining Literature

(a) Firm-to-Firm (b) Union-to-Firm (c) Cooperative-to-Firm
Notes: This figure presents the distribution of bargaining weights from Table OA-4.

Figure OA-4: Effects of Buyer Power on Output Under Simultaneous Timing

Notes: Panel (a) simultaneous case of Figure 2. Panel (b) is the simultaneous case of Figure 4(b). The simultaneous
monopolistic bargaining model does not have a solution for 𝛽 < 1/6 as we show in Appendix D.3.2.
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Figure OA-5: Contract Type by Signing
Year

Notes: The data in this figure come from the EIA’s Coal
Transportation Rate Database for the years 1979–2000,
as described in Appendix G.1. It shows the share of
coal quantity shipped by year and contract type, rep-
resenting the three main types in the dataset. "Fixed-
Price Contracts" are linear price contracts that remain
constant throughout the contract’s duration.

Figure OA-6: Average Contract Duration
by Signing Year

Notes: The data in this figure come from the EIA’s Coal
Transportation Rate Database for the years 1979–2000,
as described in Appendix G.1. It presents the average
duration of contracts (in years) by the year they were
signed. Contracts signed prior to 1979 appear due to
their overlap with the data period.

Figure OA-7: ERCOT Share of Coal
Generation

Notes: This figure reports the share of electricity gen-
eration by coal-fired generators in the ERCOT market
during the sample period between 2006 and 2014.

Figure OA-8: Observed vs
Model-predicted Quantities

Notes: This figure shows the scatter plot of observed
vs. model-predicted coal transactions in MMBtu. An
observation is a combination of firm pair and year.
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